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Bayesian Checking of the Second Levels
of Hierarchical Models1
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Abstract. Hierarchical models are increasingly used in many applications.

Along with this increased use comes a desire to investigate whether the model

is compatible with the observed data. Bayesian methods are well suited to

eliminate the many (nuisance) parameters in these complicated models; in

this paper we investigate Bayesian methods for model checking. Since we

contemplate model checking as a preliminary, exploratory analysis, we con-

centrate on objective Bayesian methods in which careful specification of an

informative prior distribution is avoided. Numerous examples are given and

different proposals are investigated and critically compared.
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1. INTRODUCTION

With the availability of powerful numerical compu-

tations, use of hierarchical (or multilevel, or random

effects) models has become very common in applica-

tions. They nicely generalize and extend standard one-

level models to complicated situations, where these

simple models would not apply. With their widespread

use comes along an increased need to check the ad-

equacy of such models to the observed data. Recent

Bayesian methods (Bayarri and Berger, 1999, 2000)

have shown considerable promise in checking one-

level models, especially in nonstandard situations in

which parameter-free testing statistics are not known.

In this paper we show how these methods can be ex-

tended to checking hierarchical models. We also re-

view state-of-the-art Bayesian proposals for checking

hierarchical models and critically compare them.
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We approach model checking as a preliminary analy-

sis in that if the data are compatible with the assumed

model, then the full (and difficult) Bayesian process of

model elaboration and model selection (or averaging)

can be avoided. The role of Bayesian model checking

versus model selection has been discussed, for exam-

ple, in Bayarri and Berger (1999, 2000) and O’Hagan

(2003) and we will not repeat it here.

In general, in a parametric model checking scenario,

we relate observables X with parameters θ through a

parametric model X | θ ∼ f (x | θ). We then observe

data xobs and wish to assess whether xobs are compati-

ble with the assumed (null) model f (x | θ). Most of the

existing methods for model checking (both Bayesian

and frequentist) can be seen to correspond to particular

choices of:

1. A diagnostic statistic T , to quantify incompatibility

of the model with the observed data through tobs =
T (xobs).

2. A completely specified distribution for the statistic,

h(t), under the null model, in which to locate the

observed tobs.

3. A way to measure conflict between the observed

statistic, and the null distribution, h(t), for T . The

most popular measures are tail areas (p-values) and

relative height of the density h(t) at tobs.

In this paper, we concentrate on the optimal choice

in item 2, which basically reduces to choice of meth-
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ods to eliminate the nuisance parameters θ from the

null model. Our recommendations then apply to any

choices in 1 and 3. [We abuse notation and use the

same h(·) to indicate both the completely specified dis-

tribution for X, after elimination of θ , and the corre-

sponding distribution for T .] Of course, choice of 1 is

very important; as a matter of fact, in some scenarios a

“good” T can be chosen which is ancillary or nearly so,

thus making choice of 2 nearly irrelevant. So our work

will be most relevant for complicated scenarios when

such optimal T ’s are not known, or extremely difficult

to implement (for an example of these, see Robins,

van der Vaart and Ventura, 2000). In these situations,

T is often chosen casually, based on intuitive consid-

erations, and hence we concentrate on these choices

(with no implications whatsoever that these are our rec-

ommended choices for T ; we simply do not address

choice of T in this paper). Also, without loss of gener-

ality, we can assume that T has been defined such that

the larger T is, the more incompatible data are with

the assumed model. As measures of conflict in item 3

above, we explore the two best known measures of sur-

prise, namely the p-value and the relative predictive

surprise, RPS (see Berger, 1985, Section 4.7.2) used

(with variants) by many authors. These two measures

are defined as

p = Prh(·)(t (X) ≥ t (xobs)
)
,(1.1)

RPS = h(t (xobs))

supt h(t)
.(1.2)

Note that small values of (1.1) and (1.2) denote incom-

patibility.

Frequentist and Bayesian choices for h(·) are dis-

cussed at length in Bayarri and Berger (2000), and we

limit ourselves here to an extremely brief (and incom-

plete) mention of some of them. The natural Bayesian

choice for h(·) is the prior predictive distribution,

in which the parameters get naturally integrated out

with respect to the prior distribution. (Box, 1980 pio-

neered use of p-values computed in the prior predictive

for Bayesian model criticism.) However, this requires

a fairly informative prior distribution (see O’Hagan,

2003 for a discussion) which might not be desirable

for model checking for two reasons: (i) we might wish

to avoid the careful (and difficult) prior quantification

in these earlier stages of the analysis, since the model

might well not be appropriate and hence the effort is

wasted; (ii) most importantly, model checking with

informative priors cannot separate inadequacy of the

prior from inadequacy of the model.

In the sequel we will concentrate on objective

Bayesian methods for model checking. We use the term

objective to refer to Bayesian methods in which the

priors are chosen by some default, agreed upon rules

(objective priors) rather than reflecting genuine (sub-

jective) prior information. This term is frequent among

Bayesians (see, e.g., Berger, 2003, 2006) but its use is

not without controversy. Objective priors are usually

improper. Note that this impropriety makes the prior

predictive distribution undefined and hence not avail-

able for (objective) model checking.

Guttman’s (1967) and Rubin’s (1984) choice for h(·)
is the posterior predictive distribution, resulting from

integrating θ out with respect to the posterior distribu-

tion instead of the prior. This allows use of improper

priors, and hence of objective model checking. This

proposal is very easy to implement by Markov chain

Monte Carlo (MCMC) methods, and hence has be-

come fairly popular in Bayesian model checking. How-

ever, its double use of the data can result in an ex-

treme conservatism of the resulting p-values, unless

the checking statistic is fairly ancillary (in which case

the way to deal with the parameters is basically irrel-

evant). This conservatism is shown to hold asymptot-

ically in Robins, van der Vaart and Ventura (2000),

and for finite n and several scenarios in, for example,

Bayarri and Berger (1999, 2000), Bayarri and Castel-

lanos (2001) and Bayarri and Morales (2003). Miscal-

ibration of posterior predictive measures is also docu-

mented in Dahl (2006), Draper and Krnjajić (2006) and

Hjort, Dahl and Steinbakk (2006); the double use of the

data was noted in the discussion of Gelman, Meng and

Stern (2003) (see, in particular, Draper, 1996). This is

not meant in any way to imply that posterior predic-

tive measures are without merit [see Gelman (2003)

for a recent exposition of their advantages and inter-

pretation], only that they have to be interpreted in a

different way: a posterior p-value equal to, say, 0.4

can not naively be interpreted as compatibility with the

null model in all problems. A small posterior predic-

tive measure can safely be interpreted as incompatibil-

ity with the null model.

Alternative choices of h(·) for objective model

checking are proposed in Bayarri and Berger (1997,

1999, 2000). Their asymptotic optimality is shown in

Robins, van der Vaart and Ventura (2000). In this pa-

per we derive these marginals for hierarchical model

checking. We also compare the results with those

obtained with posterior predictive distributions and

several “plug-in” choices for h(·). Note that “plug-

in” p-values would be natural choices for frequentist
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checking when interpreting the second level of a hierar-

chical model as a “random effect,” so in particular, we

compare some popular choices of Bayesian p-values

with MLE “plug-in” p-values.

There are not many proposals for checking the dis-

tributional assumption of “random effects.” Along

with the mentioned methods, we also carefully re-

view state-of-the-art Bayesian proposals, namely (i)

the simulation-based checking of Dey, Gelfand, Swartz

and Vlachos (1998), a computationally intensive

method based on Monte Carlo tests, (ii) the O’Hagan

method (O’Hagan, 2003) for checking graphical mod-

els, and (iii) the conflict p-values of Marshall and

Spiegelhalter (2003), close in spirit to cross-validation

methods. We critically compare these methods in sev-

eral examples. In this paper most attention is devoted

to the checking of a fairly simple normal-normal hier-

archical model so as to best illustrate the different pro-

posals and critically judge their behavior. Of course,

the main ideas also apply to the checking of many other

hierarchical models. In Section 2 we briefly review the

different measures of surprise (MS) that we will derive

and compare. In Section 3 we derive these measures for

the hierarchical normal-normal model. We also study

the sampling distribution of the different p-values,

both when the null model is true, and when the data

come from alternative models. In Section 4 we apply

these measures to a particular simple test which allows

easy and intuitive comparisons of the different propos-

als. In Section 5 we briefly summarize other methods

for Bayesian checking of hierarchical models, namely

those proposed by Dey, Gelfand, Swartz and Vlachos

(1998), O’Hagan (2003) and Marshall and Spiegelhal-

ter (2003), comparing them with the previous propos-

als in an example. Finally, in Section 6 we check the

adequacy of a binomial/beta hierarchical model in a

well-known example using all of the methods reviewed

in the paper.

2. MEASURES OF SURPRISE IN THE CHECKING

OF HIERARCHICAL MODELS

In this paper we will be dealing with the MS de-

fined in (1.1) and (1.2). Their relative merits and draw-

backs are discussed at length in Bayarri and Berger

(1997, 1999) and will not be repeated here. In this sec-

tion we derive these measures in the context of hier-

archical models, and for some specific choices of the

completely specified distribution h(·). We consider the

general two-level model:

Xij | θi
ind.∼ f (xij | θi), i = 1, . . . , I ; j = 1, . . . , ni,

θ | η ind.∼ π(θ | η) =
I∏

i=1

π(θi | η),

η ∼ π(η),

where θ = (θ1, . . . , θI ) and η = (η1, . . . , ηp)

To get a completely specified distribution h(·) for X,

we need to integrate θ out from f (x | θ) with respect to

some completely specified distribution for θ . We next

consider three possibilities that have been proposed in

the literature for such a distribution: empirical Bayes

types (plug-in), posterior distribution, and partial pos-

terior distribution, as they apply in the hierarchical sce-

nario. Notice that, since we will be dealing with im-

proper priors for η, the natural (marginal) prior π(θ) is

also improper and cannot be used for this purpose [it

would produce an improper h(·)].
2.1 Empirical Bayes (Plug-In) Measures

This is the simplest proposal, very intuitive and fre-

quently used in empirical Bayes analysis (see, e.g.,

Carlin and Louis, 2000, Chapter 3). It simply consists

in replacing the unknown η in π(θ | η) by an estimate

(we use the MLE, but moment estimates are often used

as well). In this proposal, θ is integrated out with re-

spect to

πEB(θ) = π(θ | η̂) = π(θ | η = η̂),(2.1)

where η̂ maximizes the integrated likelihood:

f (x | η) =
∫

f (x | θ)π(θ | η) dθ .

The corresponding proposal for a completely specified

h(·) in which to define the MS is

mEB
prior(t) =

∫
f (t | θ)πEB(θ) dθ .(2.2)

The MS pEB
prior and RPSEB

prior are now given by (1.1)

and (1.2), respectively, in which h(·) = mEB
prior(·).

Strictly for comparison purposes, we will later use

another distribution which is also of the empirical

Bayes type; in this new distribution, the empirical

Bayes prior (2.1) gets needlessly (and inappropriately)

updated using again the same data. In this (wrong) pro-

posal, θ gets integrated out with respect to

πEB(θ | xobs) ∝ f (xobs | θ)πEB(θ),(2.3)

resulting in

mEB
post(t) =

∫
f (t | θ)πEB(θ | xobs) dθ .(2.4)
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The corresponding MS pEB
post and RPSEB

post are again

computed using (1.1) and (1.2), respectively, with

h(·) = mEB
post(t).

2.2 Posterior Predictive Measures

This proposal is also intuitive and seems to have a

more Bayesian “flavour” than the plug-in solution pre-

sented in the previous section. This along with its ease

of implementation has made the method a popular one

for objective Bayesian model checking. This popular-

ity makes investigation of its properties all the more

important. The idea is simple: use the posterior to in-

tegrate θ out. Assuming that the posterior is proper

(as usual), this allows model checking when π(η) [and

hence π(θ)] is improper. Thus, the proposal for h(·) is

the posterior predictive distribution

mpost(t | xobs) =
∫

f (t | θ)π(θ | xobs) dθ,(2.5)

where π(θ | xobs) is the marginal from the joint poste-

rior

π(θ ,η | xobs) ∝ f (xobs | θ)π(θ ,η)

= f (xobs | θ)π(η)

I∏

i=1

π(θi | η).

The posterior p-value and the posterior RPS are de-

noted by ppost and RPSpost, and computed from (1.1)

and (1.2), respectively, with h(·) = mpost(·).
It is important to remark that, under regularity condi-

tions, the empirical Bayes posterior πEB(θ | xobs) given

in (2.3) approximates the true posterior π(θ | xobs).

Both are, in fact, asymptotically equivalent. Hence

whatever inadequacy of mEB
post(t) in (2.4) for model

checking is likely to apply as well to the posterior pre-

dictive mpost(t | xobs) in (2.5). We will see demonstra-

tion of the similar behavior of both predictive distrib-

utions in all the examples in this paper. Use of poste-

rior predictive measures was introduced by Guttman

(1967) and Rubin (1984) and extended and formal-

ized in Gelman, Meng and Stern (2003). They are very

easy to compute and they are perhaps the most widely

used checking procedure. We refer to Meng (1994),

Gelman, Meng and Stern (2003) and Gelman (2003)

for extended discussion and motivation.

2.3 Partial Posterior Predictive Measures

Both the empirical Bayes and posterior proposals

presented in Sections 2.1 and 2.2 use the same data to

(i) “train” the improper π(θ) into a proper distribution

to compute a predictive distribution and (ii) compute

the observed tobs to be located in this same predictive

distribution through the MS. This can result in a severe

conservatism incapable of detecting clearly inappropri-

ate models. A natural way to avoid this double use of

the data is to use part of the data for “training” and the

rest to compute the MS, as in cross-validation meth-

ods. The proposal in Bayarri and Berger (1999, 2000)

is similar in spirit: since tobs is used to compute the

surprise measures, it uses the information in the data

not in tobs to “train” the improper prior into a proper

one. A natural way to “remove” the information in

tobs = T (X = xobs) from xobs is by conditioning in

the observed value of the statistic T (X); that is, using

the conditional distribution f (xobs | tobs, θ) instead of

f (xobs | θ) to define the likelihood. The resulting pos-

terior distribution for θ (assumed proper) is called a

partial posterior distribution and given by

πppp(θ | xobs \ tobs) ∝ f (xobs | tobs, θ)π(θ)

∝ f (xobs | θ)π(θ)

f (tobs | θ)
.

The corresponding proposal for the completely speci-

fied h(·) is then the partial posterior predictive distri-

bution computed as

mppp(t | xobs \ tobs) =
∫

f (t | θ)π(θ | xobs \ tobs) dθ .

The partial posterior predictive measures of surprise

will be denoted by pppp and RPSppp and, as before,

computed using (1.1) and (1.2), respectively, with

h(·) = mppp(·).
Extensive discussions of the advantages and disad-

vantages of this proposal as compared with the previ-

ous ones can be found in Bayarri and Berger (2000)

and Robins, van der Vaart and Ventura (2000). In this

paper we demonstrate their performance in hierarchi-

cal models.

2.4 Computation of ph(·) and RPSh(·)

Often, for a proposed h(·), the measures ph(·) and

RPSh(·) cannot be computed in closed form. In fact,

h(·) is often not of closed form itself. In these cases

we use Monte Carlo (MC), or Markov Chain Monte

Carlo (MCMC) methods, to (approximately) compute

them. If x1, . . . ,xM is a sample of size M generated

from h(x), then ti = t (xi) is a sample from h(t), and

we approximate the MS as:

1. p-value

Prh(·)(T ≥ tobs) = # of ti ≥ tobs

M
,
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2. relative predictive surprise

RPSh(·) = ĥ(tobs)

supt ĥ(t)
,

where ĥ(t) is an estimate (for instance a kernel esti-

mate) of the density h at t . When the distribution

of the test statistic T , fT (t | θ), has closed form

expression, one can avoid kernel estimation by us-

ing a “Rao–Blackwellized” Monte Carlo estimate

of h, that is, ĥ(t) = (1/m)
∑m

k=1 fT (t | θk), where

the θk’s are draws from the appropriate distribution

for θ (proper prior, posterior, partial posterior, . . . ).

This is the method used in the examples of this pa-

per and was pointed to us by a referee.

3. CHECKING HIERARCHICAL NORMAL MODELS

Consider the usual normal-normal two-level hierar-

chical (or random effects) model with I groups and ni

observations per group. The I means are assumed to

be exchangeable. For simplicity, we begin by assuming

the variances σ 2
i at the observation level to be known.

The model is

Xij | θi
i∼ N(θi, σ

2
i ),

i = 1, . . . , I, j = 1, . . . , ni,
(3.1)

π(θ | μ,τ) =
I∏

i=1

N(θi | μ,τ 2),

π(μ, τ 2) = π(μ)π(τ 2) ∝ 1

τ
.

In this paper we concentrate on checking the ade-

quacy of the second-level assumptions on the means

θi . Of course, checking the normality of the observa-

tions is also important, but it will not be considered

here. The techniques considered in this paper as ap-

plied to the checking of simple models have been ex-

plored in Bayarri and Castellanos (2001), Castellanos

(1999) and Bayarri and Morales (2003).

Assume that choice of the departure statistic T is

done in a rather casual manner, and that we are espe-

cially concerned about the upper tail of the distribution

of the means. In this situation, a natural choice for T is

T = max{�X1·, . . . , �XI ·},(3.2)

where �Xi· denotes the usual sample mean for group i.

This T is rather natural, but the analysis would be vir-

tually identical with any other choice. Recall that if the

statistic is fairly ancillary, then the answers from all

methods are going to be rather similar, no matter how

we integrate θ out.

The density of the statistic (3.2) under the (null)

model specified in (3.1) can be computed to be

fT (t | θ) =
I∑

k=1

N

(
t | θk,

σ 2
k

nk

)

(3.3)

·
I∏

l=1
l �=k

F

(
t | θl,

σ 2
l

nl

)
,

where N(t | a, b) and F(t | a, b) denote the density and

distribution function, respectively, of a normal distrib-

ution with mean a and variance b evaluated at t .

We next integrate the unknown θ from (3.3) using

the techniques outlined in Section 2.

3.1 Empirical Bayes Distributions

It is easy to see that the likelihood for μ and τ 2 is

simply

f (x | μ,τ 2) =
I∏

i=1

N

(
x̄i

∣∣∣μ,
σ 2

i

ni

+ τ 2

)
,(3.4)

from which μ̂ and τ̂ 2 can be computed. Then (2.1) is

given by

πEB(θ) = π(θ | μ̂, τ̂ 2) =
I∏

i=1

N(θi | μ̂, τ̂ 2),

which we use to integrate θ out from (3.3). The result-

ing mEB
prior(x) does not have a closed form expression,

but simulations can be obtained by simple MC meth-

ods. For comparison purposes, we will also consider

integrating θ w.r.t. the (inappropriate) empirical Bayes

posterior distribution. The resulting mEB
post(x) is also

trivial to simulate from by using a similar MC scheme.

Details are given in Appendix A.

3.2 Posterior Predictive Distribution

This proposal integrates θ out from (3.3) w.r.t. its

posterior distribution. For the noninformative prior

π(μ, τ 2) ∝ 1/τ , the joint posterior is

πpost(θ ,μ, τ 2|xobs)

∝ f (x | θ ,μ, τ 2)π(θ | μ,τ 2)π(μ, τ 2)(3.5)

= 1

τ

I∏

i=1

N

(
�xi·

∣∣∣ θi,
σ 2

i

ni

) I∏

i=1

N(θi | μ,τ 2).

To simulate from the resulting posterior predic-

tive distribution mpost(x | xobs), we first simulate from
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TABLE 1

p-values and RPS for Examples 1 and 2

pEB
prior

RPSEB
prior

pEB
post RPSEB

post ppost RPSpost pppp RPSppp

Ex. 1 0.13 0.28 0.35 0.93 0.41 0.97 0.01 0.01

Ex. 2 0.12 0.29 0.30 0.88 0.38 0.95 0.01 0.01

πpost(θ ,μ, τ 2|xobs) and for each simulated θ , we sim-

ulate x from f (x | θ). To simulate from the joint poste-

rior (3.5) we use an easy Gibbs sampler defined by full

conditionals given in Appendix B.

3.3 Partial Posterior Distribution

To simulate from the partial posterior predictive dis-

tribution, mppp, we proceed similarly to Section 3.2,

except that simulations for the parameters are gener-

ated from the partial posterior distribution:

πppp(θ ,μ, τ 2 | xobs \ tobs) ∝ πpost(θ ,μ, τ 2 | xobs)

f (tobs | θ)
,

where πpost(θ ,μ, τ 2 | xobs) is given in (3.5). Details are

given in Appendix C.

3.4 Examples

For illustration, we now compute the MS, that is, the

p-values and the relative predictive surprise indexes for

the different proposals. We use a couple of data sets

with five groups and eight observations in each group.

In both of them the null model is not the model gener-

ating the data; in Example 1 one of the means comes

from a different normal with a larger mean, whereas

in Example 2 the means come from a Gamma distri-

bution. Recall that the null model (3.1) had the group

means i.i.d. normal.

EXAMPLE 1. The group means are 1.56, 0.64,

1.98, 0.01, 6.96, simulated from

Xij ∼ N(θi,4), i = 1, . . . ,5, j = 1, . . . ,8,

θi ∼ N(1,1), j = 1, . . . ,4,

θ5 ∼ N(5,1).

EXAMPLE 2. The group means are: 0.75, 0.77,

5.77, 1.86, 0.75, simulated from

Xij ∼ N(θi,4), i = 1, . . . ,5, j = 1, . . . ,8,

θi ∼ Ga(0.6,0.2), i = 1, . . . ,5.

In Table 1 we show all MS for the two examples. The

partial posterior measures clearly detect the inadequate

models, with very small p-values and RPS. On the

other hand, none of the other predictive distributions

work well for this purpose, no matter how we choose

to locate the observed tobs in them (with p-values or

RPS). The prior empirical Bayes are conservative, with

p and RPS an order of magnitude larger than the ones

produced by the partial posterior predictive distribu-

tion. Both the posterior empirical Bayes and predictive

posterior measures are extremely conservative, indicat-

ing almost perfect agreement of the observed data with

the quite obviously wrong null models. Besides, it can

be seen that EB posterior and posterior predictive mea-

sures are very similar to each other. This is not a spe-

cific feature of these examples, but occurs very often.

We further explore it in a rather simple null model in

Section 4.

We next study the behavior of the different p-values,

when considered as a function of X, under the null and

under some alternatives.

3.5 Null Sampling Distribution of the p-Values

In Section 2, we have reviewed four different ways

to define (Bayesian) p-values for model checking. To

compare their performance, we should address the

question of what do we want in a p-value.

For frequentists, one appealing property of p-values

is that, when considered as random variables, p(X)

have U(0,1) distributions under the null models. This

endorses p-values with a very desirable property,

namely having the same interpretation across prob-

lems. Statistical measures that lack a common inter-

pretation across problems are simply not very use-

ful. (For more extensive discussion of this point, see

Robins, van der Vaart and Ventura, 2000.) In fact, the

uniformity of p-values has often been taken as their

“defining” characteristic (Meng, 1994; Rubin, 1996;

De la Horra and Rodriguez-Bernal, 1997; Thompson,

1997; Robins, 1999; Robins, van der Vaart and Ven-

tura, 2000). For most problems, exact uniformity under



328 M. J. BAYARRI AND M. E. CASTELLANOS

the null for all θ cannot be attained for any p-value.

Thus one must weaken the requirement to some ex-

tent. A natural weaker requirement is that a p-value

be U(0,1) under the null in an asymptotic sense (see

Robins, van der Vaart and Ventura, 2000). As an aside,

it should be remarked that uniformity of p-values is

an essential assumption for some analyses based on

p-values, as some popular algorithms for handling

multiplicities (see Cabras, 2004).

It is not obvious that Bayesians should be concerned

with establishing that a p-value is uniform under the

null for all θ . For instance, when the prior is proper, the

prior predictive p-value is U(0,1) under m(x), which

means it is U(0,1) in an average sense over θ . If the

prior distribution is chosen subjectively, a Bayesian

could well argue that this is sufficient. Indeed Meng

(1994) suggested that uniformity under m(x) is a useful

criterion for the evaluation of any proposed (Bayesian)

p-value.

If the prior is improper, however (as it is often the

case in objective Bayes model checking, the subject of

this paper), then this prior predictive uniformity crite-

rion cannot be used. Of course, if a p-value is uniform

under the null in the frequentist sense, then it has the

strong Bayesian property of being marginally U(0,1)

under any proper prior distribution. This explains why

Bayesians should, at least, be highly satisfied if the

frequentist requirement obtains. Perhaps more to the

point, if a proposed p-value is always either conser-

vative or anticonservative in a frequentist sense (see

Robins, van der Vaart and Ventura, 2000, for defini-

tions), then it is likewise guaranteed to be conserva-

tive or anti-conservative in a Bayesian sense, no matter

what the prior. Interesting related discussion concern-

ing the posterior predictive p-value can be found in

Meng (1994), Gelman, Meng and Stern (2003), Rubin

(1996), Gelman (2003), Dahl (2006) and Hjort, Dahl

and Steinbakk (2006). There is a vast literature on

other methods of evaluating p-values. Further discus-

sion and references can be found in Bayarri and Berger

(2000).

Here, we focus on studying the degree to which

the various p-values deviate from uniformity in finite

sample scenarios. For this purpose, we simulate the

null sampling distribution of pEB
prior(X), ppost(X) and

pppp(X), when X comes from a hierarchical normal-

normal model as defined in (3.1). [We do not show the

behavior of pEB
post(X) because it is basically identical to

that of ppost(X).]

In particular, we have simulated 1000 samples from

the following model:

Xij ∼ N(θi,4), i = 1, . . . , I, j = 1, . . . ,8,

θi ∼ N(0,1), i = 1, . . . , I.

We have considered three different “group sizes”: I =
5, 15 and 25. (Since here we are checking the distribu-

tion of the means, the adequate “asymptotics” is in the

number of groups.)

We compute the different p-values for 1000 simu-

lated samples. Figure 1 shows the resulting histograms.

As we can see, pppp(X) has already a (nearly) uni-

form distribution even for I (number of groups) as

small as 5. On the other hand, the distributions of both

pEB
prior(X) and ppost(X) are quite far from uniformity,

the distribution of ppost(X) being the farthest. More-

over, the deviation from the U(0,1) is in the direction

of more conservatism (given little probability to small

p-values, and concentrating around 0.5), as it is the

case in simpler models. Notice that conservatism usu-

ally results in lack of power (and thus in not being able

to detect data coming from wrong models). Particularly

worrisome is the behavior of ppost(X) for small num-

ber of groups. We have also performed similar simu-

lations for larger I ’s (number of groups) to investigate

whether the distribution of these p-values approaches

uniformity as I grows. In Figure 2 we show the his-

tograms for I = 100 and I = 200 of p-values ppost(X)

and pEB
prior(X) [we do not show pppp(X) as it is virtu-

ally uniform]. The distributions of these p-values do

not seem to change much as I is doubled from I = 100

to I = 200, and they are still quite far from uniformity,

still showing a tendency to concentrate around middle

values for p. We do not know whether these p-values

are asymptotically U(0,1).

3.6 Distribution of p-Values Under Some

Alternatives

In this section we study the behavior of pEB
prior(X),

ppost(X) and pppp(X), when the “null” normal-normal

model is wrong. In particular, we focus on violations

of normality at the second level.

Specifically, we simulate data sets from three differ-

ent models. In all the three, we take the distribution at

the first level to be the same and in agreement with the

first level in the null model (3.1):

Xij ∼ N(θi, σ
2 = 4), i = 1, . . . , I, j = 1, . . . ,8.

We use three different distributions for the group

means (remember, under the null model, the θi’s were

normal):
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FIG. 1. Null distribution of pEB
prior(X) (first column), ppost(X) (second column) and pppp(X) (third column) for I = 5 (first row), 15 (second

row) and 25 (third row).

1. Exponential distribution: θi ∼ Exp(1), i = 1,

. . . , I.

2. Gumbel distribution: θi ∼ Gumbel(0,2), i = 1,

. . . , I, where the Gumbel(α, β) density is

f (x | α,β) = 1

β
exp

(
−x − α

β

)

· exp

(
− exp

(
−x − α

β

))
,

for −∞ < x < ∞. Gumbel distribution is also

known as Extreme Value Type I distribution. It is

skew, with a long tail to the right (left) when derived

as the limiting distribution of a maximum (mini-

mum).

3. Log-Normal distribution: θi ∼ LogNormal(0,1),

i = 1, . . . , I .

We have considered I = 5 and I = 10, simulated

1000 samples from each model and computed the dif-
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FIG. 2. Null distribution of pEB
prior(X) and ppost(X) when I = 100 (first row) and I = 200 (second row).

ferent p-values for each sample. In Table 2 we show

Pr(p ≤ α) for the three p-values and some values

of α. pppp seems to show decent power given the small

sample sizes and number of groups (power is lower

for the exponential alternative, and largest for the log-

normal); both pEB
prior and ppost show considerable lack

of power in comparison. In particular, notice the ex-

treme low power of ppost in all instances, producing

basically no p-values smaller than 0.2.

4. TESTING µ = µ0

As we have seen in Section 3, the specified predic-

tive distributions for T (empirical Bayes, posterior and

partial posterior) used to locate the observed tobs had

to be dealt with by MC and MCMC methods. To gain

understanding in the behavior of the different propos-

als to “get rid” of the unknown parameters, we address

here a simpler “null model” which results in simpler

expressions and allows for easier comparisons.
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TABLE 2

Pr(p ≤ α) for pppp, ppost and pEB
prior , for different values of I and

the three alternative models

α 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

Normal-Exponential

I = 5 I = 10

pppp 0.04 0.08 0.15 0.24 0.12 0.20 0.29 0.42

ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05

pEB
prior 0.00 0.00 0.00 0.23 0.00 0.06 0.18 0.37

Normal-Gumbel

I = 5 I = 10

pppp 0.12 0.22 0.32 0.46 0.21 0.31 0.42 0.55

ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pEB
prior 0.00 0.00 0.00 0.23 0.00 0.07 0.19 0.38

Normal-Lognormal

I = 5 I = 10

pppp 0.16 0.22 0.31 0.41 0.32 0.42 0.50 0.61

ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

pEB
prior 0.00 0.00 0.00 0.23 0.01 0.06 0.13 0.23

Suppose that we have the normal-normal hierarchi-

cal model (3.1) (with σ 2
i known) but that we are inter-

ested in testing

H0 :μ = μ0.

A natural T to consider to investigate this H0 is the

grand mean:

T =
∑I

i=1 ni
�Xi·∑I

i=1 ni

,

where �Xi·, i = 1, . . . , I , are the sample means for the

I groups. The (null) sampling distribution of T is:

T | θ ∼ N(μT ,VT )
(4.1)

with μT =
∑I

i=1 niθi∑I
i=1 ni

,VT =
∑I

i=1 niσ
2
i

(
∑I

i=1 ni)2
.

Again we will integrate θ out from (4.1) with the

previous proposals and compare the resulting predic-

tive distributions for T , h(t), and the corresponding

MS (which we take relative to μ0):

p = Prh(·)(|t (X) − μ0| ≥ |t (xobs) − μ0|
)
,(4.2)

RPS = h(t (xobs))/h(μ0)

supt h(t)/h(μ0)
.(4.3)

4.1 Empirical Bayes Distributions

In this case the integrated likelihood for τ 2 is simply

given by (3.4) with μ replaced by μ0, from which τ̂ 2

the MLE of τ 2 can be computed. For this null model,

it is possible to derive closed form expressions for the

prior and posterior empirical Bayes distributions given

in (2.2) and (2.4), respectively.

Indeed, the joint empirical Bayes prior predictive for
�X = (�X1·, . . . , �XI ·) is

mEB
prior(x̄) =

I∏

i=1

N

(
x̄i·

∣∣∣μ0,
σ 2

i

ni

+ τ̂ 2

)
,

so that the corresponding distribution for T , mEB
prior(t),

is normal with mean and variance given by

EEB
prior = μ0,

(4.4)

V EB
prior = 1

(
∑I

i=1 ni)2

I∑

i=1

n2
i

(
σ 2

i

ni

+ τ̂ 2

)
.

The empirical Bayes posterior predictive distribution

mEB
post(x̄) can be derived in a similar manner resulting

also in a normal mEB
post(t) with mean and variance

EEB
post =

∑I
i=1 niẼi∑I

i=1 ni

,

(4.5)

V EB
post = 1

(
∑I

i=1 ni)2

I∑

i=1

n2
i

(
σ 2

i

ni

+ Ṽi

)
,

where

Ẽi = ni�xi·/σ
2
i + μ0/τ̂

2

ni/σ
2
i + 1/τ̂ 2

and

Ṽi = 1

ni/σ
2
i + 1/τ̂ 2

.

The MS (4.2) and (4.3) can also be computed in

closed form. The (prior) empirical Bayes measures are

pEB
prior = 2 ·

(
1 − 	

( |tobs − μ0|√
V EB

prior

))
,

RPSEB
prior = exp

{
−(tobs − μ0)

2

2V EB
prior

}
,

where 	 denotes the standard normal distribution func-

tion. The posterior empirical Bayes measures can sim-

ilarly be derived in closed form, but they are of much

less interest and we do not produce them here (see

Castellanos, 2002).

The inadequacies of mEB
post for testing the null model

can already be seen in the above formulas, but they are

more evident in the particular homoscedastic, balanced
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case: σ 2
i = σ 2 and ni = n ∀i, i = 1, . . . , I . In this case

the distribution of T simplifies to

T ∼ N

(∑I
i=1 θi

I
,
σ 2

In

)
.

Also, there is a closed form expression for the MLE

of τ 2:

τ̂ 2 = max

{
0,

∑I
i=1(�xi· − μ0)

2

I
− σ 2

n

}
.

Then, the mean and variance of mEB
prior, as given

in (4.4), are

EEB
prior = μ0, V EB

prior =
σ 2

n
+ τ̂ 2

I
.

Similarly, the mean and variance of mEB
post, given

in (4.5), reduce to

EEB
post = ntobs/σ

2 + μ0/τ̂
2

n/σ 2 + 1/τ̂ 2
,

V EB
post = 2nσ 2τ̂ 2 + σ 4

nI (nτ̂ 2 + σ 2)
.

For a given μ0 (and fixed τ ), it is now easy to inves-

tigate the behavior of mEB
prior and mEB

post as tobs → ∞,

indicating flagrant incompatibility between the data

and H0. The comparison in this simple case is en-

lightening. First, note that mEB
prior centers at μ0, which

in principle allows for declaring incompatible a very

large value tobs; however, the variance also grows to ∞
as tobs grows, thus alleviating the incompatibility, and

maybe “missing” some surprisingly large tobs. Thus,

the behavior of mEB
prior is reasonable, but might be con-

servative. On the other hand, the behavior of mEB
post is

completely inadequate. Indeed, for very large tobs, it

centers precisely at tobs, thus precluding detecting as

unusual any value tobs, no matter how large! Moreover,

the variance goes to (2σ 2)/(nI), a finite constant. It

is immediate to see that mEB
post should not be used to

check this particular (and admittedly simple) model; as

a matter of fact, for tobs → ∞ (extremely inadequate

models) we expect p-values of around 0.5. We remark

that the previous argument does not belong to any par-

ticular MS; rather it reflects the inadequacy of mEB
post

for model checking, whatever MS we use. Note that

we expect similar inadequacies to occur with the pos-

terior predictive distribution, which is rather often used

in objective Bayes model checking.

4.2 Posterior Distribution

No major simplifications occur for this specific H0.

The posterior distribution is not of closed form (not

even for the homoscedastic, balanced case), and hence

neither is the posterior predictive distribution. We can,

however, easily generate from it with virtually the same

Gibbs sampler used in Section 3.2: it suffices to (ob-

viously) ignore the full conditional for μ and replace

μ with the value μ0 in the other two full conditionals

(B.2) and (B.3), which were standard distributions.

4.3 Partial Posterior Distribution

There is no closed form expression for the partial

posterior distribution either, but considerable simplifi-

cation occurs since the Metropolis-within-Gibbs step is

no longer needed and a straight Gibbs sampler suffices.

The full conditional for τ 2 is as given in (C.2) with μ

replaced by μ0; the full conditional of each θi is here

also normal:

π(θi | τ 2, θ−i,xobs \ tobs) = N(θi | E0
i ,V

0
i ),

where

E0
i = 1

V 0
i

[
ni

σ 2
i

(
�xi· −

σ 2
i∑

j njσ
2
j

·
(∑

j

nj tobs −
∑

l �=i

nlθl

))
(4.6)

+ 1

τ 2
μ0

]
,

1

V 0
i

= ni

σ 2
i

(
1 − niσ

2
i∑I

j=1 njσ
2
j

)
+ 1

τ 2
.(4.7)

Details of the derivations appear in Appendix D.

4.4 Some Examples

We next consider four examples in which we carry

out the testing H0 : μ = 0. We consider I = 8 groups,

with n = 12 observations per group, and σ 2 = 4. In one

of the examples (Example 1) H0 is true and the means

θi are generated from a N(0,1). In the remaining three

examples the null H0 is wrong, with θi ∼ N(1.5,1)

in Example 2, θi ∼ N(2.5,1) in Example 3, and θi ∼
N(2.5,3) in Example 4. The simulated sample means

are:

EXAMPLE 3.

�x = (−2.18,−1.47,−0.87,−0.38,

0.05,0.29,0.96,2.74).



BAYESIAN CHECKING OF THE SECOND LEVELS OF HIERARCHICAL MODELS 333

EXAMPLE 4.

�x = (−0.05,0.66,1.37,1.70,1.72,2.14,2.73,3.68).

EXAMPLE 5.

�x = (1.53,1.65,1.71,1.75,1.87,2.16,2.47,3.68).

EXAMPLE 6.

�x = (0.50,1.52,1.59,2.73,2.88,3.54,4.21,5.86).

In Figure 3 we show the predictive distributions for

all proposals in the four examples. A quite remarkable

feature is that in every occasion, mEB
post basically coin-

cides with mpost, so much that they can hardly be told

apart. We were expecting them to be close, but not so

close. Also, when the null is true (Example 1), all dis-

tributions rightly concentrate around the null and, as

expected, the most concentrated is mEB
post (and mpost),

and the least is mppp (mEB
prior ignores the uncertainty in

the estimation of τ 2). When the null model is wrong,

however, even though both mppp and mEB
prior have the

right location, mppp is more concentrated than mEB
prior,

thus indicating more promise in detecting extreme tobs.

Notice the hopeless (and identical) behavior of mEB
post

and mpost: both concentrate around tobs, no matter how

extreme; that is, there is no hope that it can detect in-

compatibility of a very large tobs with the hypothetical

value of 0.

In Table 3 we show the different MS for the four

examples. All behave well when the null is true, but

only the ppp and the prior empirical Bayes measures

detect the wrong models (ppp more clearly). On the

other hand, mEB
post and mpost produce very similar mea-

sures and both are incapable of detecting clearly in-

appropriate null models. Notice that the conservatism

of the posterior predictive measures (and the posterior

empirical Bayes ones) is extreme.

TABLE 3

p-values and RPS for testing μ = 0 in the four examples

Example 1 Example 2 Example 3 Example 4

p RPS p RPS p RPS p RPS

ppp 0.86 0.98 0.01 0.01 0.00 0.00 0.00 0.01

EB prior 0.83 0.98 0.02 0.06 0.01 0.03 0.01 0.05

EB post 0.71 1.00 0.31 0.89 0.30 0.88 0.38 1.00

post 0.71 1.00 0.33 0.92 0.32 0.95 0.39 1.00

5. A COMPARISON WITH OTHER BAYESIAN

METHODS

In this section we retake the main goal of check-

ing the adequacy of the second level in the hierarchical

model:

Xij | θi
i∼ N(θi, σ

2),

i = 1, . . . , I, j = 1, . . . , ni,

π(θ | μ,τ) =
I∏

i=1

N(θi | μ,τ 2),

with σ 2 unknown, as well as μ,τ 2. We first provide

some details needed to derive the MS used so far when

σ 2 is unknown; we then briefly review three recent

methods for Bayesian checking of hierarchical mod-

els, proposed in Dey, Gelfand, Swartz and Vlachos

(1998), O’Hagan (2003) and Marshall and Spiegelhal-

ter (2003). We do not specifically address here (be-

cause the philosophy is somewhat different) the much

earlier, likelihood/empirical Bayes proposal of Lange

and Ryan (1989), which basically consists in check-

ing the normality of some standardized version of esti-

mated residuals. We apply the four methods considered

so far and the three new methods to a data set proposed

in O’Hagan (2003).

O’HAGAN (2003) EXAMPLE. In the general sce-
nario of checking the normal-normal hierarchical
model, O’Hagan (2003) uses the following data set:

Group 1 2.73, 0.56, 0.87, 0.90, 2.27, 0.82. �x1·= 1.36.

Group 2 1.60, 2.17, 1.78, 1.84, 1.83, 0.80. �x2·= 1.67.

Group 3 1.62, 0.19, 4.10, 0.65, 1.98, 0.86. �x3·= 1.57.

Group 4 0.96, 1.92, 0.96, 1.83, 0.94, 1.42. �x4·= 1.34.

Group 5 6.32, 3.66, 4.51, 3.29, 5.61, 3.27. �x5·= 4.44.

Note that �x5· is considerably far from the other four

sample means.

5.1 Methods Used So Far

The empirical Bayes methods (both the prior and the

posterior) have an easy generalization to the unknown

σ 2 case. It suffices to substitute σ 2 by its usual MLE

estimate and apply the procedures in Section 3 for σ 2

known.

For both the posterior predictive and the partial pos-

terior predictive measures, we need to specify a new

(noninformative) joint prior. Since we can use the stan-

dard noninformative prior for σ 2, we take

π(μ,σ 2, τ 2) ∝ 1

σ 2

1

τ
.(5.1)
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FIG. 3. Different predictive distribution for T in each example. The vertical solid line locates tobs. The curves corresponding to mpost and

mEB
post were almost indistinguishable and for clarity are represented as identical.

To simulate from the posterior distribution, we again

use Gibbs sampling. The full conditionals for θ , μ and

τ 2 are the same as for the known σ 2 and they are given

in (B.3), (B.1) and (B.2), respectively. The full condi-

tional for the new parameter, σ 2, is

σ 2 | θ ,μ, τ 2,xobs ∼ χ−2(m, σ̃ 2),

where m = ∑I
i=1 ni and σ̃ 2 = ∑I

i=1

∑ni

j=1(xij −
θi)

2/n.

The (joint) partial posterior distribution is

πppp(θ , σ 2,μ, τ 2 | xobs \ tobs) ∝ π(θ , σ 2,μ, τ 2|xobs)

f (tobs | θ , σ 2)
,

and again we use the same general procedure as for the

σ 2 known scenario (see Section 3). We only need to

specify how to simulate from the full conditional of σ 2:

πppp(σ
2 | θ,μ, τ 2,xobs \ tobs) ∝ χ−2(m, σ̃ 2)

f (tobs | θ , σ 2)
.

We use Metropolis–Hastings with χ−2(m, σ̃ 2) as pro-

posal distribution. The acceptance probability (at sta-

ge k) of candidate σ 2∗, given the simulated values

(θ (k), σ 2(k),μ(k), τ 2(k)), is

α = min

{
1,

f (tobs|θ (k), σ 2(k))

f (tobs|θ (k), σ 2∗)

}
.
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TABLE 4

MS (σ 2 unknown) for O’Hagan data set

pEB
prior

RPSEB
prior

pEB
post RPSEB

post ppost RPSpost pppp RPSppp

0.19 0.4 0.37 0.95 0.40 0.99 0.01 0.02

We next derive the different MS for O’Hagan data.

O’HAGAN (2003) EXAMPLE (CONTINUED). The

empirical Bayes, posterior predictive and partial pos-

terior predictive MS applied to this data set, using

T = maxi{�Xi}, are shown in Table 4.

We again observe the same behavior as the one re-

peatedly observed in previous examples: in spite of

such an “obvious” data set, only the partial poste-

rior measures detect the incompatibility between data

and model. The empirical Bayes prior measures are

too conservative, and the posterior predictive measures

(and their very much alike empirical Bayes posterior

ones) are completely hopeless.

5.2 Simulation-Based Model Checking

This method is proposed in Dey, Gelfand, Swartz

and Vlachos (1998), as a computationally intense

method for model checking. This method works not

only with checking statistics T , but more generally,

with discrepancy measures d , that is, with functions of

the parameters and the data. This feature also applies

to the posterior predictive checks that we have been

considering all along. In essence, the method consists

in comparing the posterior distribution d | xobs with R

posterior distributions of d given R data sets xr , for

r = 1, . . . ,R, generated from the (null) prior predic-

tive model. Note that this method requires proper pri-

ors. Comparison is carried out via Monte Carlo Tests

(Besag and Clifford, 1989).

Letting xr , for r = 0, denote the observed data xobs,

their algorithm is as follows:

• For each posterior distribution of d given xr , r =
0, . . . ,R, compute the vector of quantiles q(r) =
(q

(r)
0.05, q

(r)
0.25, q

(r)
0.5, q

(r)
0.75, q

(r)
0.95), where q

(r)
α is the α-

quantile of the posterior distribution given data xr ,

r = 0, . . . ,R.

• Compute the vector �q of averages, over r , of these

quantiles: �q = (�q0.05,�q0.25,�q0.5,�q0.75,�q0.95).

• Compute the r +1 Euclidean distances between q(r),

r = 0,1, . . . ,R and �q.

• Perform a 0.05 one-sided, upper tail Monte Carlo

test, that is, check whether or not the distance cor-

responding to the original data is smaller than the

95th percentile of the r + 1 distances.

In reality, this method is not a competitor of the ones

we have been considering previously, since it requires

proper priors, and hence is not available for objec-

tive model checking. We, however, apply it also to

O’Hagan data.

O’HAGAN (2003) EXAMPLE (CONTINUED). In

order to perform the simulation-based model checking,

we need proper priors. We use the ones proposed in

O’Hagan (2003):

μ ∼ N(2,10), σ 2 ∼ 22W, τ 2 ∼ 6W
(5.2)

where W ∼ χ−2
20 .

Along with the statistic used so far, we have also con-

sidered a measure of discrepancy which in this case is

just a function of the parameters:

T1 = max �Xi·, T2 = max |θi − μ|.
With 1000 simulated data sets from the null, the re-

sults are shown in Table 5. It can be seen that, with

the given prior, incompatibility is detected with T2, but

not with T1. We do not know whether T2 would detect

incompatibility with other priors (see related results in

Section 5.3).

5.3 O’Hagan Method

O’Hagan (2003) proposes a general method to in-

vestigate adequacy of graphical models at each node.

We will not describe his method in full generality, but

TABLE 5

Euclidean distance between q(0) and �q
and the 0.95 quantile of all distances

‖q(0) −�q‖ 0.95 quantile

T1 2.31 13.46

T2 1.82 0.81
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only how it applies to checking the second level of our

normal-normal hierarchical model.

To investigate conflict between the data and the nor-

mal assumption for each of the group means, this

proposal investigates conflict between the likelihood

for θi ,
∏ni

j=1 f (xij | θi, σ
2), and the (null) density for

θi , π(θi | μ,τ 2).

To check conflict between two known univariate

densities/likelihoods, O’Hagan proposes a “measure of

conflict” based on their relative heights at an “interme-

diate” value. Specifically, the likelihoods/densities are

first normalized so that their maximum height is 1 (no-

tice that this is equivalent to dividing by their respec-

tive maximum, as in RPS before). Then the (common)

density height, z, at the value of θi between the two

modes where the two densities are equal, is computed.

The proposed measure of conflict is c = −2 ln z. For

the particular case of comparing two normal distribu-

tions, N(ωi, γ
2
i ), for i = 1,2, this measure is

c =
(

ω1 − ω2√
γ1 + √

γ2

)2

.(5.3)

O’Hagan indicates that a conflict measure smaller than

1 should be taken as indicative of no conflict, whereas

values of 4 or larger would indicate clear conflict. No

indication is given for values lying between 1 and 4.

When, as usual, the distributions involved depend on

unknown parameters, the measures of conflict [in par-

ticular (5.3)], cannot be computed. O’Hagan’s proposal

is then to use the median of their posterior distribution.

Notice that this is closely related to computing a rela-

tive height on the posterior predictive distribution and,

hence, the concern exists that it can be too conservative

for useful model checking. In fact this conservatism

was highlighted in the discussions by Bayarri (2003)

and Gelfand (2003).

Interestingly enough, O’Hagan defends use of pro-

per priors for the unknown parameters, so neither pos-

terior predictive nor posterior distributions are needed

for implementation of his proposal (since the prior pre-

dictives and priors are proper). Alternatively, if one

wishes to insist on using posterior distributions (instead

of the, more natural, prior distributions), then proper

priors are no longer needed, and the method can thus be

generalized. Accordingly, we also apply his proposal

with the noninformative prior (5.1).

O’HAGAN (2003) EXAMPLE (CONTINUED). We

compute the measure (5.3) for the data set proposed by

O’Hagan (2003). To derive the posterior distributions,

we use both the proper priors proposed by O’Hagan

TABLE 6

Posterior medians of ci , i = 1, . . . ,5, for O’Hagan data set

θ1 θ2 θ3 θ4 θ5

O’Hagan priors 0.43 0.14 0.22 0.46 4.81

Noninformative priors 0.16 0.09 0.11 0.16 1.36

for this example, given in (5.2), and the noninforma-

tive prior (5.1). The posterior medians for c are shown

in Table 6. It can be seen that the results are very de-

pendent on the prior used: the spurious group 5 is de-

tected with the specific proper prior used, but not with

the noninformative priors (thus suffering from the ex-

pected conservatism). We recall that data were clearly

indicating an anomalous group 5.

5.4 “Conflict” p-Value

Marshall and Spiegelhalter (2003) proposed this ap-

proach based on, and generalizing, cross-validation

methods (see Gelfand, Dey and Chang, 1992; Bernardo

and Smith, 1994, Chapter 6).

In cross-validation, to check adequacy of group i,

data in group i, Xi , are used to compute the “surprise”

statistic (or diagnostic measure), whereas the rest of the

data, X−i , are used to train the improper prior. A mixed

p-value is accordingly computed as

pi,mix = Prmcross(·|X−i)(Ti ≥ T obs
i ),(5.4)

where the completely specified distribution used to

compute the ith p-value is

mcross(ti | X−i)

=
∫

f (ti | θi, σ
2)π(θi | μ,τ 2)π(μ, τ 2, σ 2 | X−i) dθ ,

and thus there is no double use of the data.

Marshall and Spiegelhalter (2003) aim to preserve

the cross-validation spirit while avoiding choice of a

particular statistic or discrepancy measure Ti = T (Xi).

Specifically, they propose use of conflict p-values for

each group i, computed as follows:

• Simulate θ
rep
i from the posterior θi | X−i .

• Simulate θ
fix
i from the posterior θi | Xi .

• Compute θ
diff
i = θ

rep
i − θ

fix
i .

• Compute the “conflict” p-value for group i, i =
1, . . . , I , as

pi,con = Pr(θ
diff
i ≤ 0 | x).(5.5)
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Marshall and Spiegelhalter (2003) show that for lo-

cation parameters θi , the conflict p-value (5.5) is equal

to the cross-validation p-value (5.4) based on statistics

θ̂i with symmetric likelihoods and using uniform priors

in the derivation of θ
fix
i .

A clear disadvantage of this approach (as well as

with the cross-validation mixed p-values) is that we

have as many p-values as groups, and multiplicity

might be an issue. (O’Hagan’s measures might suf-

fer from it too.) Since we are dealing with p-values,

adjustment is most likely done by classical methods

[controlling either the family-wise error rate, as the

Bonferroni method, or the false discovery rate and re-

lated methods, as the Benjamini and Hochberg (1995)

method]. None of these methods is foolproof and the

danger exists that they also result in a lack of power.

O’HAGAN (2003) EXAMPLE (CONTINUED). We

compute the conflict p-values for the O’Hagan data set.

We again use both, O’Hagan priors and noninformative

priors. The results are shown in Table 7. Taken at face

value, these p-values behave nicely and detect the out-

lying group.

TABLE 7

Conflict p-values for the O’Hagan data set using noninformative

priors and O’Hagan priors

Group 1 Group 2 Group 3 Group 4 Group 5

O’Hagan priors 0.84 0.74 0.73 0.88 0.00

Noninformative 0.66 0.59 0.61 0.68 0.00

6. A BINOMIAL-BETA EXAMPLE: BRISTOL ROYAL

INFIRMARY INQUIRY DATA

We finish the paper with a real example and a dif-

ferent hierarchical model. Specifically, we exemplify

the different checking procedures in a hierarchical

Binomial-Beta model on a data set analyzed at length

in Spiegelhalter et al. (2002). Data consist in the num-

ber ni of open-heart operations and the corresponding

number Yi of deaths for children under one year of age

carried out in 12 hospitals in England. Data are shown

in Figure 4.

FIG. 4. Number of open-heart operations and deaths for children under one year of age carried out in 12 hospitals in England between

1991 and 1995.
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We consider the following model:

Yi | θi
i∼ Bin(θi, ni), i = 1, . . . , I,

π(θ | α,β) =
I∏

i=1

Beta(θi | α,β),

π(α,β) ∝
[(

ψ1(α) − ψ1(α + β)
)

(6.1)

·
(
ψ1(β) − ψ1(α + β)

)

− ψ1(α + β)2]1/2
,

where π(α,β) is the Jeffreys prior (Yang and Berger,

1997), and ψ1(x) = ∑∞
i=1(x + i)−2 denotes the tri-

gamma function. We use both the maximum and the

minimum of the frequencies of deaths, yi/ni , as check-

ing statistics. Also, when simulating from the partial

distributions we have used the normal approximation

to the binomial, yi/ni ≈ N(θi, θi(1 − θi)/ni), so that

the conditional distribution of the maximum and the

minimum has an easy closed form expression.

We compute the overall partial and posterior predic-

tive p-values, and also the individual (one for each hos-

pital) O’Hagan’s conflict measures and Marshall and

Spiegelhalter’s conflict p-values. All require MCMC.

We use 30,000 simulations after a warm-up period of

10,000. Algorithms in R are available in http://bayes.

escet.urjc.es/~mecastellanos/FunctionsBristol.zip.

The overall p-values (EB prior, EB posterior, poste-

rior and partial posterior) appear in Table 8. Also, in

Figures 5 and 6 we show the corresponding predictive

distributions for, respectively, the maximum and the

minimum. Both the figures and the table show that the

observed minimum is well supported by the assumed

models with any of the p-values used. However, with

the maximum, the EB prior and partial posterior show

incompatibility (with the ppp showing more incom-

patibility than the EB prior), while the EB posterior

and posterior p-values fail to do so.

The multiple conflict measures are in Table 9, and

the multiple conflict p-values in Table 10. In these ta-

bles, “1” refers to the hospital with the lowest mortality

rate, and “10” to the one with the largest. According to

TABLE 8

p-values for the mortality in pediatric cardiac surgery

pEB
prior

pEB
post ppost pppp

Maximum 0.03 0.16 0.23 0.00

Minimum 0.67 0.56 0.62 0.64

TABLE 9

Posterior medians of ci , i = 1, . . . ,12, for Bristol data set

1 2 3 4 5 6 7 8 9 10 11 12

0.51 0.09 0.07 0.06 0.06 0.05 0.05 0.05 0.10 0.19 0.64 3.11

Hospitals are ordered from lowest to largest mortality rate.

O’Hagan’s prescriptions, no hospitals show clear indi-

cation of incompatibility; all but Bristol are compati-

ble. On the other hand, the multiple conflict p-values

isolates Bristol as the only one incompatible. No cor-

rection for multiplicity has been used.

7. CONCLUSIONS

In this paper we have investigated the checking of hi-

erarchical models from an objective Bayesian point of

view (i.e., introducing only the information in the data

and model). We have explored several ways of elim-

inating the unknown parameters to derive “reference”

distributions. We have also explored different ways of

characterizing “incompatibility.” We propose use of the

partial posterior predictive measures (MSppp), which

we compare with many other proposals. Some of our

findings are:

• MSppp behave considerably better than the alterna-

tive MSEB
prior, MSEB

post and MSpost. The behavior of

MSpost can be particularly bad with casually chosen

T ’s, failing to reject clearly wrong models (but no-

tice that the specific T we use is the one proposed

in Gelman, Carlin, Stern and Rubin, 2003, Sec-

tion 6.8). As a matter of fact, the measures MSpost

are very similar to the clearly inappropriate MSEB
post.

• In our (limited) simulation study, the null sampling

distribution of pppp is found to be approximately

uniform, while those of pEB
prior and ppost are far from

uniformity. Also, pppp is the most powerful for the

considered alternatives.

• The simulation-based model checking seems to

work well in detecting the incompatibility between

the model and the data, but it requires proper priors.

TABLE 10

Conflict p-values for each hospital

1 2 3 4 5 6 7 8 9 10 11 12

0.89 0.72 0.70 0.71 0.70 0.66 0.46 0.47 0.42 0.35 0.17 0.00

Hospitals are ordered from lowest to largest mortality rate.

http://bayes.escet.urjc.es/~mecastellanos/FunctionsBristol.zip
http://bayes.escet.urjc.es/~mecastellanos/FunctionsBristol.zip
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FIG. 5. Predictive distribution for T = max{yi/ni} in the Bristol Royal Infirmary data.

• The O’Hagan method is highly sensitive to the prior

chosen, and in fact it seems to be conservative with

noninformative priors.

• The conflict p-values pi,con seem to work well, but

they produce as many p-values as number of groups

and multiplicity might be an issue. Also, the result-

ing p-values will typically be highly dependent (any

two p-values are based in the same data except for

two observations).

Partial posterior p-values are not as easy to compute as

posterior p-values, but they are still relatively easy, and

indeed nothing more sophisticated than R was needed

for the computations in this paper. This, along with

their good properties (as demonstrated along the pa-

per), makes them the clearly recommended procedure

for objective model checking when the testing statistic

T is not (nearly) ancillary. But if computation is per-

ceived as an overwhelming reason in favor of posterior

p-values, we recommend instead use of the EB-prior
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FIG. 6. Predictive distribution for T = min{yi/ni} in the Bristol Royal Infirmary data.

p-values: they have better properties and are easier to

compute.

APPENDIX A: MC COMPUTATIONS FOR

SECTION 3.1

To simulate from the empirical Bayes prior predic-

tive distribution mEB
prior(x) simply proceed as follows:

For l = 1, . . . ,M simulate

θ (l) =
(
θ1(l), . . . , θI (l)

)
∼ πEB(θ) =

I∏

i=1

π(θi | μ̂, τ̂ 2),

and for each θ (l), l = 1, . . . ,M , simulate

x̄(l) =
(
�x1·(l), . . . ,�xI ·(l)

)

∼ f
(
x̄ | θ (l)

)
=

I∏

i=1

f
(
�xi· | θi(l)

)
.

Simulations for the empirical Bayes posterior predic-

tive mEB
post(x) proceed along the same lines except that
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θ is now simulated from

θ(l) =
(
θ1(l), . . . , θI (l)

)
∼ πEB(θ | xobs) =

I∏

i=1

N(Êi,V̂i),

where

Êi = ni�xi·/σ
2
i + μ̂/τ̂ 2

ni/σ
2
i + 1/τ̂ 2

and

V̂i = 1

ni/σ
2
i + 1/τ̂ 2

.

APPENDIX B: FULL CONDITIONAL FOR THE

GIBBS SAMPLER IN SECTION 3.2

To simulate from the joint posterior (3.5) we use an

easy Gibbs sampler defined by the full conditionals

μ | θ , τ 2,xobs ∼ N(Eμ,Vμ)

(B.1)

with Eμ =
∑I

i=1 θi

I
and Vμ = τ 2

I
,

τ 2 | θ,μ,xobs ∼ χ−2(I − 1, τ̃ 2)
(B.2)

where τ̃ 2 =
∑I

i=1(θi − μ)2

I − 1
,

θi | μ,τ 2,xobs ∼ N(Ei,Vi),where
(B.3)

Ei = ni�xi·/σ
2
i + μ/τ 2

ni/σ
2
i + 1/τ 2

and Vi = 1

ni/σ
2
i + 1/τ 2

.

All the full conditionals are standard distributions,

trivial to simulate from. χ−2(ν, a) refers to a scaled

inverse chi-square distribution: it is the distribution of

(νa)/Y where Y ∼ χ2(ν).

APPENDIX C: DETAILS FOR MCMC

COMPUTATIONS IN SECTION 3.3

The full conditionals for the Gibbs sampler are

μ | θ, τ 2,xobs \ tobs ∝ π(μ | θ , τ 2,xobs)

f (tobs | θ)

(C.1) ∝ π(μ | θ , τ 2,xobs),

τ 2 | θ,μ,xobs \ tobs ∝ π(τ 2 | θ ,μ,xobs)

f (tobs | θ)

(C.2) ∝ π(τ 2 | θ ,μ,xobs),

θ | μ,τ 2,xobs \ tobs ∝ π(θ | μ,τ 2,xobs)

f (tobs | θ)
.(C.3)

The full conditionals (C.1) and (C.2) are identical to

(B.1) and (B.2), respectively, and hence they are easy

to simulate from. Equation (C.3) is not of closed form,

and we use Metropolis–Hastings within Gibbs for the

full conditional of each θi :

πppp(θi | μ,τ, θ−i,xobs \ tobs)

∝ πpost(θi | μ,τ 2,xobs)

f (tobs | θ)
(C.4)

∝ N(θi | Ei,Vi)

f (tobs | θ)
,

where Ei,Vi are given in (B.3). Next we need to

find a good proposal to simulate from (C.4). An ob-

vious proposal would simply be the posterior πpost(θi |
μ,τ 2,xobs), but this can be a very bad proposal when

the data are indeed “surprising” for the entertained

model. In particular, the posterior distribution centers

around the MLE θ̂ while the partial posterior centers

around the conditional MLE, θ̂cMLE, that is,

θ̂cMLE = arg maxf (xobs | tobs, θ)

= arg max
f (xobs | θ)

f (tobs | θ)
.

It is intuitively obvious that, when the data are not

“surprising,” that is, when tobs comes from the “null”

model, then f (xobs | tobs, θ) would be similar to

f (xobs | θ) and the partial and posterior distributions

would also be similar. However, when the data are

“surprising” and tobs is not a “typical” value, then the

“null” model and the conditional model can be consid-

erably different, as well as the corresponding MLEs.

For Metropolis proposals, Bayarri and Berger (2000)

then suggest generating from the posterior distribution

but then “moving” the generated values closer to the

mode of the target distribution (the partial posterior)

by adding

θ̂cMLE,i − θ̂MLE,i,

multiplied (when this results in improved mixing) by a

Uniform(0,1) random generation. This and other algo-

rithms for computing conditional distributions are pre-

sented in Bayarri, Castellanos and Morales (2006).

To avoid computation of θ̂cMLE, which can be rather

time consuming, we use instead an estimate θ̃c which

we expect to be close enough (for our purposes) to

θ̂cMLE for this model and this T (see Bayarri and

Morales, 2003). In particular, we take all components

to be equal and given by

θ̃c =
∑I−1

l=1
�X(l·)

I − 1
,
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where (�X(1·), . . . , �X(I ·)) denote the group means sorted

in ascendent order. That is, we simply remove the

largest sample mean and then average (we could have

also used a weighted average if the sample sizes were

very different).

Then, the resulting algorithm to simulate from (C.4)

at stage k, given the (simulated) values (θk
−i, θ

k
i ,μk,

τ 2(k)), is:

1. Simulate θ∗
i ∼ N(θi | Ei,Vi).

2. Move the simulation θ∗
i to

θ̃∗
i = θ∗

i + U · (θ̃c − θ̃MLE,i),

where U is random number in (0,1).

3. Accept candidate θ̃∗
i with probability

α = min

{
1,

N(θ̃∗
i | Ei,Vi)N(θk

i | Ei,Vi)f (tobs | θk
−i, θ̃

k
i )

N(θ̃k
i | Ei,Vi)N(θ∗

i | Ei,Vi)f (tobs | θk
−i, θ̃

∗
i )

}
.

APPENDIX D: DERIVATION OF THE FULL

CONDITIONAL OF θ ’S IN SECTION 4.3

The full conditional partial posterior density for θi is

π(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs)

∝ πpost(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs)

f (tobs | θ1, . . . , θi, . . . , θI )

∝ exp

{
−1

2

(
ni

σ 2
i

+ 1

τ 2

)(
θi − ni�xi·/σ

2
i + μ0/τ

2

ni/σ
2
i + 1/τ 2

)2}

· exp

{
1

2

(
∑

j nj )
2

∑
j njσ

2
j

(
tobs −

∑I
j=1 njθj∑

j nj

)2}

∝ exp

{
−1

2

(
θ2
i

(
ni

σ 2
i

+ 1

τ 2

)

− 2θi

(
ni

σ 2
i

�xi· +
1

τ 2
μ0

))}

· exp

{
1

2
∑

j njσ
2
j

(∑

j

nj tobs − niθi −
∑

l �=i

nlθl

)2}

∝ exp

{
−1

2
θ2
i

((
ni

σ 2
i

+ 1

τ 2

)
− n2

i∑
j njσ

2
j

)

− 2θi

(
ni

σ 2
i

�xi· +
μ0

τ 2

− ni∑
j njσ

2
j

·
(∑

j

nj tobs −
∑

l �=i

nlθl

))}
,

which, after some algebra, reduces to

π(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs)

∝ exp

{
− 1

2V 0
i

(θi − E0
i )

2

}
,

with E0
i and V 0

i given in (4.6) and (4.7), respectively.

The result then follows if V 0
i can be shown to be

greater than 0, which is true because 1− niσ
2
i∑I

j=1 njσ 2
j

> 0.
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