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SUMMARY

We consider the problem of Bayesian sample size determination for a clinical trial in the presence of
historical data that inform the treatment effect. Our broadly applicable, simulation-based methodology
provides a framework for calibrating the informativeness of a prior while simultaneously identifying the
minimum sample size required for a new trial such that the overall design has appropriate power to detect
a non-null treatment effect and reasonable type I error control. We develop a comprehensive strategy for
eliciting null and alternative sampling prior distributions which are used to define Bayesian generalizations
of the traditional notions of type I error control and power. Bayesian type I error control requires that
a weighted-average type I error rate not exceed a prespecified threshold. We develop a procedure for
generating an appropriately sized Bayesian hypothesis test using a simple partial-borrowing power prior
which summarizes the fraction of information borrowed from the historical trial. We present results from
simulation studies that demonstrate that a hypothesis test procedure based on this simple power prior is
as efficient as those based on more complicated meta-analytic priors, such as normalized power priors or
robust mixture priors, when all are held to precise type I error control requirements. We demonstrate our
methodology using a real data set to design a follow-up clinical trial with time-to-event endpoint for an
investigational treatment in high-risk melanoma.

Keywords: Bayesian power; Clinical trial design; Power prior; Sample size determination; Sampling prior; Type I
error rate.

1. INTRODUCTION

We consider the problem of Bayesian sample size determination (SSD) for a clinical trial in the presence of
historical data that inform the treatment effect. The purpose of our methodology is to provide a principled
framework for calibrating the informativeness of a prior while simultaneously identifying the minimum
sample size required for a new trial such that the overall design has adequate power and reasonable
type I error control. Our design focuses on Bayesian versions of the type I error rate and power. These
Bayesian operating characteristics are shown to be weighted averages of the type I error rate and power
for fixed parameter values with weights determined by the posterior distribution of the parameters given
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the historical data after conditioning on the relevant hypothesis being true. Bayesian type I error control
requires that a weighted-average type I error rate not exceed a prespecified threshold.

There are many instances where it may be of interest to borrow information on a treatment effect
parameter. For example, for rare diseases it may be difficult or impossible to recruit large numbers of
patients, and if trials have previously been conducted evaluating similar treatments (e.g., pharmacological
products in the same drug class) in the disease population, using historical trial data to inform a prior
for the effect of a similar investigational treatment may be appealing. A second example is when a trial
comparing an investigational treatment to a standard of care (SOC) has an inconclusive outcome and a
second trial is subsequently planned to further explore efficacy. A third example may arise when designing
a trial in a geographic region under the purview of one regulatory body when similar trials were previously
conducted in geographic regions under the purview of other regulatory bodies. For such scenarios, using
existing information to inform a prior on the treatment effect may be reasonable, but the pertinence of the
prior information will likely never be indisputable.

Pocock (1976) proposed a set of criteria to be evaluated when determining whether borrowing infor-
mation on historical control groups is acceptable. These criteria may be interpreted to mean that the
characteristics of the enrolled subjects, of the reference treatment, and of the effectiveness of the reference
treatment as delivered to the enrolled subjects are all comparable between the historical and new trials.
With these requirements met, one may also conclude that information on the effect of an investigational
treatment studied in both trials might be combined without concern. However, in cases where the reference
treatment corresponds to a potentially evolving SOC, when the investigational treatment is being studied
in a new population (e.g., a different geographic locale), or when the investigational treatment is not
identical across trials, these criteria will not be fully met. If one desires to borrow the prior information in
such cases, it is important to balance that desire with the need to control type I errors in a principled way.

One of the challenges practitioners face when incorporating prior information on a treatment effect
is that it is not possible to do so if one requires classical frequentist type I error control. For a design to
exhibit frequentist type I error control, the type I error rate cannot exceed some prespecified threshold for
any possible null value of the parameter. If one wishes to control the type I error rate in the traditional
frequentist sense, all prior information must be disregarded in the analysis. This property is provable for
simple normal models (see Appendix A of the supplementary material available at Biostatistics online)
which inform large sample behavior for a wide class of realistic data models that are commonly used
in practice. To address this challenge, we propose controlling a weighted-average (or Bayesian) type I
error rate where the weights are assigned through elicitation of a null sampling prior distribution defined
using the historical trial posterior distribution after conditioning on the null hypothesis. Several authors
have developed methodology using notions of an average type I error rate. Examples include the work
of Spiegelhalter and Freedman (1986), Brown and others (1987), Rubin and Stern (1998), Chen and
others (2011, 2014a,b), and Ibrahim and others (2012). Designs based on a Bayesian type I error rate
are considered by the Center for Devices and Radiological Health (CDRH) of the U.S. Food and Drug
Administration (FDA), provided the historical data is of sufficient quality (Pennello and Thompson, 2007).
One of the challenges with using Bayesian type I error rates is that such constructs are non-unique by
nature. A principled approach is needed for eliciting the null sampling prior that defines the weights. The
work of Ibrahim and others (2012) and Chen and others (2014a,b) focus on controlling a Bayesian type I
error rate based on a null sampling prior that places all mass on a zero-value for the treatment effect (i.e.,
similar to classical frequentist type I error control). Necessarily, their approach is extremely conservative
with respect to use of the prior information. Our work in this area is novel in that we formalize a procedure
for translating historical data into a default null (DN) sampling prior that, in the authors’ opinion, more
reasonably balances the use of the prior information with the need to control type I errors. We also provide
a framework for customizing the default sampling prior weights that can be used as a mechanism for
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compromise between regulatory and non-regulatory stakeholders regarding the stringency of type I error
control for a given historical data set.

Though our discussion thus far has focused exclusively on the control of type I error rates, ensuring
adequate power is equally important. Although historical data may suggest a meaningful treatment effect,
uncertainty in its magnitude is not often reflected in power calculations. Our design procedure provides
a framework for more conservatively powering a trial by ensuring high weighted-average (or Bayesian)
power where the weights are assigned through elicitation of an alternative sampling prior distribution
defined using the historical trial posterior distribution after conditioning on the alternative hypothesis.
We are not the first authors to advocate the need for more conservatively powering clinical trials or for
the use of Bayesian power as a favorable construct for that purpose. Many of the works cited above
explore some version of average power, as does the work of O’Hagan and Stevens (2001) who refer to
this quantity as the assurance of the design. The simulation-based SSD methodology we develop herein
is the first comprehensive framework that facilitates clinical trial design using these Bayesian operating
characteristics that is applicable broadly to designs based on normal, binary, count, and time-to-event
endpoints, including regression models.

Choosing null and alternative sampling priors is a key component of Bayesian design, as is choosing
an analysis (or fitting) prior. Our method uses a partial-borrowing power prior (Ibrahim and Chen, 2000;
Ibrahim and others, 2012) where the amount of borrowing is fixed a priori to ensure desired operating
characteristics are met. Our formulation of the power prior is quite basic and therefore straightforward to
implement with any data model for which the observed data likelihood exists in closed-form. Moreover,
by exploiting an asymptotic connection between Bayesian analysis with the power prior and maximum
likelihood analysis using case weights, one is able to perform design simulations with minimal use
of Markov Chain Monte Carlo (MCMC) methods, greatly reducing the computational burden of the
methodology.

Multiple authors have proposed more complex meta-analytic priors that attempt to let the new trial
data influence how much of the prior information is used. Recent developments include the normalized
power prior (NPP) (Duan and others, 2006), commensurate priors (Hobbs and others, 2011), robust meta-
analytic-predictive priors (MAP) (Schmidli and others, 2014), and supervised methods (Pan and others,
2016) that manually adjust the informativeness of the prior based on measures of conflict between the
prior information and the new trial data, assessed at the time of the analysis. We present simulation studies
which demonstrate that, when a specific type I error constraint is placed on the design, these types of
priors offer no efficiency gains over the simple partial-borrowing power prior in the sense that priors can
be found resulting in designs with identical Bayesian power from each family of priors we considered.

The aforementioned simulation studies and companion case study using a data set from a real cancer
clinical trial demonstrate that when one permits our proposed Bayesian type I error control, some non-
zero fraction of the prior information can be incorporated into the design and analysis of the new trial.
However, borrowing the prior information is not free. When the historical data posterior distribution is
highly informative, the size of the future trial must be large to allow borrowing a significant amount of
the available information. Furthermore, when one designs a trial to have high Bayesian power, the sample
size required will generally be much larger than the sample size required for a similarly designed trial that
is powered to detect the most likely treatment effect suggested by the historical data. Hence, our Bayesian
design methodology is not simply a mechanism for reducing the sample size of a future trial, but rather
a procedure for utilizing the information from the historical data to inform all aspects of the new trial’s
design.

The rest of the article is organized as follows: in Section 2, we formally define the Bayesian type I
error rate and power, develop DN and default alternative (DA) sampling priors, and provide suggestions
for how these default sampling priors can be further customized. In Section 3, we develop a procedure for
constructing an appropriately sized hypothesis test based on the Bayesian type I error rate. In Section 4,
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we present results from a simulation study that explores the properties of designs based on the Bayesian
type I error rate and power and compare several choices for the analysis prior. In Section 5, we provide
a detailed application of our methodology to design a follow-up trial using a time-to-event endpoint. We
close the article with some discussion in Section 6.

2. A BAYESIAN FORMULATION OF THE TYPE I ERROR RATE AND POWER

To formally define the Bayesian type I error rate and Bayesian power, we first need to introduce the concept
of a sampling prior as described by Wang and Gelfand (2002) and extended by Chen and others (2011) to
investigate the type I error rate and power. Sampling priors are also referred to as design priors (O’Hagan
and Stevens, 2001), but we use the term sampling prior throughout this article. Let θ = (γ ,ψ) be the
collection of parameters, where γ is the treatment effect parameter andψ a vector of nuisance parameters.
We focus on the case where the historical data informs γ but not ψ . Throughout this article, we consider
the one-sided interval hypotheses H0 : γ ≥ 0 and H1 : γ < 0 so that a negative value of γ constitutes a
favorable treatment effect. We write D and D0 as general representations for the data from a new trial and
historical trial, respectively. For this section, we write P(A

∣∣D, D0) to represent the posterior probability
of the event A (e.g., γ < 0) after observing the new trial data. Though not explicit in the notation for
the posterior probability, it is important to note that the historical data influence the analysis through the
chosen prior used to analyze the data. This prior is commonly referred to as the fitting (Wang and Gelfand,
2002) or analysis prior (O’Hagan and Stevens, 2001). We use the term analysis prior subsequently.

2.1. Sampling priors

A sampling prior is simply a probability distribution for θ that reflects a (possibly assumed) state of
knowledge about θ . The sampling prior, coupled with a model for the data, determine the prior-predictive
distribution for future data (i.e., D). A sampling prior is referred to as such because it is used to sample
values of θ in the simulation process used to estimate operating characteristics for the trial design. We are
interested in studying the type I error rate and power of the design when informative prior information on
the treatment effect is to be used. In this application, one must specify sampling prior distributions for θ
that are consistent with a true null as well as a true alternative. Let π

(s)
0 (θ) denote the null sampling prior

and π
(s)
1 (θ) denote the alternative sampling prior. The null sampling prior will give zero weight to values

of θ having a negative γ component and the alternative sampling prior will give zero weight to values of
θ having a non-negative γ component.

2.2. Defining the Bayesian type I error rate and power

For a fixed value of θ , define the null hypothesis rejection rate r (θ | D0) as E[1{P(γ < 0
∣∣D, D0) ≥

φ}∣∣θ , D0], where 1
{
P

(
γ < 0

∣∣D, D0

) ≥ φ
}

is an indicator that one accepts H1 based on the posterior
probability P

(
γ < 0

∣∣D, D0

)
and prespecified critical value φ. For chosen null and alternative sampling

priors, define the Bayesian type I error rate as α(s) = E
π

(s)
0 (θ)

[r (θ | D0)] and Bayesian power as 1 −
β(s) = E

π
(s)
1 (θ)

[r (θ | D0)]. Thus, the Bayesian type I error rate and power are weighted averages of

{r (θ | D0) : θ ∈ �} with weights determined by π
(s)
0 (θ) and π

(s)
1 (θ), respectively. We note that Chen and

others (2011) define the Bayesian type I error rate and power as expectations of 1
{
P

(
γ < 0

∣∣D, D0

) ≥ φ
}

with respect to the null and alternative prior-predictive distribution for the data,
∫

p (D | θ) π
(s)
0 (θ) dθ and
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∫
p (D | θ) π

(s)
1 (θ) dθ , respectively. The two definitions are equivalent since

∫
θ

r (θ | D0) π
(s)
h (θ) dθ =

∫
θ

[∫
D

1
{
P

(
γ < 0

∣∣D, D0

) ≥ φ
}

p(D
∣∣θ)dD

]
π

(s)
h (θ) dθ

=
∫

D
1

{
P

(
γ < 0

∣∣D, D0

) ≥ φ
} [∫

θ

p(D
∣∣θ)π(s)

h (θ) dθ
]

dD.

We have only changed the order of integration to highlight the fact that the Bayesian type I error rate and
power are weighted averages of the quantities based on fixed values of θ . Our recipe for simulation-based
estimation of the Bayesian type I error rate and power follows closely with the development in Chen and
others (2011).

2.3. Default null and alternative sampling priors

The Bayesian type I error rate and power only become well-defined upon choosing a set of null and
alternative sampling priors. From the Bayesian perspective, it is natural that the sampling priors reflect
one’s belief about θ gleaned from the historical data. Logical choices for the null and alternative sampling
priors are π

(s)
0 (θ) = π (θ | D0, γ ≥ 0) (conditional on H0) and π

(s)
1 (θ) = π (θ | D0, γ < 0) (conditional

on H1), respectively. We refer to this pair of sampling priors as the default sampling priors.
Figure 1 presents a histogram of the marginal posterior distribution for γ based on the historical data

from the case study presented in Section 5 along with the corresponding DN and DA marginal sampling
priors for γ . Though we have only plotted the marginal sampling priors for γ , conditioning on the null or
alternative hypothesis obviously induces changes in the entire joint distribution for θ . Since the historical
data are more consistent with the alternative hypothesis than the null, conditioning on the null hypothesis
induces a sampling prior distribution for θ that is necessarily less consistent with the historical data, but
still plausible given the historical data under the assumption that the null hypothesis is true. In other words,
the DN sampling prior uses the historical data to provide a frame of reference regarding which null values
of θ are realistic. This is reasonable to the extent that one believes that the historical data are pertinent to
the new trial. Having a realistic sampling prior distribution for all of θ is important for design simulations
even if one only borrows information through the treatment effect parameter as we have proposed. This is
because the nuisance parameters (e.g., the baseline hazard parameters) may influence important secondary
characteristics of the design, such as the time required to accrue the desired number of events for an event
driven trial with time-to-event endpoint.

From inspecting Figure 1, one can see that the null sampling prior gives the most weight to γ = 0 but
not all the weight is given to that value. By allowing a weighted-average type I error rate to be controlled
at some prespecified significance level (e.g., 0.025), as opposed to enforcing strict type I error control at
the same level for γ = 0 (i.e., frequentist type I error control), one permits some degree of information
borrowing from the historical trial. Of course, the point-wise type I error rate will necessarily exceed the
weighted-average value for some values of γ .

While the default sampling priors are natural, it may be desirable to modify them for a number of
reasons. For example, stakeholders may feel that the tails of one or both of the default priors are unrealistic.
In Appendix B of the supplementary material available at Biostatistics online, we describe using tail-
truncation to modify the default sampling priors to create truncated null (TN) and alternative (TA) sampling
priors. This process entails defining a constant K ≥ 1 and restricting the default priors by requiring γ to be
at least 1/K times as likely as the modal value for each of the default priors. In the simulations presented
in Section 4 and the application presented in Section 5, we investigate using K = 2 as a compromise
between no borrowing and borrowing based on the default priors.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
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Fig. 1. π (γ | D0) and corresponding default marginal sampling priors for γ .

3. CONSTRUCTING A SIZE α(S) BAYESIAN HYPOTHESIS TEST

Thus far, we have defined a natural approach for using historical data to assign weights to the null and
alternative parameter spaces that are used in the formulation of the Bayesian type I error rate and power.
In this section, we discuss our approach for constructing a hypothesis test that provides Bayesian power
no less than 1 − β(s) while controlling the Bayesian type I error rate at level α(s). We achieve this by
constructing an informative power prior from the historical trial data where the discounting parameter is
calibrated through simulation to ensure the desired properties.

The class of power priors proposed by Ibrahim and Chen (2000) provide a natural means for controlling
the informativeness of the prior. We consider the partial-borrowing power prior of Ibrahim and others
(2012), which only borrows information through the treatment effect. The partial-borrowing power prior
has the following form:

π0

(
γ ,ψ ,ψ0

∣∣D0, a0

) ∝ [
L (γ ,ψ0|D0)

]a0 π0(γ ,ψ ,ψ0), (3.1)

where L (γ ,ψ0|D0) is the likelihood for the historical trial data including a shared treatment effect,
0 ≤ a0 ≤ 1 is a fixed scalar parameter, and π0(γ ,ψ ,ψ0) is a non-informative initial prior for all parameters.
When a0 = 0, the historical data are discarded and the power prior reduces to the initial prior. In contrast,
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when a0 = 1, the power prior corresponds to the posterior distribution from an analysis of the historical
data using the initial prior. For intermediate values of a0, the information in the historical data is diminished
to some degree leading to a prior that is more informative than the initial prior but less informative than
using the historical trial posterior as the prior for the new trial. When information is borrowed through
γ , there is little power gain for hypothesis tests about γ by also borrowing information through nuisance
parameters (i.e., by assuming ψ = ψ0).

In addition to specifying an analysis prior, one must also construct a decision rule that emits a size α(s)

hypothesis test with respect to the Bayesian type I error rate. There are many ways to do this. We suggest
setting the posterior probability critical value φ to 1 − α(s) and then maximizing the borrowing parameter
a0 ∈ [0, 1] subject to the Bayesian type I error rate restriction. This approach is motivated by the fact that
the posterior probability P (γ < 0 | D, D0, a0 = 0) (or simply P (γ < 0 | D)) is asymptotically equivalent
to a frequentist p-value when γ = 0. In other words, φ = 1 − α(s) is the asymptotically correct choice to
achieve frequentist type I error control at level α(s) when there is no borrowing. Thus, the mathematical
exercise of maximizing a0 can be conceptualized as starting with a hypothesis test that asymptotically
controls the classical frequentist type I error rate at level α(s) (i.e., based on a0 = 0) and then borrowing
increasing amounts of information from the historical data until the test is size α(s) with respect to the
Bayesian type I error rate (or until a0 = 1). In Appendix C of the supplementary material available at
Biostatistics online, we provide a recipe for conducting simulation studies to identify the minimum sample
size required for the new trial and corresponding maximum value of a0, subject to Bayesian type I error and
power requirements. In the same appendix, we describe how P (γ < 0 | D, D0, a0) can be approximated
without MCMC to make large-scale design simulations less computationally demanding.

4. SIMULATION STUDY

In this section, we present results from a simulation study designed to illustrate properties of designs
based on the Bayesian type I error rate and power and to demonstrate that designs based on the power
prior with fixed a0 are as powerful as designs based on more complicated meta-analytic priors under the
constraint of Bayesian type I error control when borrowing information on a treatment effect. For ease of
exposition, we consider a simple normal model for the new and historical trial data. The model contains
a single mean parameter γ and standard deviation (SD) parameter σ which we assume to be known and,
without loss of generality, equal to 1. Our goal is to test the hypothesis H0 : γ ≥ 0 and H1 : γ < 0. In
Appendix D of the supplementary material available at Biostatistics online, we explain how simulation
studies using the simple normal model might inform our intuition for a wide class of realistic data models
used in practice.

We first generated five hypothetical historical data sets with sample size N0 = 50 ranging from strongly
favoring treatment efficacy to mildly favoring treatment efficacy. In particular, we generated the historical
data sets such that π(γ < 0

∣∣D0) = 0.990, 0.975, 0.95, 0.90, and 0.85. Figure S1 of supplementary material
available at Biostatistics online presents the historical posterior distributions for γ for three of these
simulated data sets. The regions associated with TN and TA sampling priors (based on taking K = 2) are
shaded on the figure as well.

For each historical data set, we identified the sample size required for a future trial, denoted by N1, and
corresponding value of a0 such that the design controls the Bayesian type I error rate at level α(s) = 0.025
while assuring Bayesian power 1 − β(s) is either 0.80 (for the three most informative cases) or 0.70
(for the two least informative cases). The Bayesian type I error rate and power were defined using TN
and TA sampling priors. We also computed the Bayesian type I error rate associated with a point-mass
null sampling prior that places all mass at γ = 0 and the Bayesian power associated with a point-mass
alternative (PA) sampling prior centered at x̄0, the historical trial sample mean.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
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Having identified the optimal choice of N1 and a0 for each historical data set using the proposed design
method, we then evaluated whether the design could be improved by using an analysis prior that allows the
new trial data to influence the amount of borrowing (i.e., a meta-analytic prior). We considered the NPP
(Duan and others, 2006) which models a0 as a random variable and gives it a prior, a two-part mixture
prior similar to the robust MAP prior (Schmidli and others, 2014), and a power prior where a0 is calculated
at the time of the analysis based on a statistic that measures prior-data conflict. We refer to the last type
of prior as a supervised-borrowing power prior. We also considered an approach that fixes a0 = 0 and
modifies the posterior probability critical value (i.e., φ) to obtain a size α(s) Bayesian hypothesis test. This
approach makes no use of the historical data in the analysis prior. For all methods based on a power prior,
we used the initial prior π0(γ ) ∝ 1 for which it is easy to see that the posterior distribution is proper once
at least one data point is observed.

4.1. Specification of meta-analytic priors

The NPP has the following form π0(γ , a0

∣∣D0) = π0(γ
∣∣D0, a0) × π0 (a0) with π0(γ

∣∣D0, a0) =
L(γ |D0)

a0 π0(γ )∫
L(γ |D0)

a0 π0(γ )dγ
, where π0 (a0) and π0(γ ) are initial priors. We optimized the design based on the

NPP by identifying an ideal choice for π0 (a0) from among the family of beta distributions indexed
by mean parameter μ0 and dispersion parameter φ0. The optimal settings for both μ0 and φ0 were deter-
mined using a grid search over the discrete parameter space defined by μ0 ∈ {0.01, 0.02, ..., 0.99} and
φ0 ∈ {{0.25, 0.50, ..., 5.00} ∪ {10, 20, ..., 100}}. Note that as φ0 → ∞, the NPP becomes equivalent to a
power prior with a0 fixed and equal to μ0.

The two-part mixture prior we considered is closely related to the robust MAP prior proposed by
Schmidli and others (2014) but was tailored to deal with the problem of borrowing information on a
treatment effect rather than historical controls. In our context, a robust MAP prior could be defined as

π0(γ ) = ω × φ
(
γ
∣∣x̄0, σ2

N0

)
+ (1 − ω) × φ

(
γ
∣∣0, σ2

N0
× k

)
, where ω ∈ (0, 1) is a mixing weight, k > 0 is

a variance inflation factor that controls the level of informativeness of the robust component of the prior,
and φ(·) is a normal density. To identify an optimal value of ω and k , we performed a grid search over
ω ∈ {0.01, 0.02, ..., 0.99} and k ∈ {0.50, 1.00, ..., 10.00}.

For the supervised borrowing power prior, we set a0 to â0 =
(

L(x̄0|D)

L(ȳ|D)

)s0
< 1, where ȳ is the sample

mean from the new trial and s0 > 0 is a calibration parameter. The chosen statistic has several nice
properties. Specifically, when x̄0 = γ , then as N1 → ∞ it is easy to see that â0 → 1. In addition, for fixed∣∣x̄0 − γ

∣∣ > 0, as N1 → ∞ it is easy to see that â0 → 0. For s0 
 1, the historical data will be discounted
greatly for even modest absolute differences

∣∣x̄0 − ȳ
∣∣. For s0 ≈ 0, virtually all the information will be

borrowed regardless of the magnitude of
∣∣x̄0 − ȳ

∣∣. To identify an optimal value of s0, we performed a grid
search over s0 ∈ {0.002, 0.004, ..., 10.0}.

4.2. Simulation results

The estimated Bayesian type I error rate and power based on TN and TA sampling priors for the optimal
power prior with fixed a0 (FPP), optimal NPP, optimal supervised borrowing power prior (SPP), optimal
robust MAP prior (MAP), and for the approach that takes a0 = 0 and modifies the posterior probability
critical value (MCV) are provided in Table 1. The corresponding estimates based on point-mass null and
alternative sampling priors are provided in Table S1 of supplementary material available at Biostatistics
online. In each case, the type I error rate and power were estimated using ≥200 000 simulation studies,
resulting in highly precise estimates of these operating characteristics.

The fact that Bayesian type I error rates agree for all methods in Table 1 is by construction. The only
exception is for the scenario where π(γ < 0

∣∣D0) = 0.850. In that case, all the methods that make use of

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
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Table 1. Bayesian type I error rate and power using truncated sampling priors (K = 2)

Type I error rate Power

P(H1) N0 N1 FPP MAP SPP NPP MCV FPP MAP SPP NPP MCV

0.990 50 77 0.025 0.025 0.025 0.024 0.025 0.798 0.797 0.798 0.797 0.798
0.975 50 115 0.025 0.025 0.025 0.024 0.025 0.805 0.804 0.805 0.804 0.805
0.950 50 168 0.025 0.025 0.025 0.025 0.025 0.800 0.799 0.799 0.797 0.800
0.900 50 192 0.025 0.025 0.025 0.025 0.025 0.702 0.701 0.702 0.704 0.702
0.850 50 320 0.016 0.015 0.015 0.015 0.025 0.701 0.700 0.700 0.700 0.738

Table 2. Characteristics of analysis priors for designs based on truncated sampling priors

FPP MAP SPP NPP MCV

Prior
Med. Post. ω Med. â0 Med. E[a0

∣∣D]
P(H1) a0 ω Null Alt s0 Null Alt μ0 φ0 Null Alt φ

0.990 0.12 0.60 0.20 0.89 3.76 0.00 0.24 0.06 5.00 0.10 0.14 0.965
0.975 0.23 0.64 0.28 0.87 2.02 0.00 0.40 0.19 5.00 0.21 0.25 0.961
0.950 0.44 0.74 0.45 0.89 0.96 0.00 0.58 0.41 5.00 0.41 0.45 0.955
0.900 0.82 0.91 0.81 0.95 0.52 0.11 0.72 0.82 5.00 0.82 0.83 0.948
0.850 1.00 0.99 0.98 0.99 0.02 0.90 0.98 0.99 5.00 0.99 0.99 0.933

Med., Median; Post., Posterior.

the historical data in the analysis prior (i.e., FPP, MAP, SPP, and NPP) result in borrowing essentially all
the information in the historical data without attaining a size α(s) test (Bayesian type I error rate ≈ 1.5%).
In contrast, the MCV approach can always produce a size α(s) test since that approach is not restricted by
the amount of information in the historical data. Of course, such a restriction is quite reasonable, and so
we would not advocate for the MCV approach in general. Our reason for including it in the simulation is
to convey that one can produce a decision rule that controls the Bayesian type I error rate at level α(s) with
or without using the historical data in the analysis prior and that those decision rules are equivalent in
terms of power. This is an important point as it highlights the fact that even though our approach uses the
historical data to define the sampling priors and in the analysis prior, there is effectively only a single use
of the historical data: to define the weights associated with the Bayesian type I error rate and power. We
chose to incorporate the historical data into a power prior because, by doing so, we are able to quantify
the fraction of the prior information that is incorporated in the analysis.

The characteristics of the priors resulting in optimally powered designs are provided in Table 2. For
both the MAP and NPP priors, there are multiple hyperparameters that can be manipulated and so, not
surprisingly, there were numerous choices for the hyperparameters that led to designs with nearly identical
operating characteristics (none better than designs based on the FPP). For inclusion in Table 2, we selected
from designs with k = 1 for the MAP prior and φ0 = 5 for the NPP priors. For all classes of priors, the
prior characteristics that lead to a controlled type I error rate depend on the level of informativeness
of the historical data and the sample size in the new study. Thus, there is no silver bullet prior that
provides precise performance with respect to Bayesian type I error control while providing consistently
high Bayesian power. If one cares about controlling type I error rates in a precise way, any prior will
have to be calibrated to ensure good properties and the authors would argue that this fact makes more
complicated meta-analytic priors significantly less appealing as general use tools in this setting.
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5. APPLICATION: DESIGN OF A FOLLOW-UP TRIAL IN HIGH-RISK MELANOMA

The E1684 trial was a randomized controlled trial conducted to assess the utility of interferon alfa-2b
(INF) as an adjuvant therapy following surgery for deep primary or regionally metastatic melanoma. A
detailed analysis of the trial was given by Kirkwood and others (1996). The design and primary analysis
were stratified by disease stage according to four groups (i) deep primary melanomas of Breslow depth
more than 4 mm, (ii) primary melanomas of any tumor stage in the presence of N1 regional lymph
node metastasis detected at elective lymph node dissection with clinically inapparent regional lymph
node metastasis, (iii) clinically apparent N1 regional lymph node involvement synchronous with primary
melanoma of T1–4, and (iv) regional lymph node recurrence at any interval after appropriate surgery
for primary melanoma of any depth. Subjects treated with INF demonstrated a statistically significant
prolongation of relapse-free survival compared to those receiving the standard of care (SOC) based on a
stratified log-rank test (p = 0.0023, one-sided). To demonstrate our methodology, we restrict our attention
to subjects from the fourth stratum, treating this group as a hypothetical historical trial that demonstrated
inconclusive efficacy.

Table S2 of supplementary material available at Biostatistics online presents summary relapse-free
survival data by treatment group and number of positive nodes at lymphadenectomy. The number of
positive lymph nodes was used as a stratification variable in our design model due to its prognostic
value. We analyzed the historical trial data using a stratified Cox model (Cox, 1972) with a piecewise
constant baseline hazard. Use of the stratified Cox model is ubiquitous in the analysis of time-to-event
data and modeling the baseline hazard with a piecewise constant function is a common approach for
Bayesian analyzes (Ibrahim and others, 2001). We assume a model with a common treatment effect and
stratum-specific baseline hazard for this exercise. To identify the best model for the baseline hazard,
we considered all possible models with 10 or fewer components (per stratum) defined using the deciles
from the observed event-time distribution as the set of possible change points. Each model was fit with
MCMC using a non-informative normal prior for the treatment effect (mean zero and variance 105) and
an independent non-informative gamma prior for each baseline hazard parameter (shape and inverse scale
parameters equal to 10−5). The best model was selected using the deviance information criterion (DIC)
(Spiegelhalter and others, 2002).

Table S3 of supplementary material available at Biostatistics online presents the posterior mean, the
posterior SD, and 95% highest posterior density (HPD) interval for the treatment effect parameter (log
hazard ratio for treatment versus control, denoted by γ ) and for the baseline hazard parameters (i.e.,
λs,k with s indexing stratum and k indexing baseline hazard component) using the best model based on
100 000 MCMC samples. The right endpoints for the time axis partition for each stratum (denote as ts,k )
are given in the rightmost column of Table S3 of supplementary material available at Biostatistics online.
It is clear from the HPD interval for the treatment effect that the historical trial data suggest the treatment
is efficacious but that the evidence is not overwhelming by traditional criteria. Thus, it is reasonable to
assume that if these data were collected in a clinical trial, an additional trial might be conducted, the
design and analysis of which would be informed by these data. Since the comparator group is a potentially
evolving standard of care, there is the potential for the relative efficacy of the investigational therapy to
change as the SOC evolves, thus motivating the need to balance the informativeness of the prior with the
desire to limit the probability of a type I error.

In the remainder of this section, our primary goal is to demonstrate the application of our Bayesian
design procedure using the E1684 data. To that end, we consider a design that: (i) controls the Bayesian
type I error rate at no more than 2.5% based on the DN sampling prior, (ii) controls the Bayesian type
I error rate at no more than 2.5% based on the TN sampling prior using K = 2, and (iii) controls the
Bayesian type I error rate at no more than 2.5% based on the limiting case of the TN sampling prior that
fixes γ = 0 (i.e., K = 1). We refer to this limiting case as the frequentist-like null (FN) sampling prior.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
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For power, we consider a design that: (i) provides 80% Bayesian power based on a PA sampling prior
with parameters set to the posterior means in Table S3 of supplementary material available at Biostatistics
online, (ii) provides 80% Bayesian power based on the TA sampling prior using K = 2, and (iii) provides
80% Bayesian power based on the DA sampling prior.

For all simulation studies, the generative model for the baseline hazard in the new trial used the time axis
partition from Table S3 of supplementary material available at Biostatistics online. Let v be the number
of events at which the new trial will stop and n be the total number of subjects enrolled. In time-to-event
trials, the number of events is the key determinant of power. For each possible v, we took n = 3v and
simulated uniform accrual over a 4-year period with no censoring other than administrative censoring
that occurred when the planned number of events had been reached. Subjects were allocated to strata in
proportions similar to the historical trial (i.e., ∼50% to stratum one) and balanced randomization was
used. The time axis partition from Table S3 of supplementary material available at Biostatistics online
was used in the fitted model.

For a given null sampling prior, the first step in the design process is to find the maximum value of a0

that yields Bayesian type I error control for each value of v in the set under consideration. To do this, we
performed 100 000 simulation studies for each v to estimate the Bayesian type I error rate over a range of
a0 values. We then used LOESS methods to smooth these estimates and to interpolate the precise value
of a0 that corresponded to the desired error rate. Figure 2 presents LOESS curves of the Bayesian type
I error rate as a function of a0 for each null sampling prior (DN, FN, TN) and for v = 350, v = 500,
and v = 710. As expected, it is clear that no information can be borrowed from the historical trial when
the type I error rate is based on the FN sampling prior. The estimates obtained for a0 using this null
sampling prior were always approximately zero for every value of v we considered (v = 250 to v = 850).
In contrast, we see that when either of the TN or DN sampling priors is used to define the Bayesian
type I error rate, we are able to borrow much and sometimes all of the information in the historical data
without surpassing the threshold. Note that a relatively large number of events are required for the future
trial to allow borrowing all the information from the historical trial when using the DN sampling prior
(v ∼ 350) and TN sampling prior (v ∼ 710). Thus, although our Bayesian version of type I error control
is less restrictive than frequentist type I error control, there is still significant restriction on the amount of
information that can be borrowed.

At a certain point, the worst-case Bayesian type I error rate (i.e., based on the FN sampling prior) may
become too large to satisfy stakeholders even if the average type I error rate based on the DN (or TN)
sampling prior is reasonable. We recommend always exploring the worst-case type I error rate since it has
traditionally been the focus in clinical trials. This can be easily accomplished by calculating the Bayesian
type I error rate based on the FN sampling prior using the value of a0 identified using the null sampling
prior chosen for design. Figure S2 of supplementary material available at Biostatistics online presents
the worst-case Bayesian type I error rate associated with use of both the DN and TN sampling priors. As
shown in the figure, the worst-case type I error rate is approximately two to three times the average rate
which was consistent with the simulation studies presented in Section 4.

After identifying the maximum amount of information that can be borrowed from the historical trial for
each possible value of v, the next step is to determine the smallest value of v that provides adequate power
under a chosen alternative sampling prior. For each alternative sampling prior considered, we performed
100 000 simulation studies using each (v, a0) pair to estimate the Bayesian power. We then used LOESS
methods to smooth the estimated Bayesian power curves and to interpolate a pair of values (v, a0) that
provided 80% power. Figure 3 presents LOESS curves of the Bayesian power as a function of v for each
combination of null sampling prior (DN, TN, and FN) and alternative sampling prior (DA, TA, and PA).

When no borrowing is permitted (i.e., the FN sampling prior is used), 820, 790, and 450 events are
required to have 80% Bayesian power based on the DA,TA, and optimistic PA sampling priors, respectively.
This case is instructive because it allows us to consider the implications of using Bayesian power as

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data


Bayesian clinical trial design using historical data that inform the treatment effect 411

Fig. 2. LOESS curves and point estimates for Bayesian type I error rate as a function of a0 for v = 350, 500, and 710
for each null sampling prior. Each point estimate is based on 100 000 simulation studies.

compared to the traditional fixed-point power approach while still adhering to traditional frequentist type
I error control. When Bayesian power is based on the DA or TA sampling prior, the required number
of events is much more conservative compared to the traditional approach. Regardless of the alternative
sampling prior chosen for power analysis, we see that when Bayesian type I error control is based on the
DN or TN sampling prior, far fewer events are needed for the new trial compared to the case where it is
based on the FN sampling prior.

All of the results presented in this section were obtained using the asymptotic approximation described
in Appendix C of the supplementary material available at Biostatistics online. Using exact Bayesian
inference with MCMC, we performed 50 000 confirmatory simulation studies for each number of events

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy009#supplementary-data
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Fig. 3. LOESS curves and point estimates for Bayesian power as a function of v for each combination of null sampling
prior and alternative sampling prior. Each point estimate is based on 100 000 simulation studies.

shown in Figure 3 (along with their associated values of a0) to verify the accuracy of the estimated Bayesian
type I error rate and power. In all cases the estimated Bayesian power was within 1.0% of the targeted
level and the estimated Bayesian type I error rate was within 0.25% of the targeted rate.

6. DISCUSSION

The results that we have presented in this article confirm that in the presence of information on a treatment
effect, one must either disregard that information in the analysis of a new trial or relax the classical
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frequentist approach to type I error control. Some would argue that the entire notion of type I error
control is non-Bayesian. However, in the authors’ opinion, any time information on a treatment effect
(or any other parameter for that matter) is incorporated from outside a randomized, controlled trial, the
pertinence of that information to the problem at hand will likely not be indisputable. This is because
many of Pocock’s insightful criteria (Pocock, 1976) for justifiably borrowing information from historical
controls (or on all subjects) will either be partially unverifiable or not met outright. If we are to therefore
admit evidence of a treatment effect on grounds other than classic Bayesian exchangeability assumptions,
we need statistical procedures that help balance the potential efficiency gains of doing so with unintended
negative consequences that will arise when in reality, despite sound rationale, the prior information is not
pertinent.

In the results presented in Section 4.2, we compared designs based on the partial-borrowing power
prior to those based on meta-analytic priors (e.g., a robust mixture prior) under a common type I error
constraint. In those simulations, we did not allow for the possibility of adapting the designs when the
meta-analytic priors were used. However, if the amount of information being borrowed at the time of the
analysis is less than expected, one may expect that by adaptively increasing sample size in the new trial
and postponing the analysis, one could obtain a more efficient design. Such an approach is not feasible
for the partial-borrowing power prior with fixed a0. In fact, this type strategy arguably leads to a less
efficient design. We discuss this in more detail in Appendix E of the supplementary material available at
Biostatistics online.

The apparent conflict between frequentist type I error control and Bayesian analysis with an informative
prior for the treatment effect is undeniable. In contrast, when one borrows information only on the nuisance
parameters (i.e., only on control subjects) the conflict is less obvious. One cannot simply condition on the
null hypothesis as a means of constructing a null sampling prior distribution that can be used to define a
meaningful Bayesian type I error rate. In future work, we will consider designs that borrow information
on control subjects only, giving practical advice for defining and using the DN and DA sampling priors
in that setting.

It may be desirable to borrow information from multiple historical trials through a fixed prior specified
a priori. It is conceptually straightforward to adapt our methodology to this situation. For example, one
could use a hierarchical model to synthesize information across historical data sets (e.g., Cox model with
a random effect for study) and obtain the posterior distribution for the treatment effect through sampling.
This posterior distribution could then be approximated with high precision using a normal distribution,
t-distribution, or finite-mixture of normal distributions. This analytic form could then be used in place
of the historical trial likelihoods in a power prior-like framework. Of course, this approach would likely
require MCMC methods to fit the model.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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