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Bayesian co-estimation of selfing rate and locus-specific

mutation rates for a partially selfing population

Benjamin D. Redelings, Seiji Kumagai, Liuyang Wang,

Andrey Tatarenkov, Ann K. Sakai, Stephen G. Weller,

Theresa M. Culley, John C. Avise, and Marcy K. Uyenoyama

Abstract

We present a Bayesian method for characterizing the mating system of populations reproducing through a
mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across
the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend
the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus
identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate
the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression
for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns
locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from
the data using a Dirichlet Process Prior model. Among the parameters jointly inferred are the population-
wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most
recent outcrossing event for each sampled individual.

1. Introduction

Inbreeding has pervasive consequences throughout the genome, affecting genealogical relationships between
genes held at each locus within individuals and among multiple loci. This generation of genome-wide,
multilocus disequilibria of various orders transforms the context in which evolution proceeds. Here, we
address a simple form of inbreeding: a mixture of self-fertilization (selfing) and random outcrossing (Clegg
1980; Ritland 2002).

Various methods exist for the estimation of selfing rates from genetic data. Wright’s (1921) fundamental
approach bases the estimation of selfing rates on the coefficient of inbreeding (FIS), which reflects the
departure from Hardy-Weinberg proportions of genotypes for a given set of allele frequencies. The maximum
likelihood method of Enjalbert and David (2000) detects inbreeding from departures of multiple loci from
Hardy-Weinberg proportions, estimating allele frequencies for each locus and accounting for correlations in
heterozygosity among loci (identity disequilibrium, Cockerham and Weir 1968). David et al. (2007) extend
the approach of Enjalbert and David (2000), basing the estimation of selfing rates on the distribution
of heterozygotes across multiple, unlinked loci, while accommodating errors in scoring heterozygotes as
homozygotes. A primary objective of InStruct (Gao et al. 2007) is the estimation of admixture. It extends
the widely-used program structure (Pritchard et al. 2000), which bases the estimation of admixture on
disequilibria of various forms, by accounting for disequilibria due to selfing. Progeny array methods (see
Ritland 2002), which base the estimation of selfing rates on the genetic analysis of progeny for which one or
more parents are known, are particularly well-suited to plant populations. Wang et al. (2012) extend this
approach to a random sample of individuals by reconstructing sibship relationships within the sample.

Methods that base the estimation of inbreeding rates on the observed departure from random union
of gametes require information on expected Hardy-Weinberg proportions. Population-wide frequencies of
alleles observed in a sample at locus l ({pli}) can be estimated jointly in a maximum-likelihood framework
(e.g., Hill et al. 1995) or integrated out as nuisance parameters in a Bayesian framework (e.g., Ayres and
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1 Introduction 2

Balding 1998). Similarly, locus-specific heterozygosity

dl = 1−
∑

i

p2li (1)

can be obtained from observed allele frequencies (Enjalbert and David 2000) or estimated directly and jointly
with the selfing rate (David et al. 2007).

In contrast, our Bayesian method for the analysis of partial self-fertilization derives from a coalescence
model that accounts for genetic variation and uses the Ewens Sampling Formula (ESF, Ewens 1972). Our
approach replaces the estimation of allele frequencies or heterozygosity (1) by the estimation of a locus-
specific mutation rate (θ∗) under the infinite-alleles model of mutation. We use a Dirichlet Process Prior
(DPP) to determine the number of classes of mutation rates, the mutation rate for each class, and the class
membership of each locus. We assign the DPP parameters in a conservative manner so that it creates a new
mutational class only if sufficient evidence exists to justify doing so. Further, while other methods assume
that the frequency in the population of an allelic class not observed in the sample is zero, the ESF provides
the probability, under the infinite-alleles model of mutation, that the next-sampled gene represents a novel
allele (see (22a)).

To estimate the probability that a random individual is uniparental (s∗), we exploit identity disequilibrium
(Cockerham and Weir 1968), the correlation in heterozygosity across loci. This association, even among
unlinked loci, reflects that all loci within an individual share a history of inbreeding back to the most recent
random outcrossing event. Conditional on the number of generations since this event, the genealogical
histories of unlinked loci are independent. Our method infers the number of consecutive generations of self-
fertilization in the immediate ancestry of each sampled diploid individual and the probability of coalescence
during this period between the lineages at each locus.

In inferring the full likelihood from the observed frequency spectrum of diploid genotypes at multiple
unlinked loci, we determine the distributions of the allele frequency spectra ancestral to the sample at the
most recent point at which all sampled gene lineages at each locus reside in separate individuals. At this
point, the ESF provides the exact likelihood, obviating the need for further genealogical reconstruction. This
approach permits computationally efficient analysis of samples comprising large numbers of individuals and
large numbers of loci observed across the genome.

Here, we address the estimation of inbreeding rates in populations undergoing pure hermaphroditism, an-
drodioecy (hermaphrodites and males), or gynodioecy (hermaphrodites and females). Our method provides
a means for the simultaneous inference of various aspects of the mating system, including the population
proportions of sexual forms and levels of inbreeding depression. We apply our method to simulated data
sets to demonstrate its accuracy in parameter estimation and in assessing uncertainty. Our application
to microsatellite data from the androdioecious killifish Kryptolebias marmoratus (Mackiewicz et al. 2006;
Tatarenkov et al. 2012) and to the gynodioecious Hawaiian endemic Schiedea salicaria (Wallace et al. 2011)
illustrates the formation of inferences about a number of biologically significant aspects, including measures
of effective population size.

Evolutionary model

We describe our use of the Ewens Sampling Formula (ESF, Ewens 1972) to determine likelihoods based on
a sample of diploid multilocus genotypes.

From a reduced sample, formed by subsampling a single gene from each locus from each diploid individ-
ual, one could use the ESF to determine a likelihood function with a single parameter: the mutation rate,
appropriately scaled to account for the acceleration of the coalescence rate caused by inbreeding (Nordborg
and Donnelly 1997; Fu 1997). Observation of diploid genotypes provides information about another param-
eter: the probability that a random individual is uniparental (uniparental proportion). We describe the
dependence of these two composite parameters on the basic parameters of models of pure hermaphroditism,
androdioecy, and gynodioecy.
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Rates of coalescence and mutation

Here, we describe the structure of the coalescence process shared by our models of pure hermaphroditism,
androdioecy, and gynodioecy.

Relative rates of coalescence and mutation: We represent the probability that a random individual is
uniparental by s∗ and the probability that a pair of genes that reside in distinct individuals descend from the
same parent in the immediately preceding generation by 1/N∗. These quantities determine the coalescence
rate and the scaled mutation rate of the ESF.

A pair of lineages residing in distinct individuals derive from a single parent (P) in the preceding gen-
eration at rate 1/N∗. They descend from the same gene (immediate coalescence) or from distinct genes in
that individual with equal probability. In the latter case, P is either uniparental (probability s∗), implying
descent once again of the lineages from a single individual in the preceding generation, or biparental, imply-
ing descent from distinct individuals. Residence of a pair of lineages in a single individual rapidly resolves
either to coalescence, with probability

fc =
s∗

2− s∗
, (2)

or to residence in distinct individuals, with the complement probability. This expression is identical to the
classical coefficient of identity (Wright 1921; Haldane 1924). The total rate of coalescence of lineages sampled
from distinct individuals corresponds to

(1 + fc)/2

N∗
=

1

N∗(2− s∗)
. (3)

Our model assumes that coalescence and mutation occur on comparable time scales:

lim
N→∞
u→0

4Nu = θ

lim
N→∞
N∗→∞

N∗/N = S,
(4)

for u the rate of mutation under the infinite alleles model and N an arbitrary quantity that goes to infinity
at a rate comparable to N∗ and 1/u. Here, S represents a scaled measure of effective population size (termed
“inbreeding effective size” by Crow and Denniston 1988), relative to a population comprising N reproductives.

In large populations, switching of lineages between uniparental and biparental carriers occurs on the
order of generations, virtually instantaneously relative to the rate at which lineages residing in distinct
individuals coalesce (Nordborg and Donnelly 1997; Fu 1997). Our model assumes independence between
the processes of coalescence and mutation and that these processes occur on a much longer time scale than
random outcrossing:

1− s∗ ≫ u, 1/N∗. (5)

For m lineages, each residing in a distinct individual, the probability that the most recent event corresponds
to mutation is

lim
N→∞

mu

mu+
(
m
2

)
/[N∗(2− s∗)]

=
θ∗

θ∗ +m− 1
,

in which

θ∗ = lim
N→∞
u→0

2N∗u(2− s∗) = lim
N→∞
u→0

4Nu
N∗

N
(1− s∗/2)

= θ(1− s∗/2)S, (6)

for θ and S defined in (4). In inbred populations, the single parameter of the ESF corresponds to θ∗.
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Uniparental proportion and the rate of parent-sharing: In a population comprising Nh hermaphrodites,
the rate of parent-sharing corresponds to 1/Nh, and the uniparental proportion (s∗) corresponds to

sH =
s̃τ

s̃τ + 1− s̃
, (7a)

for s̃ the fraction of uniparental offspring at conception and τ the rate of survival of uniparental relative to
biparental offspring. For the pure-hermaphroditism model, we assign the arbitrary constant N in (4) as Nh,
implying

SH ≡ 1. (7b)

In androdioecious populations, comprising Nh reproducing hermaphrodites and Nm reproducing males
(female-steriles), the uniparental proportion (s∗) is identical to the case of pure hermaphroditism (7)

sA =
s̃τ

s̃τ + 1− s̃
. (8a)

A random gene derives from a male in the preceding generation with probability

(1− sA)/2,

and from a hermaphrodite with the complement probability. A pair of genes sampled from distinct individuals
derive from the same parent (1/N∗) with probability

1

NA

=
[(1 + sA)/2]

2

Nh

+
[(1− sA)/2]

2

Nm

. (8b)

In the absence of inbreeding (sA = 0), this expression agrees with the classical harmonic mean expression
for effective population size (Wright 1969). For the androdioecy model, we assign the arbitrary constant in
(4) as the number of reproductives (Nh +Nm), implying a scaled rate of coalescence corresponding to

1

SA

=
Nh +Nm

NA

=
[(1 + sA)/2]

2

1− pm
+

[(1− sA)/2]
2

pm
, (8c)

for

pm =
Nm

Nh +Nm

(9)

the proportion of males among reproductive individuals. Relative effective number SA ∈ (0, 1] takes its max-
imum for populations in which the effective number NA, implied by the rate of parent sharing, corresponds
to the total number of reproductives (NA = Nh + Nm). At SA = 1, the probability that a random gene
derives from a male parent equals the proportion of males among reproductives:

(1− sA)/2 = pm.

In gynodioecious populations, in which Nh hermaphrodites and Nf females (male-steriles) reproduce, the
uniparental proportion (s∗) corresponds to

sG =
τNha

τNha+Nh(1− a) +Nfσ
, (10a)

in which σ represents the seed fertility of females relative to hermaphrodites and a the proportion of seeds
of hermaphrodites set by self-pollen. A random gene derives from a female in the preceding generation with
probability

(1− sG)F/2,

for

F =
Nfσ

Nh(1− a) +Nfσ
(10b)
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the proportion of biparental offspring that have a female parent. A pair of genes sampled from distinct
individuals derive from the same parent (1/N∗) with probability

1

NG

=
[1− (1− sG)F/2]

2

Nh

+
[(1− sG)F/2]

2

Nf

. (10c)

We assign the arbitrary constant N in (4) as (Nh +Nf ), implying a scaled rate of coalescence of

1

SG

=
Nh +Nf

NG

=
[1− (1− sG)F/2]

2

1− pf
+

[(1− sG)F/2]
2

pf
, (10d)

for

pf =
Nf

Nh +Nf

(11)

the proportion of females among reproductive individuals. As for the androdioecy model, SG ∈ (0, 1] achieves
its maximum only if the proportion of females among reproductives equals the probability that a random
gene derives from a female parent:

(1− sG)F/2 = pf .

Likelihood

We here address the probability of a sample of diploid multilocus genotypes.

Genealogical histories: For a sample comprising up to two alleles at each of L autosomal loci in n diploid
individuals, we represent the observed genotypes by

X = {X1,X2, . . . ,XL} , (12)

in which Xl denotes the set of genotypes observed at locus l,

Xl = {Xl1,Xl2, . . . ,Xln} , (13)

with

Xlk = (Xlk1, Xlk2)

the genotype at locus l of individual k, with alleles Xlk1 and Xlk2.
To facilitate accounting for the shared recent history of genes borne by an individual in sample, we

introduce latent variables
T = {T1, T2, . . . , Tn}, (14)

for Tk denoting the number of consecutive generations of selfing in the immediate ancestry of the kth indi-
vidual, and

I = {Ilk}, (15)

for Ilk indicating whether the lineages borne by the kth individual at locus l coalesce within the most recent
Tk generations. Independent of other individuals, the number of consecutive generations of inbreeding in the
ancestry of the kth individual is geometrically distributed:

Tk ∼ Geometric (s∗) , (16)

with Tk = 0 signifying that individual k is the product of random outcrossing. Irrespective of whether 0, 1,
or 2 of the genes at locus l in individual k are observed, Ilk indicates whether the two genes at that locus in
individual k coalesce during the Tk consecutive generations of inbreeding in its immediate ancestry:

Ilk =

{
0 if the two genes do not coalesce

1 if the two genes coalesce.
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Figure 1 Following the history of the sample (Xl) backwards in time until all ancestors of sampled genes
reside in different individuals (Yl). Ovals represent individuals and dots represent genes. Blue lines indicate
the parents of individuals, while red lines represent the ancestry of genes. Filled dots represent sampled
genes for which the allelic class is observed (Greek letters) and their ancestral lineages. Open dots represent
genes in the sample with unobserved allelic class (∗). Grey dots represent other genes carried by ancestors
of the sampled individuals. The relationship between the observed sample Xl and the ancestral sample Yl

is determined by the intervening coalescence events Il. T indicates the number of consecutive generations of
selfing for each sampled individual.

Because the pair of lineages at any locus coalesce with probability 1
2 in each generation of selfing,

Pr(Ilk = 0) =
1

2Tk

= 1− Pr(Ilk = 1). (17)

Figure 1 depicts the recent genealogical history at a locus l in 5 individuals. Individuals 2 and 5 are
products of random outcrossing (T2 = T5 = 0), while the others derive from some positive number of
consecutive generations of selfing in their immediate ancestry (T1 = 2, T3 = 3, T4 = 1). Both individuals 1
and 3 are homozygotes (αα), with the lineages of individual 3 but not 1 coalescing more recently than the
most recent outcrossing event (Il1 = 0, Il3 = 1). As individual 2 is heterozygous (αβ), its lineages necessarily
remain distinct since the most recent outcrossing event (Il2 = 0). One gene in each of individuals 4 and 5
are unobserved (∗), with the unobserved lineage in individual 4 but not 5 coalescing more recently than the
most recent outcrossing event (Il4 = 1, Il5 = 0).

In addition to the observed sample of diploid individuals, we consider the state of the sampled lineages
at the most recent generation in which an outcrossing event has occurred in the ancestry of all n individuals.
This point in the history of the sample occurs T̂ generations into the past, for

T̂ = 1 +max
k

Tk.

In Figure 1, for example, T̂ = 4, reflecting the most recent outcrossing event in the ancestry of individual 3.
The ESF provides the probability of the allele frequency spectrum at this point.

We represent the ordered list of allelic states of the lineages at T̂ generations into the past by

Y = {Y1,Y2, . . . ,YL} , (18)

for Yl a list of ancestral genes in the same order as their descendants in Xl. Each gene in Yl is the ancestor
of either 1 or 2 genes at locus l from a particular individual in Xl (13), depending on whether the lineages
held by that individual coalesce during the consecutive generations of inbreeding in its immediate ancestry.



1 Introduction 7

We represent the number of genes in Yl by ml (n ≤ ml ≤ 2n). In Figure 1, for example, Xl contains 10
genes in 5 individuals, but Yl contains only 8 genes, with Yl1 the ancestor of only the first allele of Xl1 and
Yl5 the ancestor of both alleles of Xl3.

We assume (5) that the initial phase of consecutive generations of selfing is sufficiently short to ensure
a negligible probability of mutation in any lineage at any locus and a negligible probability of coalescence
between lineages held by distinct individuals more recently than T̂ . Accordingly, the coalescence history I

(15) completely determines the correspondence between genetic lineages in X (12) and Y (18).

Computing the likelihood: In principle, the likelihood of the observed data can be computed from the
augmented likelihood by summation:

Pr(X|Θ∗, s∗) =
∑

I

∑

T

Pr(X, I,T|Θ∗, s∗), (19)

for
Θ

∗ = {θ∗1 , θ
∗
2 , . . . , θ

∗
L} (20)

the list of scaled, locus-specific mutation rates, s∗ the population-wide uniparental proportion for the repro-
ductive system under consideration (e.g., (7) for the pure hermaphroditism model), and T (14) and I (15)
the lists of latent variables representing the time since the most recent outcrossing event and whether the
two lineages borne by a sampled individual coalesce during this period. Here we follow a common abuse of
notation in using Pr(X) to denote Pr(X = x) for random variable X and realized value x. Summation (19)
is computationally expensive: the number of consecutive generations of inbreeding in the immediate ances-
try of an individual (Tk) has no upper limit (compare David et al. 2007) and the number of combinations
of coalescence states (Ilk) across the L loci and n individuals increases exponentially (2Ln) with the total
number of assignments. We perform Markov chain Monte Carlo (MCMC) to avoid both these sums.

To calculate the augmented likelihood, we begin by applying Bayes rule:

Pr(X, I,T|Θ∗, s∗) = Pr(X, I|T,Θ∗, s∗) Pr(T|Θ∗, s∗).

Because the times since the most recent outcrossing event T depend only on the uniparental proportion s∗,
through (16), and not on the rates of mutation Θ

∗,

Pr(T|Θ∗, s∗) =

n∏

k=1

Pr(Tk|s
∗).

Even though our model assumes the absence of physical linkage among any of the loci, the genetic data
X and coalescence events I are not independent across loci because they depend on the times since the most
recent outcrossing event T. Given T, however, the genetic data and coalescence events are independent
across loci

Pr(X, I|T,Θ∗, s∗) =

L∏

l=1

Pr(Xl, Il|T, θ∗l , s
∗).

Further,

Pr(Xl, Il|T, θ∗l , s
∗) = Pr(Xl|Il,T, θ∗l , s

∗) · Pr(Il|T, θ∗l , s
∗)

= Pr(Xl|Il, θ
∗
l , s

∗) ·

n∏

k=1

Pr(Ilk|Tk).

This expression reflects that the times to the most recent outcrossing event T affect the observed genotypes
Xl only through the coalescence states Il and that the coalescence states Il depend only on the times to the
most recent outcrossing event T, through (17).
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To compute Pr(Xl|Il, θ
∗
l , s

∗), we incorporate latent variable Yl (18), describing the states of lineages at
the most recent point at which all occur in distinct individuals (Figure 1):

Pr(Xl|Il, θ
∗
l , s

∗) =
∑

Yl

Pr(Xl,Yl|Il, θ
∗
l , s

∗)

=
∑

Yl

Pr(Xl|Yl, Il, θ
∗
l , s

∗) Pr(Yl|Il, θ
∗
l , s

∗)

=
∑

Yl

Pr(Xl|Yl, Il) · Pr(Yl|Il, θ
∗
l ), (21a)

reflecting that the coalescence states Il establish the correspondence between the spectrum of genotypes in
Xl and the spectrum of alleles in Yl and that the distribution of Yl, given by the ESF, depends on the
uniparental proportion s∗ only through the scaled mutation rate θ∗l (6).

Given the sampled genotypes Xl and coalescence states Il, at most one ordered list of alleles Yl produces
positive Pr(Xl|Yl, Il) in (21a). Coalescence of the lineages at locus l in any heterozygous individual (e.g.,
Xlk = (β, α) with Ilk = 1 in Figure 1) implies

Pr(Xl|Yl, Il) = 0

for all Yl. Any non-zero Pr(Xl|Yl, Il) precludes coalescence in any heterozygous individual and Yl must
specify the observed alleles of Xl in the order of observation, with either 1 (Ilk = 1) or 2 (Ilk = 0) instances
of the allele for any homozygous individual (e.g., Xlk = (α, α)). For all cases with non-zero Pr(Xl|Yl, Il),

Pr(Xl|Yl, Il) = 1.

Accordingly, expression (21a) reduces to

Pr(Xl|Il, θ
∗
l , s

∗) =
∑

Yl:Pr(Xl|Yl,Il) 6=0

Pr(Yl|Il, θ
∗
l ), (21b)

a sum with either 0 or 1 terms. Because all genes in Yl reside in distinct individuals, we obtain Pr(Yl|Il, θ
∗
l )

from the Ewens Sampling Formula for a sample, of size

ml = 2n−

n∑

k=1

Ilk,

ordered in the sequence in which the genes are observed.
To determine Pr(Yl|Il, θ

∗
l ) in (21b), we use a fundamental property of the ESF (Ewens 1972; Karlin and

McGregor 1972): the probability that the next-sampled (ith) gene represents a novel allele corresponds to

πi =
θ∗

i− 1 + θ∗
, (22a)

for θ∗ defined in (6), and the probability that it represents an additional copy of already-observed allele j is

(1− πi)
ij

i− 1
, (22b)

for ij the number of replicates of allele j in the sample at size (i− 1) (
∑

j ij = i− 1). Appendix A presents
a first-principles derivation of (22a). Expressions (22) imply that for Yl the list of alleles at locus l in order
of observance,

Pr(Yl|Il, θ
∗
l ) =

(θ∗l )
Kl

∏Kl

j=1(mlj − 1)!∏ml

i=1(i− 1 + θ∗l )
, (23)

in which Kl denotes the total number of distinct allelic classes, mlj the number of replicates of the jth allele

in the sample, and ml =
∑

j mlj the number of lineages remaining at time T̂ (Figure 1).
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Missing data: Our method allows the allelic class of one or both genes at each locus to be missing. In
Figure 1, for example, the genotype of individual 4 is Xl4 = (β, ∗), indicating that the allelic class of the
first gene is observed to be β, but that of the second gene is unknown.

A missing allelic specification in the sample of genotypes Xl leads to a missing specification for the
corresponding gene in Yl unless the genetic lineage coalesces, in the interval between Xl and Yl, with a
lineage ancestral to a gene for which the allelic type was observed. Figure 1 illustrates such a coalescence
event in the case of individual 4. In contrast, the lineages ancestral to the genes carried by individual 5 fail to
coalescence more recently than their separation into distinct individuals, giving rise to a missing specification
in Yl.

The probability of Yl can be computed by simply summing over all possible values for each missing
specification. Equivalently, those elements may simply be dropped from Yl before computing the probability
via the ESF, the procedure implemented in our method.

Bayesian inference framework

Prior on mutation rates

Ewens (1972) showed for the panmictic case that the number of distinct allelic classes observed at a locus
(e.g., Kl in (23)) provides a sufficient statistic for the estimation of the scaled mutation rate. Because each
locus l provides relatively little information about the scaled mutation rate θ∗l (6), we assume that mutation
rates across loci cluster in a finite number of groups. However, we do not know a priori the group assignment
of loci or even the number of distinct rate classes among the observed loci. We make use of the Dirichlet
process prior to estimate simultaneously the number of groups, the value of θ∗ for each group, and the
assignment of loci to groups.

The Dirichlet process comprises a base distribution, which here represents the distribution of the scaled
mutation rate θ∗ across groups, and a concentration parameter α, which controls the probability that each
successive locus forms a new group. We assign 0.1 to α of the Dirichlet process, and place a gamma
distribution (Γ(α = 0.25, β = 2)) on the mean scaled mutation rate for each group. As this prior has a high
variance relative to the mean (0.5), it is relatively uninformative about θ∗.

Model-specific parameters

Derivations presented in the preceding section indicate that the probability of a sample of diploid genotypes
under the infinite alleles model depends on only the uniparental proportion s∗ and the scaled mutation rates
Θ

∗ (20) across loci. These composite parameters are determined by the set of basic demographic parameters
Ψ associated with each model of reproduction under consideration. As the genotypic data provide equal
support to any combination of basic parameters that implies the same values of s∗ and Θ

∗, the full set
of basic parameters for any model are in general non-identifiable using the observed genotype frequency
spectrum alone.

Even so, our MCMC implementation updates the basic parameters directly, with likelihoods determined
from the implied values of s∗ and Θ

∗. This feature facilitates the incorporation of information in addition to
the genotypic data that can contribute to the estimation of the basic parameters under a particular model
or assessment of alternative models. We have

Pr(X,Θ∗,Ψ) = Pr(X|Θ∗,Ψ) · Pr(Θ∗) · Pr(Ψ)

= Pr(X|Θ∗, s∗(Ψ)) · Pr(Θ∗) · Pr(Ψ), (24)

for X the genotypic data and s∗(Ψ) the uniparental proportion determined by Ψ for the model under
consideration. To determine the marginal distribution of θl (4) for each locus l, we use (6), incorporating
the distributions of s∗(Ψ) and S(Ψ), the scaling factor defined in (4):

θl =
θ∗l

S(1− s∗/2)
.
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For the pure hermaphroditism model (7), Ψ = {s̃, τ}, where s̃ is the proportion of conceptions through
selfing, and τ is the relative viability of uniparental offspring. We propose uniform priors for s̃ and τ :

s̃ ∼ Uniform(0, 1)

τ ∼ Uniform(0, 1).
(25)

For the androdioecy model (8), we propose uniform priors for each basic parameter in Ψ = {s̃, τ, pm}:

s̃ ∼ Uniform(0, 1)

τ ∼ Uniform(0, 1)

pm ∼ Uniform(0, 1).

(26)

For the gynodioecy model (10), Ψ = {a, τ, pf , σ}, including a the proportion of egg cells produced by
hermaphrodites fertilized by selfing, pf (11) the proportion of females (male-steriles) among reproductives,
and σ the fertility of females relative to hermaphrodites. We propose the uniform priors

a ∼ Uniform(0, 1)

τ ∼ Uniform(0, 1)

pf ∼ Uniform(0, 1)

1/σ ∼ Uniform(0, 1).

(27)

Assessment of accuracy and coverage using simulated data

We developed a forward-in-time simulator (https://github.com/skumagai/selfingsim) that tracks mul-
tiple neutral loci with locus-specific scaled mutation rates (Θ) in a population comprising N reproducing
hermaphrodites of which a proportion s∗ are of uniparental origin. We used this simulator to generate data
under two sampling regimes: large (L = 32 loci in each of n = 70 diploid individuals) and small (L = 6 loci
in each of n = 10 diploid individuals). We applied our Bayesian method and RMES (David et al. 2007) to
simulated data sets. A description of the procedures used to assess the accuracy and coverage properties of
the three methods is included in the Supplementary Online Material.

In addition, we determine the uniparental proportion (s∗) inferred from the departure from Hardy-
Weinberg expectation (FIS , Wright 1969) alone. Our FIS-based estimate entails setting the observed value
of FIS equal to its classical expectation s∗/(2− s∗) (Wright 1921; Haldane 1924) and solving for s∗:

ŝ∗ =
2F̂IS

1 + F̂IS

. (28)

In accommodating multiple loci, this estimate incorporates a multilocus estimate for F̂IS (Appendix B) but,
unlike those generated by our Bayesian method and RMES, does not use identity disequilibrium across loci
within individuals to infer the number of generations since the most recent outcross event in their ancestry.
As our primary purpose in examining the FIS-based estimate (28) is to provide a baseline for the results of
those likelihood-based methods, we have not attempted to develop an index of error or uncertainty for it.

Accuracy

To assess relative accuracy of estimates of the uniparental proportion s∗, we determine the bias and root-
mean-squared error of the three methods by averaging over 104 data sets (102 independent samples from each
of 102 independent simulations for each assigned s∗). In contrast with the point estimates of s∗ produced
by RMES, our Bayesian method generates a posterior distribution. To facilitate comparison, we reduce our
estimate to a single value, the median of the posterior distribution of s∗, with the caveat that the mode and
mean may show different qualitative behavior (see Supplementary Online Material).

Figure 2 indicates that both RMES and our method show positive bias upon application to data sets for
which the true uniparental proportion s∗ is close to zero and negative bias for s∗ close to unity. This trend

https://github.com/skumagai/selfingsim
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Figure 2 Errors for the full likelihood (posterior median), RMES, and FIS-based (28) methods for a large
simulated sample (n = 70 individuals, L = 32 loci). In the legend, rms indicates the root-mean-squared
error and bias the average deviation. Averages are taken across simulated data sets at each true value of s∗.

reflects that both methods yield estimates of s∗ constrained to lie between 0 and 1. In contrast, the FIS-
based estimate (28) underestimates s∗ throughout the range, even near s∗ = 0 (F̂IS is not constrained to be
positive). Our method has a bias near 0 that is substantially larger than the bias of RMES, and an error that
is slightly larger. A major contributor to this trend is that our Bayesian estimate is represented by only the
median of the posterior distribution of the uniparental proportion s∗. Figure 3 indicates that for data sets
generated under a true value of s∗ of 0 (full random outcrossing), the posterior distribution for s∗ has greater
mass near 0. Further, as the posterior mode does not display large bias near 0 (Figure S1), we conclude that
the bias shown by the median (Figure 2) merely represents uncertainty in the posterior distribution for s∗

and not any preference for incorrect values. We note that our method assumes that the data are derived
from a population reproducing through a mixture of self-fertilization and random outcrossing. Assessment
of a model of complete random mating (s∗ = 0) against the present model (s∗ > 0) might be conducted
through the Bayes factor.

Except in cases in which the true s∗ is very close to 0, the error for RMES exceeds the error for our method
under both sampling regimes (Figure 2). RMES differs from the other two methods in the steep rise in both
bias and rms error for high values of s∗, with the change point occurring at lower values of the uniparental
proportion s∗ for the small sampling regime (n = 10, L = 6). A likely contributing factor to the increased
error shown by RMES under high values of s∗ is its default assumption that the number of generations in
the ancestry of any individual does not exceed 20. Violations of this assumption arise more often under
high values of s∗, possibly promoting underestimation of the uniparental proportion. Further, RMES discards
data at loci at which no heterozygotes are observed, and terminates analysis altogether if the number of loci
drops below 2. RMES treats all loci with zero heterozygosity (1) as uninformative, even if multiple alleles
are observed. In contrast, our full likelihood method uses data from all loci, with polymorphic loci in the
absence of heterozygotes providing strong evidence of high rates of selfing (rather than low rates of mutation).
Under the large sampling regime (n = 70, L = 32), RMES discards on average 50% of the loci for true s∗

values exceeding 0.94, with less than 10% of data sets unanalyzable (fewer than 2 informative loci) even at
s∗ = 0.99 (Figure 4). Under the n = 10, L = 6 regime, RMES discards on average 50% of loci for true s∗

values exceeding 0.85, with about 50% of data sets unanalyzable under s∗ ≥ 0.94.
The error for the FIS-based estimate (28) also exceeds the error for our method. It is largest near s∗ = 0

and vanishes as s∗ approaches 1, a pattern distinct from RMES (Figure 2).
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Figure 3 Average posterior density of the uniparental proportion (s∗) inferred from simulated data generated
under the large sample regime (n = 70, L = 32) with a true value of s∗ = 0. The average was taken across
posterior densities for 100 data sets.
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Coverage

We determine the fraction of data sets for which the confidence interval (CI) generated by RMES and the
Bayesian credible interval (BCI) generated by our method contains the true value of the uniparental pro-
portion s∗. This measure of coverage is a frequentist notion, as it treats each true value of s∗ separately.
A 95% CI should contain the truth 95% of the time for each specific value of s∗. However, a 95% BCI is
not expected to have 95% coverage at each value of s∗, but rather 95% coverage averaged over values of s∗

sampled from the prior. Of the various ways to determine a BCI for a given posterior distribution, we choose
to report the highest posterior density BCI (rather than the central BCI, for example).

Figure 5 indicates that coverage of the 95% CIs produced by RMES are consistently lower than 95%
across all true s∗ values under the large sampling regime (n = 70 L = 32). Coverage appears to decline
as s∗ increases, dropping from 86% for s∗ = 0.1 to 64% for s∗ = 0.99. In contrast, the 95% BCIs have
slightly greater than 95% frequentist coverage for each value of s∗, except for s∗ values very close to the
extremes (0 and 1). Under very high rates of inbreeding (s∗ ≈ 1), an assumption (5) of our underlying model
(random outcrossing occurs on a time scale much shorter than the time scales of mutation and coalescence)
is likely violated. We observed similar behavior under nominal coverage levels ranging from 0.5 to 0.99
(Supplementary Material).
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Number of consecutive generations of selfing

In order to check the accuracy of our reconstructed generations of selfing, we examine the posterior distri-
butions of selfing times {Tk} for s∗ = 0.5 under the large sampling regime (n = 70, L = 32). We average
posterior distributions for selfing times across 100 simulated data sets, and across individuals k = 1 . . . 70
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Figure 6 Exact distribution of selfing times under s∗ = 0.5 compared to the posterior distribution averaged
across individuals and across data sets.

within each simulated data set. We then compare these averages based on the simulated data with the
exact distribution of selfing times across individuals (Figure 6). The pooled posterior distribution closely
matches the exact distribution. This simple check suggests that our method correctly infers the true posterior
distribution of selfing times for each sampled individual.
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Analysis of microsatellite data from natural populations

Androdioecious vertebrate

Our analysis of data from the androdioecious killifish Kryptolebias marmoratus (Mackiewicz et al. 2006;
Tatarenkov et al. 2012) incorporates genotypes from 32 microsatellite loci as well as information on the
observed fraction of males. Our method simultaneously estimates the proportion of males in the population
(pm) together with rates of locus-specific mutation (θ∗) and the uniparental proportion (sA). We apply the
method to two populations, which show highly divergent rates of inbreeding.

Parameter estimation: Our androdioecy model (25) comprises 3 basic parameters, including the fraction
of males among reproductives (pm) and the relative viability of uniparental offspring (τ). Our analysis
incorporates the observation of nm males among ntotal zygotes directly into the likelihood expression:

Pr(X, I,T, nm|s∗,Θ∗, pm, ntotal) = Pr(X,I,T|s∗,Θ∗) · Pr(nm|pm, ntotal),

in which
nm ∼ Binomial(ntotal, pm), (29)

reflecting that s∗ and Θ
∗ are sufficient to account for X, I, and T, and also independent of nm, ntotal, and

pm.
In the absence of direct information regarding the existence or intensity of inbreeding depression, we

impose the constraint τ = 1 to permit estimation of the uniparental proportion sA under a uniform prior:

s∗ ∼ Uniform(0, 1).

Low outcrossing rate: We applied our method to the BP data set described by Tatarenkov et al. (2012).
This data set comprises a total of 70 individuals, collected in 2007, 2010, and 2011 from the Big Pine location
on the Florida Keys.

Tatarenkov et al. (2012) report 21 males among the 201 individuals collected from various locations
in the Florida Keys during this period, consistent with other estimates of about 1% (e.g., Turner et al.

1992). Based on the long-term experience of the Tatarenkov–Avise laboratory with this species, we assumed
observation of nm = 20 males out of ntotal = 2000 individuals in (29). We estimate that the fraction of
males in the population (pm) has a posterior median of 0.01 with a 95% Bayesian Credible Interval (BCI)
of (0.0062, 0.015).

Our estimates of mutation rates (θ∗) indicate substantial variation among loci, with the median ranging
over an order of magnitude (ca. 0.5–5.0) (Figure S4, Supplementary Material). The distribution of mutation
rates across loci appears to be multimodal, with many loci having a relatively low rate and some having
larger rates.

Figure 7 shows the posterior distribution of uniparental proportion sA, with a median of 0.95 and a 95%
BCI of (0.93, 0.97). This estimate is somewhat lower than FIS-based estimate (28) of 0.97, and slightly
higher than the RMES estimate of 0.94, which has a 95% Confidence Interval (CI) of (0.91, 0.96). We note
that RMES discarded from the analysis 9 loci (out of 32) which showed no heterozygosity, even though 7 of
the 9 were polymorphic in the sample.

Our method estimates the latent variables {T1, T2, . . . , Tn} (14), representing the number of generations
since the most recent outcross event in the ancestry of each individual (Figure S5). Figure 8 shows the
empirical distribution of the time since outcrossing across individuals, averaged over posterior uncertainty,
indicating a complete absence of biparental individuals (0 generations of selfing). Because we expect that a
sample of size 70 would include at least some biparental individuals under the inferred uniparental proportion
(sA ≈ 0.95), this finding suggests that any biparental individuals in the sample show lower heterozygosity
than expected from the observed level of genetic variation. This deficiency suggests that an extended model
that accommodates biparental inbreeding or population subdivision may account for the data better than
the present model, which allows only selfing and random outcrossing.
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Figure 7 Posterior distribution of the uniparental proportion sA for the BP population. The median is
indicated by a black dot, with a red bar for the 95% BCI and an orange bar for the 50% BCI.
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Figure 8 Empirical distribution of number of generations since the most recent outcross event (T ) across
individuals for the K. marmoratus (BP population), averaged across posterior samples. The right panel
is constructed by zooming in on the panel on the left. “Expected” probabilities represent the proportion
of individuals with the indicated number of selfing generations expected under the estimated uniparental
proportion sA. “Inferred” probabilities represent proportions inferred across individuals in the sample. The
first inferred bar with positive probability corresponds to T = 1.

Higher outcrossing rate: We apply the three methods to the sample collected in 2005 from Twin Cays,
Belize (TC05: Mackiewicz et al. 2006). This data set departs sharply from that of the BP population,
showing considerably higher incidence of males and levels of polymorphism and heterozygosity.

We incorporate the observation of 19 males among the 112 individuals collected from Belize in 2005
(Mackiewicz et al. 2006) into the likelihood (see (29)). Our estimate of the fraction of males in the population
(pm) has a posterior median of 0.17 with a 95% BCI of (0.11, 0.25).

Figure S6 (Supplementary Material) indicates that the posterior medians of the locus-specific mutation
rates range over a wide range (ca. 0.5–23). Two loci appear to exhibit a mutation rates substantially higher
than other loci, both of which appear to have high rates in the BP population as well (Figure S4).

All three methods confirm the inference of Mackiewicz et al. (2006) of much lower inbreeding in the TC
population relative to the BP population. Our posterior distribution of uniparental proportion sA has a
median and 95% BCI of 0.35 (0.25, 0.45) (Figure 9). The median again lies between the FIS-based estimate
(28) of 0.39 and the RMES estimate of 0.33, with its 95% CI of (0.30, 0.36). In this case, RMES excluded from
the analysis only a single locus, which was monomorphic in the sample.

Figure 10 shows the inferred distribution of the number of generations since the most recent outcross
event (T ) across individuals, averaged over posterior uncertainty. In contrast to the BP population, the
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Figure 9 Posterior distribution of the uniparental proportion sA for the TC population. Also shown are the
95% BCI (red), 50% BCI (orange), and median (black dot).
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Figure 10 Empirical distribution of selfing times T across individuals, for K. marmoratus (Population TC).
The histogram is averaged across posterior samples.

distribution of selfing time in the TC population appears to conform to the distribution expected under the
inferred uniparental proportion (sA), including a high fraction of biparental individuals (Tk = 0). Figure
S7 (Supplementary Material) presents the posterior distribution of the number of consecutive generations of
selfing in the immediate ancestry of each individual.

Gynodioecious plant

We next examine data from Schiedea salicaria, a gynodioecious member of the carnation family endemic
to the Hawaiiian islands. We analyzed genotypes at 9 microsatellite loci from 25 S. salicaria individuals
collected from west Maui and identified by Wallace et al. (2011) as non-hybrids.

Parameter estimation: Our gynodioecy model (27) comprises 4 basic parameters, including the relative
seed set of females (σ) and the relative viability of uniparental offspring (τ). Our analysis of microsatellite
data from the gynodioecious Hawaiian endemic Schiedea salicaria (Wallace et al. 2011) constrained the
relative seed set of females to unity (σ ≡ 1), consistent with empirical results (Weller and Sakai 2005). In
addition, we use results of experimental studies of inbreeding depression to develop an informative prior
distribution for τ :

τ ∼ Beta(2, 8), (30)

the mean of which (0.2) is consistent with the results of greenhouse experiments reported by Sakai et al.

(1989).
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Campbell et al. (2010) reported a 12% proportion of females (nf = 27 females among ntotal = 221
individuals). As in the case of androdioecy (29), we model this information by

nf ∼ Binomial(ntotal, pf ), (31)

obtaining estimates from the extended likelihood function corresponding to the product of Pr(nf |ntotal, pf )
and the likelihood of the genetic data. We retain a uniform prior for the proportion of seeds of hermaphrodite
set by self-pollen (a).

Results: Figure S10 (Supplementary Material) presents posterior distributions of the basic parameters
of the gynodioecy model (10). Our estimate of the uniparental proportion sG (median 0.247, 95% BCI
(.0791, 0.444)) is substantially lower than the FIS-based estimate (28) of sG = 0.33. Although RMES excluded
none of the loci, it gives an estimate of sG = 0, with a 95% CI of (0, 0.15).

Unlike the K. marmoratus data sets, the S. salicaria data set does not appear to provide substantial
evidence for large differences in locus-specific mutation rates across loci: Figure S8 (Supplementary Material)
shows similar posterior medians for across loci.

Figure 11 presents the inferred distribution of the number of generations since the most recent outcross
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Figure 11 Empirical distribution of selfing times T across individuals, for S. salicaria. The histogram is
averaged across posterior samples.

event T across individuals, averaged over posterior uncertainty. In contrast with the analysis of the K.

marmoratus BP population (Figure 8), the distribution appears to be consistent with the inferred uniparental
proportion sG. Figure S9 (Supplementary Material) presents the posterior distribution of the number of
consecutive generations of selfing in the immediate ancestry of each individual.

Table 1 presents posterior medians and 95% BCIs for the proportion of uniparentals among reproductives
(s∗), the proportion of seeds set by hermaphrodites by self-pollen (a), the viability of uniparental offspring
relative to biparental offspring (τ), the proportion of females among reproductives (pf ), and the probability
that a random gene derives from a female parent ((1 − sG)F/2). Comparison of the first (YYY) and
fifth (NYY) rows indicates that inclusion of the genetic data more than doubles the posterior median of s∗

(from 0.112 to 0.247) and shrinks the credible interval. Comparison of the first (YYY) and third (YNY) rows
indicates that counts of females and hermaphrodites greatly reduce the posterior median of pf and accordingly
change the proportional contribution of females to the gene pool ((1−sG)F/2). The bottom row of the table
(NNN), showing a prior estimate for composite parameter s∗ of 0.0844 (0.000797, 0.643), illustrates that its
induced prior distribution departs from uniform on (0, 1), even though both of its components (a and τ)
have uniform priors.
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Discussion

We introduce a model-based Bayesian method for the inference of the rate of self-fertilization and other
aspects of a mixed mating system. In anticipation of large (even genome-scale) numbers of loci, it uses
the Ewens Sampling Formula (ESF) to determine likelihoods in a computationally efficient manner from
frequency spectra of genotypes observed at multiple unlinked sites throughout the genome. Our MCMC
sampler explicitly incorporates the full set of parameters for each iconic mating system considered here
(pure hermaphroditism, androdioecy, and gynodioecy), permitting insight into various components of the
evolutionary process, including effective population size relative to the number of reproductives.

Assessment of the new approach

Accuracy: Enjalbert and David (2000) and David et al. (2007) base estimates of selfing rate on the distribu-
tion of numbers of heterozygous loci. Both methods strip genotype information from the data, distinguishing
between only homozygotes and heterozygotes, irrespective of the alleles involved. Loci lacking heterozygotes
altogether (even if polymorphic) are removed from the analysis as uninformative about the magnitude of
departure from Hardy-Weinberg proportions (Figure 4). As the observation of polymorphic loci with low
heterozygosity provides strong evidence of inbreeding, exclusion of such loci by RMES (David et al. 2007) may
contribute to its loss of accuracy for high rates of selfing (Figure 2).

Our method derives information from all loci. Like most coalescence-based models, it accounts for the
level of variation as well as the way in which variation is partitioned within the sample. Even a locus
monomorphic within a sample provides information about the age of the most recent common ancestor of
the observed sequences, a property that was not widely appreciated prior to analyses of the absence of
variation in a sample of human Y chromosomes (Dorit et al. 1995; Fu and Li 1996).

Estimates of the rate of inbreeding produced by our method appear to show greater accuracy than RMES

and the FIS-based method (28) over much of the parameter range (Figure 2). The increased error exhibited
under very high rates of inbreeding (s∗ ≈ 1) may reflect violation of our assumption (5) that random
outcrossing occurs on a much shorter time scale than mutation and coalescence. Even though our method
assumes that the rate of inbreeding lies in (0, 1), the posterior distribution for data generated under random
outcrossing (s∗ = 0) does indicate greater confidence in low rates of inbreeding (Figure 3).

Both RMES and our method invoke independence of genealogical histories of unlinked loci, conditional on
the time since the most recent outcrossing event. RMES seeks to approximate the likelihood by summing over
the distribution of time since the most recent outcross event, but truncates the infinite sum at 20 generations.
The increased error exhibited by RMES under high rates of inbreeding may reflect that the likelihood has a
substantial mass beyond the truncation point in such cases. Our method explicitly estimates the latent
variable of time since the most recent outcross for each individual (14). This quantity ranges over the non-
negative integers, but values assigned to individuals are explored by the MCMC according to their effects
on the likelihood.

Frequentist coverage properties: Bayesian approaches afford a direct means of assessing confidence in pa-
rameter estimates, and our simulation studies suggest that the Bayesian Credible Intervals (BCIs) generated
by our method have relatively good frequentist coverage properties as well (Figure S3). The Confidence
Intervals (CIs) reported by the maximum-likelihood method RMES (David et al. 2007) appear to perform less
well (Figure 5). Although David et al. (2007) describe RMES as determining CIs via the profile likelihood
method (see Kreutz et al. 2013), RMES holds constant parameters other than the uniparental proportion (s∗)
instead of reoptimizing them to maximize the likelihood as s∗ varies. The result is therefore not a true profile
likelihood, which may explain the poor coverage properties of the CIs that RMES provides.

Model fit: Bayesian approaches also afford insight into the suitability of the underlying model. Our method
provides estimates of the number of generations since the most recent outcross event in the immediate
ancestry of each individual (T ). We can pool such estimates of selfing times to obtain an empirical distribution
of the number of selfing generations, a procedure particularly useful for samples containing observation of the
genotype of many individuals. Under the assumption of a single population-wide rate of self-fertilization, we
expect selfing time to have a geometric distribution with parameter corresponding to the estimated selfing
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rate. Empirical distributions of the estimated number of generations since the last outcross appear consistent
with this expectation for the data sets derived from the TC population of K. marmoratus (Figure 10) and
from Schiedea (Figure 11). In contrast, the empirical distribution for the highly-inbred BP population of
K. marmoratus (Figure 8) shows an absence of individuals formed by random outcrossing (T = 0). That
our method accurately estimates T from simulated data (Figure 6) argues against attributing the inferred
deficiency of biparental individuals in the BP data set to an artifact of the method. Rather, the deficiency may
indicate a departure from the underlying model, which assumes reproduction only through self-fertilization
or random outcrossing. In particular, biparental inbreeding as well as selfing may reduce the fraction of
individuals formed by random outcrossing. Mis-scoring of heterozygotes as homozygotes due to null alleles
or other factors, a possibility directly addressed by RMES (David et al. 2007), may also in principle contribute
to the paucity of outbred individuals.

Components of inference

Locus-specific mutation rates: Our method estimates the scaled mutation rate (4) at each locus using
the Dirichlet Process Prior (DPP). This approach improves on existing methods in several ways. First, we
estimate a single parameter for each locus instead of estimating multiple allele frequencies per locus as do
Enjalbert and David (2000). Second, we estimate for each locus the scaled mutation rate, a fundamental
component of the evolutionary process, rather than the heterozygosity (1), a random outcome of that process.
Third, incorporation of the DPP permits the simultaneous estimation of the number of classes of mutation
rates, the mutation rate for each class, and the class membership of each locus. It accords the increased
accuracy derived from pooling loci with similar mutation rates without a priori knowledge of the partitioning
of loci among rate classes or even the number of classes.

Joint inference of mutation and inbreeding rates: For the infinite-alleles model of mutation, the Ewens
Sampling Formula (ESF, Ewens 1972) provides the probability of any allele frequency spectrum (AFS)
observed at a locus in a sample derived from a panmictic population. Under partial self-fertilization, the
ESF provides the probability of an AFS observed among genes, each sampled from a distinct individual.
For such genic (as opposed to genotypic) samples, the coalescence process under inbreeding is identical to
the standard coalescence process, but with a rescaling of time (Fu 1997; Nordborg and Donnelly 1997).
Accordingly, genic samples may serve as the basis for the estimation of the single parameter of the ESF, the
scaled mutation rate θ∗ (6), but not the rate of inbreeding apart from the scaled mutation rate.

Our method uses the information in a genotypic sample, the genotype frequency spectrum, to infer both
the uniparental proportion s∗ and the scaled mutation rate θ∗. Our sampler reconstructs the genealogical
history of a sample of diploid genotypes only to the point of the most recent random-outcross event of each
individual, with the number of consecutive generations of inbreeding in the immediate ancestry of a given
individual (Tk for individual k) corresponding to a latent variable in our Bayesian inference framework.
Invocation of the ESF beyond the point at which all lineages reside in separate individuals obviates the
necessity of further genealogical reconstruction. As a consequence, our method may be better able to
accommodate genome-scale magnitudes of observed loci (L).

Identity disequilibrium (Cockerham and Weir 1968), the correlation in heterozygosity across loci within
individuals, reflects that all loci within an individual experience the most recent random-outcross event at the
same time, irrespective of physical linkage. The heterozygosity profile of individual k provides information
about Tk (16), which in turn reflects the uniparental proportion s∗. Observation of multiple individuals
provides a basis for inference of both the uniparental proportion s∗ and the scaled mutation rate θ∗.

Identifiability: In an analysis based solely on the genotype frequency spectrum observed in a sample,
the likelihood depends on just two composite parameters: the probability that a random individual is
uniparental (s∗) and the scaled rates of mutation Θ

∗ (20) across loci. Any model for which the parameter
set Ψ (24) comprises more than one parameter is not fully identifiable from the genetic data alone. In the
pure hermaphroditism model (7), for example, basic parameters s̃ (fraction of fertilizations by selfing) and
τ (relative viability of uniparental offspring) are nonidentifiable: any assignments that determine the same
values of composite parameters s∗ and Θ

∗ have the same likelihood.
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For each basic parameter in Ψ beyond one, identifiability requires incorporation of additional information
beyond the genetic data. A full treatment of such information requires expansion of the likelihood function to
encompasses an explicit model of the new information. Our androdioecy model (8), for example, comprises
3 parameters, including the frequency of males among reproductives (pm) as well as s̃ and τ . In our analysis
of microsatellite data from the killifish Kryptolebias marmoratus (Mackiewicz et al. 2006; Tatarenkov et al.

2012), the expanded likelihood function corresponds to the product of the probability of the genetic data and
the probability of the number of males observed among a total number of individuals (29). In the absence of
information regarding inbreeding depression (τ), we assigned τ ≡ 1 to permit estimation of the uniparental
proportion (s∗) under a uniform prior distribution. This assignment does not affect the reliability of our
estimates (s∗, Θ

∗, pm, SA, etc.); rather, the analysis is agnostic concerning the influence of the relative
viability of inbred offspring (τ) and the rate of self-fertilization (s̃) in determining the probability that a
random individual is uniparental (s∗).

Non-identifiable parameters can also be estimated through the incorporation of informative priors. Be-
cause identifiability is defined in terms of the likelihood, which is unaffected by priors, such parameters
remain non-identifiable. Even so, informative priors assist in their estimation through Bayesian approaches,
which do not require parameters to be identifiable. To explore the data set from Schiedea salicaria (Wallace
et al. 2011), we use our 4-parameter gynodioecy model (10), the basic parameters of which include the
proportion of females among reproductives (pf ), the relative seed set of females (σ), the relative viability of
uniparental offspring (τ), and the proportion of seeds of hermaphrodites set by self-pollen (a). In a manner
similar to the androdioecy study, our analysis uses an extended likelihood function, modeling the number
of females as a binomial random variable (31). In addition, we use earlier experimental evidence to justify
the assignment of σ ≡ 1 (Weller and Sakai 2005) and to develop an informative prior for τ ((30): Sakai
et al. 1989). This procedure permits estimation of 3 basic parameters, including the proportion of seeds of
hermaphrodites set by self-pollen (a).

Beyond estimation of the selfing rate

Our MCMC implementation updates the full set of basic parameters, with likelihoods determined from the
implied values of composite parameters s∗ and Θ

∗. Incorporation of additional information, either through
extension of the likelihood or through informative priors, permits inference not only of the basic parameters
but also of functions of the basic parameters. For example, Table 1 includes estimates of the proportion
of seeds of hermaphrodites set by self-pollen (a) and the probability that a random gene derives from a
female parent ((1− sG)F/2) in gynodioecious S. salicaria. We are not aware of other studies in which these
quantities have been inferred from the pattern of neutral genetic variation observed in a random sample.

Among the most biologically-significant functions to which this approach affords access is relative effective
number S (4), a fundamental component of the reproductive value of the sexes (Fisher 1958). We denote the
probability that a pair of genes, randomly drawn from distinct individuals, derive from the same parent in the
preceding generation as the rate of parent-sharing (1/N∗). Its inverse (N∗) corresponds to the “inbreeding
effective size” of Crow and Denniston (1988). Relative effective number S is the ratio of N∗ to the total
number of reproductive individuals. For example, in the absence of inbreeding (s∗ = 0), N∗ in our gynodioecy
model (10) corresponds to Wright’s (1969) harmonic mean expression for effective population size and S to
the ratio of N∗ and Nf + Nh, the total number of reproductive females and hermaphrodites. In general
(s∗ ≥ 0), relative effective size S reflects reductions in effective size due to inbreeding in addition to differences
in numbers of the sexual forms. Figure 12 presents posterior distributions of S for the 3 data sets explored
here. These results suggest that relative effective number S in each of the natural populations surveyed
lies close to its maximum of unity, with the effective number defined through the rate of parent-sharing
approaching the total number of reproductives.
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Appendix A The last-sampled gene

We address the probability that the last-sampled gene in a sample of size i represents a novel allele (22a).
Under the infinite alleles model of mutation, a single mutation in a lineage suffices to distinguish a new

allele. We denote the last-sampled gene in a sample of size i as the focal gene, and consider the level of the
genealogical tree in which its ancestral lineage either receives a mutation or joins the gene tree of the sample
at size (i− 1). Level l of the entire (i-gene) gene tree corresponds to the segment in which l lineages persist.

The probability that the line of descent of the focal gene terminates in a mutation immediately, in level
i of the genealogy, is

u

nu+
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i
2

)
/N∗

=
θ∗

i(θ∗ + i− 1)
.

In general, the probability that the lineage of the focal gene terminates on level l > 2 is
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This expression illustrates the invariance over termination orders noted by Griffiths and Lessard (2005).
Summing over all levels, including level 2, for which a mutation in either remaining lineage ensures that the
focal gene represents a novel allele, we obtain the overall probability that the last-sampled gene represents
a novel allele:

θ∗(i− 2)

i(θ∗ + i− 1)
+

2θ∗

i(θ∗ + i− 1)
=

θ∗

θ∗ + i− 1
.

Appendix B Estimators of FIS

We follow Weir (1996) in developing an estimate of the uniparental proportion s∗ from FIS alone (28).
For a single locus, a simple estimator of FIS corresponds to

F̂IS = 1−
O

E
,

for O the observed fraction of heterozygotes in the sample and E the expected fraction based on Hardy-
Weinberg proportions given the observed allele frequencies. Explicitly, we have

F̂IS = 1−
1−

∑
u P̃uu

1−
∑

u p̃
2
u

=

(∑
u P̃uu − p̃2u

)

1−
∑

u p̃
2
u

,

for p̃u the frequency of allele u in the sample and P̃uu the frequency of homozygous genotype uu in the
sample. However, this estimator can be substantially biased for small samples, leading to underestimation
of FIS (Weir 1996).

To address this bias and accommodate multiple loci, we instead adopt

F̂IS =

∑L
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] , (B.1)

for n the number of diploid genotypes observed, L the number of loci, and Kl the number of alleles at
locus l. While this estimator is also biased in general, it corresponds to the ratio of unbiased estimators of
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)
, in which plu is the frequency of allele u at locus l in the entire

population (Weir 1996). Our analysis of simulated data (Appendix D) indicates that this estimator is more
accurate than an estimator that simply averages single-locus estimates:
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Our FIS-based estimates (28) incorporate (B.1) and not (B.2).

Appendix C Implementation of the MCMC

State space: The state space for the Markov chain of our MCMC sampler includes times across sampled
individuals since the last outcross event T (14), coalescence events across individuals and loci since that event
I (15), and model-specific parameters Ψ (24). The state space also comprises the scaled mutation rates Θ

∗

(20), which are determined by C, a list specifying the mutation rate category Cl for locus l = 1 . . . L, and Z,
a list specifying the scaled mutation rate Zi for category i = 1 . . . L+ 4. In particular, the scaled mutation
rate at locus l corresponds to

θ∗l = ZCl
. (C.1)

At any given point in the MCMC, the state of the Markov chain corresponds to (I,T,Ψ,C,Z).

Iterations: Each iteration of our MCMC sampler performs multiple updates, with each variable updated
at least once per iteration. We recorded the state sampled by the MCMC at each iteration. For analyses of
simulated data sets, we ran Markov chains for 2000 iterations, discarding the first 200 iterations as burn-in.
For analyses of the actual data sets, we ran Markov chains for 100,000 iterations, discarding the first 10,000
iterations as burn-in. Convergence appeared to occur as rapidly for actual data as for simulated data, but
we found empirically that the larger number of samples were needed to achieve smooth density plots for the
actual data sets.

Transition kernels: Updating of the continuous variables of mutation rates {Zl} (C.1) and model-specific
parameters Ψ (24) uses both Metropolis-Hastings (MH) transition kernels and auto-tuned slice-sampling
transition kernels. Updating of the discrete variables {Cl} uses a Gibbs transition kernel.

Efficient inference on selfing times through collapsed Metropolis-Hastings: Simple Metropolis-Hastings
(MH) proposals that separately update the time since the most recent outcross event (Tk) and coalescence
history since that event (I·k) lead to extremely poor mixing efficiency. Strong correlations between Tk and
I·k cause changes to Tk to be rejected with high probability unless I·k is updated as well. For example,
consider proposing a change of Tk from 1 to 0. When Tk = 1, on average Ilk will be 1 at half of the loci and 0
at the remaining loci. If any of the Ilk = 1, a move to Tk = 0 will always be rejected because the probability
of a coalescence event more recently than the most recent outcross event is 0 if the sampled individual is
itself a product of outcrossing. To permit acceptance of changes to Tk, we introduce a proposal for Tk that
also changes I·k.

The scheme starts from the value Tk = tk and proposes a new value t′k. In standard MH within Gibbs,
we would compute the probability of Tk = tk and of Tk = t′k given that all other parameters are unchanged.
We modify this MH scheme to compute probabilities without conditioning on the coalescence indicators for
individual k. However, the coalescence indicators for other individuals are still held constant. To compute
this probability, let J indicate all the coalescence indicators I·y where y 6= k. Then

Pr(X,T,J, s, θ) = Pr(X,J|T, s, θ) Pr(T|s) Pr(s) Pr(θ).

We introduce I·k by summing over all possible values i·k.

Pr(X,J|T, s, θ) =
∑

i·k

Pr(X, I·k = i·k,J|T, s, θ).
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Since the ilk for different loci are independent given Tk, we have

Pr(X,J|T, s, θ) =
∑

i·k

L∏

l=1

Pr(Xl, Ilk = ilk,Jl|T, s, θ)

=

L∏

l=1

∑

ilk

Pr(Xl, Ilk = ilk,Jl|T, s, θ).

Therefore, for specific values of T and J, we can compute the sum over all possible values of I·k for l = 1 . . . L
in computation time proportional to L instead of 2L. This is possible because the L coalescence indicators
for individual k each affect different loci, and are conditionally independent given Tk and J.

After accepting or rejecting the new value of Tk with I·k integrated out, we must choose new values for
I·k given the chosen value of Tk. Because of their conditional independence, we may separately sample each
coalescence indicator Ilk for l = 1 . . . L from its full conditional given the chosen value of Tk. This completes
the collapsed MH proposal.

Appendix D Analysis of simulated data

Simulations: Our simulator (https://github.com/skumagai/selfingsim) was developed using simuPOP,
publicly available at http://simupop.sourceforge.net/. It explicitly represents N = 10, 000 individuals,
each bearing two genes at each of L unlinked loci. Mutations arise at locus l at scaled rate θl (4), in
accordance with the the infinite-alleles model.

We assigned to uniparental proportion s∗ values ranging from 0.01 to 0.99, with half of the L = 32 loci
assigned scaled mutation rate θ = 0.5 and the remaining loci θ = 1.5.

We conducted 102 independent simulations for each assignment of s∗. Each simulation was initialized
with each of the 2N×32 genes representing a unique allele. Most of this maximal heterozygosity was lost very
rapidly, with allele number and allele frequency spectrum typically stabilizing well within 10N generations.
After 20N generations, we recorded the realized population, from which 100 independent samples of L = 32
loci of size n = 70 were extracted. From this collection, we randomly chose L = 6 loci and subsampled 100
independent samples of size n = 6.

Analysis: To 102 independent samples from each of 102 independent simulations for each assignment of
the uniparental proportion s∗, we applied our Bayesian method, the FIS method, and RMES. Our Bayesian
method is open-source and can be obtained at

https://github.com/bredelings/BayesianEstimatorSelfing/.

We used the implementation of RMES (David et al. 2007) provided at

http://www.cefe.cnrs.fr/images/stories/DPTEEvolution/Genetique/fichiers%20Equipe/RMES%

202009%282%29.zip.

https://github.com/skumagai/selfingsim
http://simupop.sourceforge.net/
https://github.com/bredelings/BayesianEstimatorSelfing/
http://www.cefe.cnrs.fr/images/stories/DPTEEvolution/Genetique/fichiers%20Equipe/RMES%202009%282%29.zip
http://www.cefe.cnrs.fr/images/stories/DPTEEvolution/Genetique/fichiers%20Equipe/RMES%202009%282%29.zip
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Supplementary Methods

1 Indicators of accuracy

To compare the accuracy of our Bayesian method to RMES and the FIS method, which produce point esti-
mates, we summarize the posterior distribution of the uniparental proportion s∗ by the median. Here, we
compare the median to the mode and mean of the posterior distribution.

Figure S1 suggests that the bias and root-mean-squared (rms) error of these three indices exhibit different
properties. For example, the posterior mode shows smaller bias throughout the parameter range, but the
median and mean show smaller rms error for s∗ near the boundaries (near 0 or 1).

2 Average error

As for the case of large simulated data sets (Figure 2), Figure S2 indicates that upon application to smaller
samples (n = 10 individuals, L = 6 loci), both RMES and our method show positive bias upon application to
data sets for which the true uniparental proportion s∗ is close to zero and negative bias for s∗ close to unity.
It further indicates that while both methods exhibit more error for small samples than large samples, our
Bayesian method exhibits less error than RMES throughout the range of the uniparental proportion (s∗).

3 Frequentist coverage

As for the 95% BCIs (Figure 5), Figure S3 indicates that BCIs of different nominal values (0.5, 0.75, 0.9,
0.95, and 0.99) display the same pattern, with coverage exceeding the desired value for intermediate true
s∗ values and dipping below the desired value for very high values of s∗. Coverage is closer to the nominal
value for the 0.99 and 0.95 levels than for the 0.5 level.

4 Data analysis

4.1 Androdioecious vertebrate

Low outcrossing rate: As noted in the main text, we find evidence of a multimodal distribution of mutation
rates in the BP population of K. marmoratus.

Figure S5 shows the posterior distributions of number of generations since the most recent outcross event
(14).

Higher outcrossing rate: Figure S6 presents posterior distributions of locus-specific mutation rates (com-
pare Figure S4). For each individual in the TC sample, Figure S7 shows the posterior distribution of the
number of consecutive generations of selfing in its immediate ancestry.

4.2 Gynodioecious plant

Figure S8 presents posterior distributions for locus-specific mutation rates inferred from the S. salicaria data
set. The loci appear to have similar posterior medians.

Figure S9 presents the inferred number of generations since the most recent outcross event Tk (14) for
each individual k.

Figure S10 presents posterior distributions for the uniparental proportion (sG), the proportion of females
among reproductives (pf ), the proportion of seeds set by hermaphrodites by self-pollen (a), and the viability
of uniparental offspring relative to biparental offspring (τ).
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Figure S1 Errors for the posterior mean, posterior median, and posterior mode. Blue curves (rms) indicate
the root-mean-squared error, and red curves (bias) the average deviation. Averages are taken across simulated
data sets at each true value of the selfing rate s∗.
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Figure S2 Errors for the full likelihood (posterior median), RMES, and FIS methods for a small sample
(n = 10 individuals, L = 6 loci). In the legend, rms indicates the root-mean-squared error and bias the
average deviation. Averages are taken across simulated data sets at each true value of s∗.
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Figure S3 Frequentist coverage for Bayesian credible intervals at different levels of credibility under the large
sampling regime (n = 70, L = 32).
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Figure S4 Posterior distributions for mutation rates at each locus in K. marmoratus (BP population). For
each distribution. the locus name is indicated in the grey shaded box.
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Figure S5 Number of generations since the most recent outcross event in the ancestry of each individual in the
sample from the BP population of K. marmoratus. The area of each dot indicates the posterior probability
that an individual (X-axis) has the indicated number (Y-axis) of consecutive generations of selfing in its
immediate ancestry. The blue line indicates the posterior mean number of selfing generations and the red
line indicates the number of heterozygous loci across individuals. The Y-axis is truncated to [0, 30].
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Figure S6 Mutation rates at each locus for K. marmoratus (TC population). For each distribution. the
locus name is indicated in the grey shaded box.
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Figure S7 Number of generations since the most recent outcross event in the ancestry of each individual in
the sample from the TC population of K. marmoratus. Symbols as in Figure S5.
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Figure S8 Posterior distributions for mutation rates at locus in S. salicaria. For each distribution, the locus
name is indicated in the grey shaded box.
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Figure S9 Estimated number of selfing generations for each individual for S. salicaria. The area of each dot
indicates the posterior probability that a numbered individual (x-axis) has been selfed for a given number
of generations (y-axis). For each individual the blue line indicates the posterior mean number of selfing
generations and the red line indicates the number of heterozygous loci.
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Figure S10 Posterior distributions on (a) sG, (b) pf , (c) a, and (d) τ for the Schiedea salicaria data set.
Also shown are 95% BCI (red), 50% BCI (orange), and median (black dot).

B. D. Redelings et al. 7 SI


	1 Introduction
	Appendix A The last-sampled gene
	Appendix B Estimators of bold0mu mumu FISFIS2005/06/28 ver: 1.3 subfig packageFISFISFISFIS
	Appendix C Implementation of the MCMC
	Appendix D Analysis of simulated data
	1 Indicators of accuracy
	2 Average error
	3 Frequentist coverage
	4 Data analysis
	4.1 Androdioecious vertebrate
	4.2 Gynodioecious plant


