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Abstract

We present advances in Bayesian modeling and computation for CART (classification and
regression tree) models. The modeling innovations include a formal prior distributional struc-
ture for tree generation – the pinball prior – that allows for the combination of an explicit
specification of a distribution for both the tree size and the tree shape. The core computa-
tional innovations involve a novel Metropolis–Hastings method that can dramatically improve
the convergence and mixing properties of MCMC methods of Bayesian CART analysis. Ear-
lier MCMC methods have simulated Bayesian CART models using very local MCMC moves,
proposing only small changes to a “current” CART model. Our new Metropolis–Hastings
move makes large changes in the CART tree, but is at the same time local in that it leaves
unchanged the partition of observations into terminal nodes. We evaluate the effectiveness of
the proposed algorithm in two examples, one with a constructed data set and one concerning
analysis of a published breast cancer data set.
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1 Introduction

Search methods for CART (classification and regression tree) models are traditionally based on
greedy algorithms that generate trees by recursive partitioning of sample data into more and
more homogeneous subsets, often followed by pruning to address over-fitting (Breiman et al.,
1984; Clark and Pregibon, 1992), and greedy model search is also used in Bayesian tree analyses
(E. Huang and Huang, 2003; J. Pittman and West, 2003, 2004a,b). In contrast, Bayesian Monte
Carlo methods, introduced by Chipman et al. (1998) and Denison et al. (1998), aim to generate
samples of tree models according to their posterior probabilities representing fit to the data. The
current paper is concerned with innovations in Bayesian modeling and computation to move the
simulation-based methodology to a more practical level. We introduce, with examples, a new

• prior specification – the “pinball prior” – that involves an explicit specification of a distribu-
tion for size and shape of a tree, and

• a Metropolis-Hastings method – a radical “tree-restructure” move – that may be embedded
in MCMC methods for exploring in tree model space; this novel algorithm appears to resolve
existing problems of slow movement and lack of convergence of earlier MCMC methods, to
define practically efficient and effective simulation methods.

Section 2 defines notation and terminology for tree models and the methodology. The prior
specification, including the novel prior on tree structure, is described in Section 3. Posterior analy-
sis and the core MCMC methods, including the novel tree-restructure Metropolis-Hastings com-
ponent, are discussed in Section 4. Section 5 presents two examples, and Section 6 presents some
concluding comments.

2 CART Model Structure & Notation

2.1 Binary trees: Notation, node numbering & subtrees

The example tree in Figure 1 illustrates the unique numbering of nodes, from the root (0) to the
set of terminal nodes (or leaves). An internal (non-terminal) u has left child node l(u) = 2u + 1
and right child node r(u) = 2u + 2. Except for the root, each node u has: one parent node,
p(u) =

⌈
u
2

⌉
− 1, where �x� is the smallest integer larger than or equal to x; and one sister node,

s(u) = u + 1 if u is odd, and s(u) = u − 1 if u is even. Each node belongs to a certain level, or
floor, in the tree: root node is at level 0, and then each node u is in level f(u) = �log2(u + 1)�
where �x� is the largest integer less than or equal to x.

Formally, a (binary) tree T is defined by a finite set of nodes from the index setN = {0, 1, 2, . . .},
such that 0 ∈ T and for any u ∈ T \ {0} both p(u), s(u) ∈ T . Write T for the set of all possible
finite binary trees. For any T, write a(T ) for the set of non-terminal nodes and b(T ) for the set of
leaves; finally, write m(T ) = |b(T )|, the number of leaves.

For any tree T , the subtree from node u ∈ T is just the tree from (and including) u on down-
wards to the leaves of T below u, we denote it by Su(T ) = {v|v + u2f(v) ∈ T}. We sometimes
write mu(T ) for the number of leaves in the subtree from u, i.e. mu(T ) = m(Su(T )). Evidently,
S0(T ) = T and m0(T ) = m(T ).
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Figure 1: A (recursively defined, binary) tree with unique numbering of nodes.

2.2 CART splitting rules

We are interested in a CART model to predict variable y ∈ Y based on a set of candidate covariates
(or predictor variables) x = (x1, . . . , xp)′. With sample spaces xj ∈ Xj we have x ∈ X =
X1 × . . .×Xp. A CART tree partitions X into regions by assigning a splitting rule to each internal
node of a binary tree T . An internal node u ∈ a(T ) will be split as follows:

• choose a predictor variable index kT (u) ∈ P = {1, . . . , p} and a splitting threshold for that
variable τT (u) ∈ XkT (u);

• variables (y, x) are assigned to the left child l(u) of u if xkT (u) ≤ τT (u), otherwise to the
right child r(u).

Note that we allow the splitting threshold, τT (u), to take any value, they are not constrained to the
observed values.

Writing T = (T, kT , τ T ), where kT = {kT (u), u ∈ a(T )} and τ T = {τT (u), u ∈ a(T )}, this
recursively induces regions RT(u) to each node u ∈ T , where

RT(u) =

⎧⎨
⎩

X if u = 0,
RT(p(u)) ∩ {x ∈ X |xkT (u) ≤ τT (u)} if u odd,
RT(p(u)) ∩ {x ∈ X |xkT (u) > τT (u)} if u > 0 and even.

(1)

In particular, the regions in the leaves {RT(u), u ∈ b(T )} form a partition of X .
Corresponding to the definition of subtrees Su(T ) above, we let Su(kT ) and Su(τ T ) denote the

splitting variables and splitting thresholds in the subtree Su(T ). For T = (T, kT , τ T ) and u ∈ T
we will also use the notation Su(T) = (Su(T ), Su(kT ), Su(τ T )).

2.3 Recursive Partitioning of Sample Observations

Suppose we have observations (yi, xi), i ∈ I = {1, . . . , n}. The CART specification (above)
recursively partitions the data, assigning subsets of I to each node corresponding to the regions
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RT(u) defined above. Starting with the full data set at the root, NT(0, I) = I, the subset at
any node u is NT(u, I) = {i ∈ I|xi ∈ RT(u)}. The subsets in the leaves define a partition of
the full data set, denoted by LT(I) = {NT(u), u ∈ b(T )}. One may express the partition of I
in terms of partitions induced by subtrees. As an example, in the tree in Figure 2(a), we have
LT(I) = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}, LS1(T)(NT(1, I)) = {{1, 2, 3}, {4, 5, 6}},
LS2(T)(NT(2, I)) = {{7, 8, 9}, {10, 11, 12}}, LS3(T)(NT(3, I)) = {{1, 2, 3}} and, finally, the set
LS4(T)(NT(4, I)) = {{4, 5, 6}}.

2.4 Statistical model in leaves

We focus exclusively on CART models in which the subset of y outcomes in any leaf u is viewed
as a random sample from a distribution with density φ(·|θu) (Chipman et al., 1998). Key examples
are normal or Bernoulli distributions for y, the model indicating only that the parameters defining
the distributions differ across leaves. We restrict attention to random sample models within leaves
in this paper, though the new tree priors and MCMC innovations are of course applicable more
generally, including to models with regressions within leaves. We write θ ≡ θT = (θu, u ∈ b(T ))
for the set of parameters in any tree.

3 Prior model

3.1 Prior components

Recall the notation T = {T, kT , τ T}. We consider hierarchical prior specifications, with implicit
conditional independence assumptions, of the form

π(T, θ) = π(T ) π(kT |T ) π(τ T |T, kT ) π(θ|T). (2)

For the final three components we adopt prior structures that are the same as, or minor modifica-
tions of, those used by previous authors (Chipman et al., 1998; Denison et al., 1998). Conditional
on T :

• Priors for selection of splitting variables π(kT |T ). We assume each kT (u) is independently
generated from a fixed discrete distribution over the p predictor variables, choosing variable
xi with probability γ(i), i ∈ P . Thus π(kT |T ) =

∏
u∈a(T ) γ(kT (u)). Note that the same

predictor variable may be used as splitting variable in several internal nodes.

• Priors for splitting thresholds π(τ T |T, kT ). We take the τT (u) as conditionally independent,
and, for a chosen splitting variable xi, specify a prior density δi(τ) for the splitting threshold.
Thus π(τ T |T, kT ) =

∏
u∈a(T ) δkT (u)(τT (u)).

• Finally, the leaf parameters are assumed independent with common prior density ρ(θu), so
that π(θ|T) =

∏
u∈b(T ) ρ(θu).
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(a) (b)
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Figure 2: Illustration of the change, grow/prune and swap proposals with the constructed data set
in Table 1. Change proposal: (a) shows current tree T and (b) the potential new tree T′ after a
change in node 2. Grow proposal: (c) and (a) show T and T′, respectively. Prune proposal: (a) and
(c) shows T and T′, respectively. Swap proposal: (a) and (d) show T and T′, respectively.
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3.2 The pinball prior for tree generation

A key component is the prior π(T ) that defines control over the number and structure of nodes.
Denison et al. (1998) specified a prior on the number of leaves, and then a uniform prior over
trees with that number of leaves. Chipman et al. (1998) defined a tree-generating process within
which the prior on the number of nodes and shape of the tree is implicit, but making it relatively
difficult to incorporate prior structure directly on the number of leaves. The novel pinball prior
here overcomes this and extends both earlier approaches: we focus on tree size (m(T )) and whether
the tree layout is balanced or skewed.

The construction is simple and intuitive: the prior generates a number of terminal leaves m(T ),
and then these leaves are cascaded down from the root node, randomly splitting left/right at any
node according to a defined probability distribution at that node until they define individual leaves
- the leaves fall down the tree as pinballs. Formally:

• Specify a prior density for tree size (number of leaves) m(T ) ∼ α(m(T )). An obvious
candidate is Poisson, say m(T ) = 1 + Pois(λ) for specified λ.

• Noting m0(T ) = m(T ), recall that mu(T ) is the number of leaves in the subtree Su(T )
below any node u. At this node, these leaves are distributed to the left/right according to
some prior. Take β(ml(u)(T )|mu(T )) as a prior density governing the generation of this
split: here ml(u)(T ) is the number of leaves, of the current total mu(T ), sent to the left node
l(u), the remainder going to r(u). Note that the process ends when mu(T ) = 1 at any node
u. Then

π(T ) = α(m0(T ))
∏

u∈a(T )

β(ml(u)(T )|mu(T )) for T ∈ T . (3)

Different choices are possible for the function β(i|m). Taking β(i|m) = 1/{(# possible trees with
i leaves) · (# possible trees with m− i leaves)} gives the uniform distribution over all trees of size
m adopted in Denison et al. (1998). Except for very small tree sizes, the number of unbalanced
trees of a given size is much larger than the number of balanced trees of the same size, so this
choice of β(i|m) assigns a high prior probability to unbalanced trees. Natural alternatives are a
uniform distribution for β(i|m), i.e. β(i|m) = 1/(m − 1) for i = 1, . . . , m − 1, or β(i|m) =
1 + 1

2
[Bin(i − 1; m − 2, p) + Bin(i − 1; m − 2, 1 − p)], where Bin(·; n, p) denotes the binomial

mass function with parameters n and p. With p = 1/2 the latter gives a balanced tree with high
probability, whereas with a p close to zero the unbalanced trees get higher prior probabilities.
Simulation from this symmetric prior is direct from its definition; see examples in Figure 3. Note
that asymmetric priors could be used to encourage trees that are more skewed in overall shape.

4 Posterior Analysis & Markov chain Monte Carlo

Write y for the observed response data y = {yi}n
i=1. Following previous authors, we note that,

given T and θ, the likelihood function depends on T only through the induced partition of obser-
vations to leaves, LT(I). The data within leaves are independent random samples, and we make
the assumption that the prior ρ(θu) is such that we can analytically compute (or accurately approx-
imate) the implied marginal likelihoods, so delivering the overall marginal likelihood over tree
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Figure 3: A sample from the pinball prior with α(m) = 1 + Pois(m − 1; 15) and β(i; m) =
1 + Bin(i − 1; m − 1, 0.5).

structures, namely f(y|T) =
∫

f(y|θT , T)π(θT )dθT . Thus we have the posterior on tree model
space,

π(T|y) ∝ π(T)f(y|T)

with the prior π(T) = π(T )π(kT |T )π(τ T |T, kT ) as already defined.
Metropolis–Hastings MCMC methods aim to generate samples from this posterior. A technical

point is that we actually need to restrict to trees with non-empty leaves; more generally, we may
decide to require a minimum of, say, h data points in a leaf, so aim to sample from

π̃(T|y) ∝ π(T|y) ·
∏

u∈b(T )

I[|NT(u, I)| ≥ h]. (4)

The Metropolis–Hastings methods in Chipman et al. (1998) and Denison et al. (1998) are quite
similar and form our starting point. These two key articles also share the same honest conclusion:
their MCMC methods, based on “local moves” around the tree space, are extraordinarily slow to
converge. As a remedy they recommend restarts of the MCMC algorithm combined with ad-hoc
weighting of the generated trees. Our major contribution here is to introduce novel MCMC moves
that seem to solve the convergence problem. Thereby, there is no need for restarts or for weighting
of the realizations. For model averaging all trees (after convergence) should be assigned the same
weight. Moreover, if the distribution has multiple modes, the probability mass contained in a
specific mode is easily estimated by the fraction of time the Markov chain spends in this mode.

Our MCMC method uses four Metropolis–Hastings proposals, namely “change”, “grow/prune”,
“swap” and “(radical) restructure”. The first three proposals are those of Chipman et al. (1998) and
Denison et al. (1998). In the notation, we use primes to indicate proposal/potential new values,
so that, for example, T and T ′ are the current and the proposed/candidate new tree structures,
respectively. The proposals are as follows.
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Obs 1 2 3 4 5 6
x1 0.00 0.10 0.20 0.30 0.40 0.50
x2 0.10 0.30 0.40 0.48 0.56 0.57

Obs 7 8 9 10 11 12
x1 0.55 0.60 0.65 0.70 0.80 0.90
x2 0.00 0.20 0.40 0.60 0.80 1.00

Table 1: Example data, with n = 12, used to illustrate the Metropolis–Hastings proposals.

• Change proposal:
Propose to change k(u) and τ(u) for a randomly selected internal node u ∈ a(T ); leave
everything else unchanged. For the constructed data set in Table 1, an illustration of the
move is shown in Figures 2(a) and (b). Figure 12 (Appendix) contains pseudo code for the
proposal mechanism.

• Grow/prune proposal:
Propose to split a randomly selected leaf into two, or to prune the tree by merging two
randomly selected sibling leaves. For the constructed data set in Table 1, Figures 2(a) and
(c) illustrates the move. Figure 13 (Appendix) gives pseudo code for the move. One should
note that this proposal changes the number of (continuously distributed) splitting thresholds
and is thereby a reversible jump type of move (Green, 1995). However, as we propose the
new splitting threholds independently of everything else, the associated Jacobian will always
equal unity.

• Swap proposal:
Propose to swap the splitting rules in a randomly selected parent-child pair that are both
internal nodes. For the constructed data set in Table 1, Figures 2(a) and (d) illustrates the
move. Figure 14 (Appendix) contains the pseudo code for the proposal.

4.1 The restructure proposal

We aim to propose large changes in tree structure T = (T, k, τ ) without changing the number of
leaves nor the partition of observations into leaves. Figure 4 illustrates the move for the data in
Table 1.

Figure 4(a) shows a current tree, T, and the corresponding partition of observations into leaves,
LT(I). To propose a candidate T′ = (T ′, k′, τ ′) with LT′(I) = LT(I) we first identify possible
pairs of splitting variable and splitting thresholds for node 0. We require at least h = 1 leaf in
each of the two subtrees S1(T

′) and S2(T
′). In Figure 4(b) the possible intervals for τ ′(0) for

k′(0) = 1 and for k′(0) = 2 are shaded. Three possible intervals exist for k′(0) = 1, two in-
tervals for k′(0) = 2. We propose values for the pair (k′(0), τ ′(0)) by first sampling one of the
five possible intervals uniformly at random and thereafter generating a value for τ ′(0) uniformly
at random within the chosen interval. This produces, for example, the situation shown in Figure
4(c); T′ is now partly specified by (k′(0), τ ′(0)), LS1(T′)(I) and LS2(T′)(I). The right subtree
LS2(T′)(I) contains only one leaf and is therefore already completely specified. The left subtree
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Figure 4: Illustration of restructure move with the constructed data set in Table 1. Note that the
figure continues on the next page. (a) Current tree and the corresponding partition of observations
into leaves; (b) Possible splits for the root node; (c) Set the first split.
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Figure 4: (cont.) Illustration of restructure move with the constructed data set in Table 1. (d)
Possible splits for node 1; (e) Set the split for node 1; (f) The candidate tree proposed by the
restructure move.
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LS1(T′)(I) contains three leaves and is split into two subtrees, LS3(T′)(I) and LS4(T′)(I), by re-
peating the process just described. Figure 4(d) shows the possible intervals for τ ′(1) for k′(1) = 1
and k′(1) = 2. A possible result is shown in Figure 4(e). Thus, T′ is now partially specified
by {(k′(u), τ ′(u)), u = 1, 2}, LS2(T′)(I), LS3(T′)(I) and LS4(T′)(I). The subtree LS3(T′)(I) still
contains more than one leaf and must therefore be split into two subtrees by repeating the above
process once more. The possible intervals for τ ′(3) are identified (this step is not shown in Figure
4) and used to generate values for (k′(3), τ ′(3)). The resulting completely specified T′ is shown in
Figure 4(f).

One should note that with the above proposal procedure there is a unique way to generate T′

from T, and a corresponding unique way to propose T from T′. Computation of the associated
proposal probability q(T′|T), and the probability q(T|T′) for the corresponding reverse move, fol-
lows directly from the generating procedure. The proposal probability q(T′|T) is a product with
two factors associated with each internal node of T′; correspondingly, q(T|T′) has two factors for
each internal node of T. The first factor comes from drawing an interval and is one divided by the
number of possible intervals. The second factor, associated with drawing a value for τ ′(u), is one
divided by the length of the allowed interval.

Figure 15 (appendix) gives pseudo code for the proposal mechanism. One should note that in
the process of splitting LSu(T′)(I) into LSl(u)(T′)(I) and LSr(u)(T′)(I) one risk is that no possible
values exist for the pair (k′(u), τ ′(u)). If this happens in any of the splits we just set T′ = T, i.e.
keep the tree unchanged and increment the iteration variable by one. One should note that even if
the tree is kept unchanged in this case, it is essential to count it as an iteration of the Metropolis–
Hastings algorithm; otherwise it would be necessary to compute the probability for this event to
happen, which in practice would be impossible except for very small trees.

4.2 Variations of the restructure proposals

In the restructure move one needs to map all possible splitting variables (and corresponding split-
ting intervals) for each internal node in the new tree. The computational cost of this is proportional
to the number of candidate predictor variables p. If p is very large, a complete mapping of possible
splitting variables becomes computationally expensive. One may therefore select only a randomly
chosen subset of the predictor variables. Letting C ⊆ P denote the subset of predictor variables
mapped, a simple alternative is to let

P(i ∈ C|T) =

{
1 if i ∈ {kT (u) : u ∈ T},
α otherwise,

(5)

independently for each i ∈ P . The parameter α ∈ (0, 1) can be used to control the typical size of
C. The restructure move can then be started by sampling a set C, and it should be noted that the
Metropolis–Hastings acceptance probability must be modified by including also the probability of
sampling C.

A second possible modification allows for changes also in the partition of observations in
leaves. In the ProposeRestructure function (Figure 15 in Appendix) a new partition L′ can be
proposed just after the leaves, L, have been picked. Different possibilities exist for how to sample
L′ given L. An alternative based on the likelihood function is given in Figure 16, where we use the
fact that the likelihood function only depends on the partition of observations into leaves.
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5 Examples

We present simulation results for two examples. The first is for a small synthetic data set designed
to give a posterior distribution with two distinct modes. This toy example is included to illustrate
how the restructure move generates well-mixing Markov chains by enabling direct jumps between
modes. The second example considers a breast cancer data set and provides a more complex and
challenging posterior distribution for a comparison with previous MCMC approaches.

5.1 A synthetic example

We first discuss MCMC convergence and mixing properties using a synthetic data set having p = 3
predictors and Y = R. We generated n = 300 sets of (x1, x2, x3) , where x1

i ∼ Unif(0.1, 0.4) for
i = 1 . . . 200, x1

i ∼ Unif(0.6, 0.9) for i = 201 . . . 300, x2
i ∼ Unif(0.1, 0.4) for i = 1 . . . 100, x2

i ∼
Unif(0.6, 0.9) for i = 101 . . . 200, x2

i ∼ Unif(0.1, 0.9) for i = 201 . . . 300, x3
i ∼ Unif(0.6, 0.9) for

i = 1 . . . 200 and x3
i ∼ Unif(0.1, 0.4) for i = 201 . . . 300. Given these predictor values, y values

were simulated independently as

y =

⎧⎨
⎩

1 + N(0, 0.25) if x1 ≤ 0.5 and x2 ≤ 0.5,
3 + N(0, 0.25) if x1 ≤ 0.5 and x2 > 0.5,
5 + N(0, 0.25) if x1 > 0.5.

(6)

The partition of observations with respect to x1, x2 and x3 is shown in Figure 5, where the symbols
refer to the three regions defined in (6). The mean values of y in the three regions are well separated
and it is easy to check that the two trees in Figure 6 are the only trees consistent with the regions.

The analysis assumes a prior within-leaf model where the yi’s are independent and yi ∼
N(μu, σ

2
u) when observation i is assigned to leaf u, i.e. θu = (μu, σ

2
u). We use conjugate priors:

1/σ2
i ∼ Gam(0.5, 1.5) and (μi|σ2

i ) ∼ N(0, σ2
i ). The pinball prior has α(m) = 1 + Pois(m− 1; 10)

and β(i|m) = 1 + Bin(i− 1; m− 2, 1
2
). The splitting variables are chosen uniformly via γ(i) = 1

3
,

and splitting thresholds come, for all k, from δk(·) = N(0.5, 2) truncated to [0, 1].
We tried two algorithms: first, the MCMC using only the grow/prune, swap and change pro-

posals; second, including the basic restructure proposal too. In the first case, we call an “iteration”
a series of 60 change, 60 grow/prune and 60 swap moves; when including the restructure proposal,
we take one iteration to mean 50 change moves, 50 grow/prune moves, 50 swap moves and 1 re-
structure move. With our implementation these two types of iterations require essentially the same
amount of computing time. We start the chain from the left tree shown in Figure 6 and run each of
the algorithms for 8, 000 iterations. We use the last 4, 000 iterations to estimate, for each predic-
tor, the posterior probability that this predictor is used as a splitting variable. In the tree samples
produced with the algorithm without restructure move, both x1 and x2 are used in all the 4000 tree
samples while x3 is used only twice. Actually, by examining the tree samples, we find that 3, 997
out of the 4, 000 samples have exactly the same structure and splitting variables as the starting tree.
The remaining three trees have one split more than the starting tree. Thus, the tree shown in the
right panel in Figure 6 has never been visited. Since the implementations of the grow/prune, swap
and change proposals are the same as those of Chipman et al. (1998) and Denison et al. (1998), one
can see that the algorithm in Chipman et al. (1998) and Denison et al. (1998) will hardly find the
tree shown in the right panel in Figure 6. Restarts of the algorithm can help, but again one needs
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Figure 5: Simulated data example: Partition of observations with respect to x1, x2 and x3. The
symbols used refer to the three regions defined in (6). Cross: x1 ≤ 0.5 and x2 ≤ 0.5, circle:
x1 ≤ 0.5 and x2 > 0.5; plus: x1 > 0.5.
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Figure 6: The two trees consistent with the three regions defined in (6).

to weight all the generated trees. In contrast, using the algorithm with the restructure move, x1 is
used 1290 times, x2 is used 4000 times and x3 is used 2712 times. By examining the tree samples,
we find that both the two trees in Figure 6 are very frequently visited.

Finally, to check robustness with respect, particularly, to the key Poisson prior α(·), we reran
the analysis after replacing the y data with pure noise - a standard normal random sample. This
produced a posterior distribution with Pr(m0(T ) = 1|y) ≈ 0.37, compared to the prior probability
of 0.05, supporting the view that the analysis is relatively robust to the assumed Poisson form; this
has been borne out in other examples, including the following real-data example.

5.2 Breast cancer data example

A second example analyzes the breast cancer data set used in Chipman et al. (1998). The data
were obtained from the University of California, Irvine repository of machine learning databases
(ftp://ftp.ics.uci.edu/pub/machine-learning-databases) and originated in Wolberg and Mangasarian
(1990). The same data set is also used for a Bayesian CART model search, but without con-
vergence of the MCMC algorithm, in Chipman et al. (1998). The data set has 9 cellular cancer
characteristics, all ordered numeric variables, and the response is binary, indicating benign (0) and
malignant (1) tumors, i.e. Y = {0, 1}. We deleted missing values in the data set and so use 683 of
the original 699 observations.

For T we use exactly the same prior distribution as in Section 5.1. For each of the predictor
variables we use a linear transformation to place all values of xi in the unit interval. The within-
leaf sampling model is Bernoulli with probability (of malignance) θu in leaf u having independent
uniform priors. MCMC analysis was performed using the same two algorithms as above, with and
without the restructure move.
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Figure 7: Breast cancer data example: P-values of K-S statistics for samples from algorithm with
and without restructure move.

Convergence and mixing analysis becomes more difficult here than in the above toy example.
There are numerous methods for exploring MCMC convergence (Cowles and Carlin, 1996; Brooks
and Roberts, 1998). Here we simulate one long and K short MCMC runs, initializing each run
by sampling from the prior distribution. For each i = 1, 2, . . . we pick K realizations from the
long run and one realization from each of the short runs. From the long run we use the realizations
after k · i iterations for k = 1, 2, . . . , K, whereas for the short runs we use the realization after
iteration number i. If the chain has converged before i iterations and the mixing is sufficient for
two realizations i iterations apart to be independent, then the K realizations from the short runs
and the K realizations from the long run are independent and all come from the same distribution.
For any scalar function of the 2K realizations, we compute the Kolmogorov-Smirnov p-value
(Conover, 1971) to provide some insight into whether this seems reasonable. Figure 7 shows
the result when K = 250 and the scalar function is the log posterior density. When including
the restructure move, the algorithm is converging in less than 500 iterations, whereas without the
restructure move convergence clearly takes more than 4, 000 iterations.1 We have also generated
this type of convergence diagnostics plots for various other scalar functions including, among
others, the log integrated likelihood, tree size and number of times a particular predictor variable
is used as a splitting variable in the tree. The convergence differences between the two algorithms
are more or less striking dependent on which scalar function is used; the case shown in Figure 7
indicates the slowest convergence of the non-restructure move approach for this example.

The topology of the tree space is very complex and to get a clear picture of how the two
algorithms work is difficult, but some insight can be gained from Figure 8. This shows, for ten
runs with each of the two algorithms, trace plots of log integrated likelihood and the number of
leaves. Each simulation is for 1, 000 iterations, of which the last 500 iterations are shown in the
plots. Vertical dashed lines mark the start of new runs. We note how some of the runs with the
algorithm without the restructure seem to get trapped in local modes for the whole 500 iteration

1With our implementation in early 2005, 500 iterations for this data set took about 6 seconds on an Intel Xeon
3.0Ghz with 2Gb memory.
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Figure 8: Breast cancer data example: Trace plots of log integrated likelihood (upper row) and
number of leaves (lower row) for ten runs of the algorithm with the restructure proposal (right
column) and without the restructure proposal (left column). In each simulation the algorithms is
run for 1, 000, of which only the last 500 are shown in the figure. The start of a new run is indicated
by vertical dashed lines.
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period. In particular this is true for runs 3, 7 and 8. In the trace plots for the algorithm with the
restructure move, no such effects were encountered. Thus, the use of the restructure move seems
to improve the convergence and mixing properties of the Markov chain by preventing it from being
trapped in local modes over long times. In turn this removes the need for restarts and the ad hoc
weighting discussed in Chipman et al. (1998).

Exploration of posterior inferences involves inspecting trees generated from the sampler (as in
Figure 9) and histograms of posterior samples of key quantities of interest, such as the tree size
m(T ). In Figure 10 we see that the data give little support to trees with more than 15 terminal nodes,
and an approximate posterior mode of 9 leaves. We have also tried pinball priors encouraging both
smaller and larger trees, and the results are very insensitive to this choice. The middle panel in
Figure 10 gives the posterior distribution for the log integrated likelihood. Most of the probability
mass lies in the interval (−81,−65), but the run visited trees with log integrated likelihood values
up to −60. Chipman et al. (1998) reports log integrated likelihood values up to −62.2, with most
lying below −64. As our run was longer than theirs, this is as one should expect. In addition to
the tree size we also consider a statistic describing another property of the tree. Given a simulated
tree, we first compute the posterior mean of θ in each of the leaves. If this value is larger than
0.5, subjects in this leaf have higher probability for being malign. Thus, we classify such leaves
as malign and the remaining leaves as benign. We consider the fraction of the subjects where the
subject status differ from the leaf status. We call this the “malign/benign mixing fraction”. A
low value indicates pure malign and benign leaves, whereas a high value results from more mixed
leaves. The right panel in Figure 10 shows the histogram for this statistic. The mean value is
0.0248, whereas the smallest value found in the run is 0.0132. Thus, only a small degree of mixing
occurs in the leaves. The “miss-classification rates” reported in Chipman et al. (1998) corresponds
to mixing fractions down to 0.016, though they do not report any corresponding mean value.

We may also easily summarize the posterior to assess relevance of each of the predictor vari-
ables. For each predictor we estimate the posterior probability that this predictor is used as a
splitting variable (at least once), with results in Table 2. Most of the nine predictors have pre-
dictive relevance, which – given that one or a few may be truly predictive – is not surprising in
view of the collinearity observed (the correlation between the predictors ranges from 0.34 to 0.91).
The table provides the Monte Carlo estimates of posterior co-inclusion probabilities for pairs of
variables as well as the marginal probabilities of inclusion for each.

Turning now to prediction, the entire analysis was repeated using a randomly selected 342
observations as training data, producing 10, 000 sampled tree samples. The posterior was used
to make out-of-sample predictions on the remaining 341 test observations. Figure 11 displays the
results. With a simple threshold at 0.5 on the Monte Carlo estimates of the implied predictive prob-
abilities, averaged over all 10,000 trees, the raw prediction error is 13 out of 341. By comparison,
use of the greedy algorithm rpart in R (with default parameter settings) led to 23 misclassifications
in this 50:50 hold-out prediction assessment. Modifying rpart to permit any number of observa-
tions in each leaf led to 18 misclassified cases.

To further assess prediction validity we also ran a full ten-fold cross validation analysis, each
time randomly dividing the data set in ten parts with each part consisting of ten percent of the
benign observations and ten percent of the malign observation. We repeated the ten fold cross
validation ten times and this resulted in an average misclassification rate of 3.9%.
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X2, 0.417024

X6, 0.770619 X4, 0.159511

X4, 0.757758 X7, 0.314649 leaf, 11: 9/2 leaf, 164: 163/1

X8, 0.622315 leaf, 3: 2/1 leaf, 11: 8/3 leaf, 32: 32/0

X6, 0.255579 X8, 0.814277

X1, 0.66859 X1, 0.460938 leaf, 4: 0/4 leaf, 7: 7/0

leaf, 402: 0/402 leaf, 7: 3/4 leaf, 28: 2/26 leaf, 14: 13/1

X2, 0.319696

X6, 0.202092 X2, 0.477545

X5, 0.466856 X1, 0.350194 X1, 0.614437 X4, 0.190829

leaf, 401: 0/401 X2, 0.184254 X3, 0.365847 X7, 0.219803 X4, 0.502816 leaf, 24: 22/2 leaf, 11: 9/2 leaf, 164: 163/1

leaf, 3: 0/3 leaf, 4: 2/2 leaf, 21: 0/21 leaf, 4: 4/0 leaf, 7: 3/4 leaf, 30: 28/2 leaf, 7: 1/6 leaf, 7: 7/0

Figure 9: Breast cancer data example: Two trees chosen at random from the posterior distribution.
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Figure 10: Breast cancer data example: Left: Posterior for tree size m(T ); Center: Posterior for
log integrated likelihood; Right: Summary histogram of Malign/Benign mixing fraction.

x1 x2 x3 x4 x5 x6 x7 x8 x9 Name
x1 0.98 0.96 0.61 0.47 0.51 0.98 0.38 0.60 0.26 clump thickness
x2 0.96 0.98 0.60 0.47 0.50 0.98 0.37 0.60 0.26 uniformity of cell size
x3 0.61 0.60 0.62 0.28 0.32 0.62 0.27 0.35 0.17 uniformity of cell shape
x4 0.47 0.47 0.28 0.48 0.24 0.48 0.15 0.28 0.14 marginal adhesion
x5 0.51 0.50 0.32 0.24 0.52 0.52 0.19 0.22 0.15 single epithelial cell size
x6 0.98 0.98 0.62 0.48 0.52 1.00 0.39 0.61 0.27 bare nuclei
x7 0.38 0.37 0.27 0.15 0.19 0.39 0.39 0.24 0.10 bland chromatin
x8 0.60 0.60 0.35 0.28 0.22 0.61 0.24 0.61 0.15 normal nucleoli
x9 0.26 0.26 0.17 0.14 0.15 0.27 0.10 0.15 0.27 mitoses

Table 2: Breast cancer data example: Posterior pairwise and marginal (on diagonal) model inclu-
sion probabilities for the nine predictors.
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Figure 11: Breast cancer example: Predictive probabilities for the 50% sample test-set held out to
assess predictive accuracy of the tree model fitted to the 50% training sample. The squares and
diamonds represent subjects with benign and malign recurrence, respectively.
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6 Closing Remarks

We have revisited the Bayesian formulation for CART models (Chipman et al., 1998; Denison
et al., 1998) with two main contributions: a new prior specification for the tree structure which
combines an explicit specification of the tree size distribution with the possibility of specifying
a distribution for the tree shape, and a new “radical restructure” Metropolis–Hastings move for
CART trees. We have explored aspects of robustness and prediction in Bayesian tree models
under the new formulation, and demonstrated the very major improvements in the convergence
and mixing properties of the posterior simulators using the new MCMC method. This moves
Bayesian CART methodology to a position in which we can now generate realizations from CART
tree posterior distributions, something not earlier possible. One should also note that even if our
focus has been Bayesian CART trees, the same ideas can be used for any Bayesian tree models.

Convergence and mixing properties of an MCMC algorithm depends on the target distribution
of interest. Thus, the number of observations and even the observed values may drastically influ-
ence the effectiveness of a Metropolis–Hastings algorithm. We have tried the new algorithm for
two data sets. It is of interest to try the algorithm also for other and larger data sets. As the number
of observations becomes larger, it is reasonable to believe that there will be fewer reconfigurations
possible in the restructure move, and that the mixing properties will deteriorate correspondingly.
Adopting a hierarchical prior for θ as in Chipman et al. (2000) will most likely also have a neg-
ative effect on the mixing properties. The question is how large data sets the current algorithm
is able to handle and whether other proposal distributions need to be considered. If convergence
becomes a problem for large data sets, it is also possible to speed up the computations by adopting
a Metropolis–Hastings algorithm where many potential new states are proposed in each iteration,
see the discussion in Liu et al. (2000), Qin and Liu (2001) and Tjelmeland (2004). This situation is
ideal for parallel computation and can, for example, be used to define a modified restructure move
where one generates many trees consistent with the current partition of observations. Finally, we
note that scale-up in terms of numbers of potential predictor variables is immediate, though there
the general questions of collinearity and predictive similarity (or even equivalence) of multiple
models raise other issues, as they do in all regression and prediction approaches.
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Appendix: Pseudo code for MCMC moves

Function ProposeChange(T,I)
Set T ′ = T .
Draw u from a uniform distribution on a(T ′).
Draw kT ′(u) from γ(·).
Draw τT ′(u) from δkT ′ (u)(·).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for v ∈ a(T ) \ {u}.
Return T′

End.

Figure 12: Pseudo code for generating a potential new tree in the change move. Notation from
Section 2 is used.

Function ProposeGrowPrune(T,I)
With probability 1

2
I(m0(T ) > 1) set Igrow = 0, else set Igrow = 1.

If (Igrow = 1)
Draw u from a uniform distribution on b(T ).
Set T ′ = T ∪ {l(u), r(u)}.
Draw kT ′(u) from γ(·).
Draw τT ′(u) from δkT ′ (u)(·).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for each v ∈ a(T ).

Else
Draw u from a uniform distribution on the set {u ∈ a(T )|l(u),
r(u) ∈ b(T )}.

Set T ′ = T \ {l(u), r(u)}.
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for each v ∈ a(T ′).

End.
Return T′.

End.

Figure 13: Pseudo code for generating a potential new tree in the grow/prune move. Notation from
Section 2 is used.
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Function ProposeSwap(T,I)
Set T ′ = T .
Draw (u1, u2) from a uniform distribution on a(T ′)

that (u1, u2) is a parent-child pair.
Set kT ′(u1) = kT (u2), and τT ′(u1) = τT (u2).
Set kT ′(u2) = kT (u1), and τT ′(u2) = τT (u1).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for v ∈ a(T ) \ {u1, u2}.
Return T′

End.

Figure 14: Pseudo code for generating a potential new tree in the swap. Notation from Section 2
is used.
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Function ProposeRestructure(T,I)
Pick the leaves of the current tree, i.e. set L = LT(I).
[T′, err] = DrawTree(L).
If (err = 0)

Return T′

Else
Return T

End.
End.
Function DrawTree(L)

Let m denote the number of leaves in L, i.e. m = |L|.
If (m > 1)

Find the set of all possible pairs of splitting variables
and splitting intervals for L. Denote the result
by {kj, (τ

lower
j , τ upper

j ), j = 1, . . . , nI}.
If (nI > 0)

Draw k(0) from a uniformly distribution on {1, . . . , nI}.
Draw τ(0) from a uniform distribution on

the interval (τ lower
k(0), τ

upper

k(0)).
Set Ll and Lr equal to the subsets of L which have

xk(0) < τ(0) and xk(0) ≥ τ(0), respectively.
[S1(T), err1] = DrawTree(Ll); [S2(T), err2] = DrawTree(Lr).
If (err1 = 0 and err2 = 0)

Set err = 0.
Return [T, err].

End.
End.
Set T = ∅, T = [T, ·, ·] and err = 1.
Return [T, err].

Else /* Only one node in the tree */
Set T = {0}, T = [T, ·, ·] and err = 0.
Return [T, err].

End.
End.

Figure 15: Pseudo code for generating a potential new tree, and the DrawTree function used.
Notation from Section 2 is used.
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Function ProposePartition(L,riter)
Set L̃0 = L.
Let m denote the number of leaves in L̃0 and let L̃0

l denote
leaf number l, i.e. L̃0 = (L̃0

1, . . . , L̃
0
m).

For (i = 1 : riter)
Draw lfrom from a uniform distribution on {1, . . . , m}.
Draw lto from a uniform distribution on {1, . . . , lfrom − 1,

lfrom + 1, . . . , m}.
Let s denote the number of elements (observations) in L̃i−1

lfrom
.

If (s > 1)

Use L̃i−1 to define s new leaf configurations by moving one
observation from leaf number lfrom to leaf number lto. Denote
these configurations by L̆1, . . . , L̆s.

Set L̆0 = L̃i−1.
Draw an integer t ∈ {0, 1, . . . , s} where P(t = j) ∝ f(y|L̆j, θ).
Set L̃i = L̆t.

Else
Set L̃i = L̃i−1.

End.
End.
Return L̃riter

End.

Figure 16: Pseudo code for generating a potential new leaf configuration to be used in the restruc-
ture proposal.
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