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Abstract
A protocol based on Bayesian optimization is demonstrated for determining model parameters in a coarse-grained polymer
simulation. This process takes as input themicroscopic distribution functions and temperature-dependent density for a targeted
polymer system. The process then iteratively considers coarse-grained simulations to sample the space of model parameters,
aiming tominimize the discrepancy between the new simulations and the target. Successive samples are chosen usingBayesian
optimization. Such a protocol can be employed to systematically coarse-grained expensive high-resolution simulations to
extend accessible length and time scales to make contact with rheological experiments. The Bayesian coarsening protocol
is compared to a previous machine-learned parameterization technique which required a high volume of training data. The
Bayesian coarsening process is found to precisely and efficiently discover appropriate model parameters, in spite of rough
and noisy fitness landscapes, due to the natural balance of exploration and exploitation in Bayesian optimization.

Keywords Polymers · Molecular dynamics · Machine learning · Bayesian optimization

Introduction

Coarse-grained (CG) modeling is a valuable technique to
bridge the gaps in time and length scales between atomically
accurate molecular dynamics simulations and experimen-
tally observable rheological behavior (Prathumrat et al.,
2021). Particularly, low frequency responses, glassy dynam-
ics, and finite size effects have been unrelenting challenges
for computer models. CG modeling provides a lower-
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resolution depiction of a complicated system by grouping
atoms into a representative particle. However, the interac-
tions between atoms must be accurately represented by a
CG model for it to yield correct rheology (Hajizadeh et al.,
2014a, b, 2015). The strategy is to replace sets of atoms with
a single point-like pseudo-atomor bead, reducing the degrees
of freedom in the simulation. The beads interact with poten-
tials that are chosen to reproduce the structure and dynamics
brought about by the underlying atoms. In our case, we con-
sider monomers to be connected by Hookean springs defined
by a stiffness kl and a rest length l0, and a harmonic angular
potential with stiffness kθ and rest angle θ0. Additionally,
the interaction between nearby monomers which are not
connected by a bond is represented with a Lennard-Jones
potential with length scale σ and energy scale ε. These six
parameters specify a CG model, but there is no general tech-
nique to specify a priori what the specific parameters for the
interaction potentials should be to reproduce the rheology of
a material of interest.

To ensure an accurate representation of molecular interac-
tions, force field parameterization must be validated. This is
usually accomplished by determining how well a set of can-
didate force field parameters reproduces essential physical
phenomena, such as ab initio quantum calculation, or exper-
imental data on structure and rheology (Prathumrat et al.,
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2021). In our case we will rely on the density as a func-
tion of temperature, as well as probability distributions of
bond lengths and angles, to evaluate model fitness. Itera-
tively refining model parameters to navigate toward the best
approximation of the system being modeled is time con-
suming due to the expensive simulations required for each
iteration. With technological advancements and increased
computational power, efficient optimization algorithms and
data-driven techniques can be employed to automate the
parameterization process (Sestito et al. 2020; Kanada et al.
2020). In general, force field calibration can be defined as
an optimization process in which the force field parameters
are tuned to minimize the difference between a predicted
property from the coarse-grained (CG) simulation and the
reference value from high-resolution atomistic trajectories
(Liu et al. 2008) or experimental data.

Direct search methods, gradient-based approaches
(Hajizadeh and Garmabi, 2008), and machine learning (ML)
approaches (Hansani et al. 2022) have recently emerged as
effective tools for exploring the complex solution space of
material design problems (Chen et al. 2021; Solomou et al.
2018). These methods can systematically discover the opti-
mum of “black box” functions. However, these methods tend
to require a large set of training data to perform such a
task. CG simulations are most valuable when experiments
or detailed simulations are prohibitively expensive, which
means that even though coarse-graining brings a problem
into feasibility, they still require non-trivial resources to exe-
cute. Furthermore, modern material development workflows
involve comparison between a variety of molecular compo-
nents, requiring model parameterization to be carried out
many times for different chemistries. Bayesian optimization
is an active learning algorithm that can reduce the number
of evaluations needed to locate the optimum of an expensive
black box function. This work therefore will apply Bayesian
optimization to a modern method of coarse-graining.

Several studies (Dequidt and Solano 2015; Fröhlking et al.
2020; Ye et al. 2021) have optimized force field parame-
ters for molecular dynamics using ML and Bayesian models
through “bottom-up” approaches where microscopic struc-
tural properties obtained from atomistic simulations form
the objective function. Furthermore, classical approaches
such as iterative Boltzmann inversion (Agrawal et al. 2014;
Bayramoglu et al. 2012; Liu and Oswald 2019; Ohkuma and
Kremer 2020), inverse Monte Carlo (Korolev et al. 2014;
Lyubartsev et al. 2015), and relative entropy (Foley et al.
2015; Shell 2016) approximate the microscopic configura-
tion at a single state point to parameterize CG force fields.
As a result, models calibrated with a bottom-up objective fre-
quently suffer from issues of transferability, i.e., applicability
in other state points. Furthermore, these parameterizations
are also likely to provide limited accuracy in determining
thermodynamic properties (Dunn and Noid 2015).

In contrast, “top-down approaches” calibrate model
parameters using macroscopic phenomena or mechanical
properties (such as density, glass transition temperature, and
elastic modulus). These models generally demonstrate better
transferability for modeling a wide range of thermodynamic
conditions. They may, however, provide a poor description
of microscopic structural properties. Therefore, many stud-
ies have recently embraced a hybrid approach, integrating
both bottom-up and top-down calibrations (Shireen et al.
2022; Huang et al. 2018; Hsu et al. 2015; Moradzadeh and
Aluru 2019; Duan et al. 2019). As a result of combining
the constraints from both methodologies, the hybrid strat-
egy yields CG models capable of replicating microscopic
features and macroscopic properties with significant trans-
ferability and representability (Joshi and Deshmukh 2020).
In a recent study, Shireen et al. (2022) demonstrated that
neural networks (NNs) can be trained to receive data from
a high-resolution simulation as bottom-up input and exper-
imental density versus temperature data as top-down input,
then return CG model parameters which accurately repro-
duced the target data (Shireen et al., 2023). This strategy for
determining temperature-transferable CG parameters using
NNs was effective, but costly, requiring several thousand CG
simulations as training data to achieve viable accuracy.

The aim of this work is therefore to maintain the accuracy
and temperature-transferability of CGparameter choices, but
reduce the number of CG simulations needed to discover
the parameters that best fit a target. Measuring the accuracy
of model parameters is challenging because different appli-
cations require different properties to be reproduced, and a
choice of coarse-grained force field forms and parameters
will inevitably introduce trade-offs, so the “correct” model
parameters not well-defined. A separate challenge is that
merely constructing a fine-grained simulation of a particular
material is a time-consuming expert taskwhich itself requires
validation. A statistically significant comparison of the num-
ber of simulations needed by different strategies to resolve
CG parameters would require many such targets. However,
since Shireen et al. (2022) generated a set of thousands of
CG simulations for training and validation of the NN based
coarse-graining method, this data set provides a test-bed for
measuring the improved data requirements of a new method.

In general, optimization techniques search for the maxi-
mum or the minimum of a function by evaluating selected
locations in the search space. These approachesmust balance
the exploitation of the knowledge gained from previous eval-
uations and the exploration of unknown regions that might
hold a better solution. This balance is crucial when there is
a limited budget available for sample evaluations. Among
these methods, Bayesian optimization (BO) is an efficient
tool for optimizing expensive black box functions with the
least amount of direct evaluation of the objective function
(Liang et al. 2021). BO is a ML approach capable of effi-
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ciently balancing the exploration-exploitation dilemma that
is common in optimization problems. This can be categorized
as an active learning methodology that builds a probabilis-
tic surrogate model of the objective function to account for
the uncertainty. This is usually generated using a Bayesian
model known as a Gaussian process, though other models,
such as Bayesian neural networks (Fortuin 2022), have also
been used successfully. An acquisition function, in our case
expected improvement, is applied to the surrogate model to
determine the next point to sample in the solution space. The
posterior distribution improves as the number of observations
increases, and the algorithm becomes more certain of which
regions of parameter space are worth exploring and exploit-
ing. Under some conditions, expected improvement can be
guaranteed to converge to the global optimum (Bull 2011).

In this present work, coarse-grained force field parameters
are identified efficiently by applying Bayesian Optimization
to a hybrid parameterization process. First, six parameters
are approximated using physical principles laid out in the
“Parameter estimations” section. Then, the two bond exten-
sion parameters are refined using BO, using the accuracy
of the bond length distribution (a microscopic, bottom-up
target) as an objective. Then, the two bond angle parame-
ters are similarly refined using the bond angle distribution
(again, bottom-up). Finally, the two pairwise parameters are
refined using the temperature-dependent density (a macro-
scopic, top-down objective). The relative computational cost
of identifying the correct parameters using this process is
then compared to a previous technique (Shireen et al. 2022).

Other choices of objective function for the non-bonded
interactions were considered for this study. It should be noted
that, though the ultimate goal of such a coarse-graining pro-
cess is to construct a model that can predict rheological
properties at practically relevant length and time scales, those
rheological properties are not generally an effective metric
from which to derive an objective function. Coarse-grained
simulations are most useful for studying novel materials for
which detailed rheological data is not available. Generat-
ing rheological data from detailed chemical models is the
prohibitively expensive task which CG models are meant to
circumvent. Previous work has shown that this CG model
reproduces the mean squared displacement, glass transition
temperature, and relaxation spectrum of an all-atom model
(Shireen et al., 2022) if the parameters are correct, even
though the parameters are calibrated using structural proper-
ties. Therefore, though intuitively obvious, using rheological
properties to build an objective function is not as effective
as utilizing the measurements used here and elsewhere. One
common strategy for determining the non-bonded interaction
parameters is to reproduce the radial distribution function
g(r) (Agrawal et al., 2014; Bayramoglu et al., 2012; Liu and

Oswald, 2019; Ohkuma and Kremer, 2020). This bottom-up
approach yields parameters which are only valid at a par-
ticular temperature. Previous work has demonstrated that
using ρ(T ) as a signal for tuning the non-bonded inter-
actions may yield a less precise reproduction of g(r), but
reproduces other macroscopic properties accurately over a
range of temperatures, even outside of the range used for
tuning. This could be considered as an over-fitting situation,
where the details of g(r) are not vital to the macroscopic
rheology, so fitting it precisely sacrifices the broader valid-
ity of a model to new conditions. This is not the first effort
to use Bayesian optimization to facilitate parameterization,
but this work integrates and extends reported strategies. Ses-
tito et al. (2020) calibrated bonded interaction parameters
for a CG model of polycaprolactone using the linear elastic
modulus and Fikian diffusion coefficient as objective func-
tions. McDonagh et al. (2019) used BO to parameterize the
non-bonded interactions in DPD models of an assortment of
alkanes and primary alcohols, using a top-down objective
function to reproduce partition coefficients in water. Befort
et al. (2012) applied BO to optimize atomistic force field
parameters for specific use cases. These studies demonstrate
the viability of a Bayesian approach to parameter calibration
under diverse training conditions, but they do not address the
common pitfall of transferability. That is to say, parameters
have been determined efficiently to reproduce any particu-
lar targeted rheological measurement under any particular
conditions, but the parameterization must be carried out sep-
arately for each property or condition of interest. Work with
the energy renormalization method (Giuntoli et al. 2020; Xia
et al. 2017;Hsu et al. 2015) has combined bottom-up and top-
down information and Gaussian process models to specify
temperature-dependent CG parameters, but did not actively
select new trial simulations based on existing data. This work
applies BO to accelerate a parameterization strategy that has
been shown to reproduce many rheological properties under
diverse conditions with a single transferable parameter set.
The strategy presented here also requires low implementation
cost since all parameters are determined by applications of
the same Bayesian optimization workflow, just with different
objective functions.

The framework demonstrated here possesses some qual-
itative advantages over other parameterization strategies
beyond minimizing the necessary simulations. Bayesian
Optimization selects new parameters to query which pro-
vide the maximum novel information about the search space,
which tends tomitigate the over-fitting issue inmostmachine
learning processes. BO also produces an estimate of the
uncertainty around the landscape of model parameter fitness
instead of just an inscrutable declaration of the recommended
parameters.
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The structure of this manuscript is as follows. The
“Coarse-graining framework” section introduces the coarse-
grained model to be parameterized and a novel workflow
for carrying out that parameterization. The “Polymer mod-
els” section details the CG model and its parameters. The
“Bayesian optimization” section explains the features of
Bayesian optimization. The “Bayesian coarsening” section
details the optimization routine used to search the parame-
ter space. In particular, the “Parameter estimations” section
describes a general technique for estimating model param-
eters to kick-start the tuning. The “Bottom-up tuning of
bonded interactions” section specifies the bottom-up objec-
tive functions used to calibrate the bonded interactions
and the “Top-down tuning of pairwise interactions” section
specifies the top-down objective for pairwise interactions.
The outcome of this calibration process is discussed in
the “Results” section. The “Resource requirements” section
discusses the accuracy of this workflow as a function of
computational effort in comparison with a previous strategy
which used neural networks to identify appropriate model
parameters (Shireen et al. 2022). Finally, the “Conclusion”
section contains some concluding remarks on the viability
of this method for efficiently expanding the window of rhe-
ological observations.

Coarse-graining framework

The automated Bayesian parameterization approach devel-
oped in this study requires the integration of numerous
elements in a workflow. As shown in Fig. 1, the workflow
consists ofmicroscopic target data, an iterated coarse-grained
simulation, macroscopic target data, a regression model to
estimate the fitness landscape, and an acquisition function to
select new points on that landscape. The following subsec-
tions will explain the components of this workflow.

Polymermodels

As suggested in the top right of Fig. 1, fine-grained atomic
models represent atoms or small groups of atoms explic-
itly with an assortment of stretching, bending, and dihedral
potentials. These models are able to reproduce the molecular
structures at the atomic scale, but require evaluationof dozens
of forces per monomer. Here we consider a generic coarse-
grained (CG) model with just three interactions. It has been
shown that this class of model is able to reproduce micro-
scopic structural and dynamic properties of atomistic models
(above the monomer scale), as well as material properties

Fig. 1 Overview of this work’s
protocol for identifying
appropriate coarse-grained
model parameters. Top Right:
Schematics comparing the CG
and atomistic models. Gray,
blue, and yellow circles
represent different hydrogen,
carbon, and oxygen atoms,
respectively. Every type of atom
and bond requires unique force
field parameters. Flow Chart:
Each column shows a similar
application of a Bayesian
Optimization process to a pair of
model parameters
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such as dynamic moduli and the glass transition temperature
(Shireen et al. 2022). The potential due to stretching of the
bond between two beads is (Zhu et al., 2016; Xiang et al.,
2021)

Ustretch(r) = kl · (l − l0)
2, (1)

where l0 is the rest length and kl is a spring constant. The
potential due to bending of the angle between any three con-
secutive beads along a polymer chain is

Ubend(θ) = kθ · (θ − θ0)
2, (2)

where θ0 is the rest angle and kθ is a spring constant. These
potentials represent the monomers in a chain with a soft-
ened “freely rotating rod” model. In addition to these bonded
interactions, there is a non-bondedLennard-Jones interaction
(Hajizadeh andLarson, 2017) between all pairs of nearbyCG
beads. The form of this force field is

Unonb(ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (3)

where ε is the potential well depth and σ is the length scale.
The four bonded parameters kl , l0, kθ , θ0 and the two

non-bonded parameters ε, σ must be set correctly for a CG
simulation to accurately represent a particular material. The
correct parameters will of course depend on the material
being modeled, so the parameterization process would need
to be repeated for every material of interest. It is therefore
vital to develop a strategy to minimize the computational
effort needed for such a parameterization.

Bayesian optimization

BO is an essential tool for optimizing objective functions
that lack known functional forms and are expensive to eval-
uate. BO is characterized by a more efficient exploration and
exploitation of the design space than other black box opti-
mization techniques (Shahriari et al. 2016). This approach
has shown substantial influence on current scientific dis-
coveries, particularly autonomous calibration of force fields,
which can be formulated as an optimization problem aim-
ing at finding the maximum (or minimum) of an objective
function (McDonagh et al. 2019).

Bayesian optimization works by generating a stochastic
approximation of the expensive objective function via a prob-
abilistic surrogate model. This stochastic predictive model is
usually, as in this work, built using Gaussian process regres-
sion (GPR). The GPRmodel is initially trained using a small
set of data prior to the optimization. In the present work,
the GPR is initialized with 10 random points in the space
of parameters within certain ranges presented in Table 1.

Table 1 Parameter ranges used to generate CG simulation data

Parameter Unit Minimum Maximum

Rest Length l0 Å 3.00 7.0

Stretching stiffness kl kcal/mol·Å2 0.01 50.0

Rest Angle θ0 degrees 100.00 180.0

Bending stiffness kθ kcal/mol·rad2 0.01 5.0

Non-bonded length σ Å 1.00 10.0

Non-bonded energy ε kcal/mol 0.10 1.2

Since BO is a stochastic process, the performance of the
algorithm depends on the initial data set. To investigate the
robustness of this initialization, the optimization process is
repeated for 200 different targets to ensure statistical signifi-
cance, using independent initial training sets for each target.
The objective functions used here are the root mean squared
error (RMSE) of a property of interest between a trial CG
simulation with known parameters and a target taken from
the set of pre-existing simulations. The GPR model, trained
on the accumulated set of points in parameter space, predicts
this objective function as a continuous function throughout
the parameter space.

The GPR surrogate model of the objective function is
much cheaper to evaluate than running new simulations, so
it is used to estimate the location of the minimum of the
objective function in parameter space. As more simulations
are provided to the GPR model, it is updated and the loca-
tion of the minimum is re-evaluated. When new data points
stop moving the location of the minimum, the parameter
values which minimize the surrogate objective function are
accepted.

A critical component of a Bayesian optimization process
is the algorithm by which new parameter values are chosen
to be evaluated. This choice is called the “acquisition func-
tion”. The GPR model produces both a predicted value of
the objective function, and the variance associated with that
prediction at any point in the parameter space. The explo-
ration/exploitation problem posed by optimization tasks is
formulated explicitly in BO through these values and uncer-
tainty estimations. An exploitative strategy would search
near locations with high value regardless of uncertainty. An
exploratory strategy would search in areas of high uncer-
tainty, hoping for newheights. Effective acquisition functions
combine the value and uncertainty estimates to pinpoint test
parameters thatwill provide novel information about the opti-
mum of the objective. Numerous studies have specifically
focused on different acquisition functions and how they trade
off between exploration and exploitation (Pawar andWarbhe
2021; De Ath et al. 2021). Common acquisition functions
include the upper confidence bound, probability of improve-
ment, and expected improvement (EI). Here, we use the EI
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matrix as the acquisition function that selects the next sample
point where the highest magnitude of progress is expected.
EI is derived from the prediction and uncertainty reported by
the GPR model. If x is the vector of CG parameters, then the
GPR prediction for the objective function evaluated at x is
μGPR(x) and the uncertainty of the same is σGPR(x). EI is
then calculated as (De Ath et al. 2021; Jones et al. 1998)

E I (x) = σGPR (x)(s�(s)φ(s)) , (4)

where s = (μGPR(x) − f ∗) /σGPR(x) is the modeled
improvement over the best true objective function evalua-
tion so far f ∗, normalized by the model uncertainty, and
φ and � are the Gaussian probability and cumulative den-
sity functions. EI is a well-established criterion in Bayesian
global optimization that is less likely to converge to a local
optimum solution compared to other acquisition functions
(Wu et al. 2019). In addition, EI has been shown to avoid
samples that are dominated by another choice with a similar
prediction but worse variance or vice versa (De Ath et al.
2021).

As shown in Fig. 1, the acquisition function is applied
to the surrogate model, and the point which maximizes the
acquisition function is simulated to produce a new data point.
The GPR model is re-trained with the larger data set, and the
process is repeated until the iteration budget is exhausted.
The specific objective functions used will be discussed in
the “Bottom-up tuning of bonded interactions” section and
“Top-down tuning of pairwise interactions” section.

Bayesian coarsening

Here, we present our hybrid approach to coarse-graining
using Bayesian optimization, combining bottom-up and top-
down information. Since optimization routines are more
efficient in lower dimensional parameter spaces, the process
is decomposed into three stages,where subsets of the parame-
ters are tuned in turn. This strategy is viable because the three
different interactions are assumed to not be strongly coupled,
so minor inaccuracies in a parameter for one type of inter-
action are assumed not to disrupt the objective function for
a different interaction. Departures from this assumption will
be discussed in the “Results” and “Conclusion” sections.

The precision of model parameters identified by the pro-
tocol detailed below, as well as the rate of improvement
with successive iterations will be characterized by using CG
simulations with hidden parameters as target data. Since
the true parameters used to generate the target data are
known, but not available to the protocol, the accuracy of
the resulting parameterizations can be measured. We carried
out the parameterization on 200 unique target CG simula-
tions, allowing the Bayesian optimization routine to query
400 samples for the stretching potential, and 100 points in

parameter space each for the bending and non-bonded inter-
actions. To mitigate the computational load of carrying out
all of the required CG simulations, a pre-sampling strat-
egy was employed. 2000 CG simulations were run using
LAMMPS(Plimpton1995)with parameters drawn randomly
from the parameter space outlined in Table 1 and temper-
atures ranging from 313K to 453K as part of a previous
investigation (Shireen et al. 2022). Here each target simu-
lation was removed from this pre-sampled data set, and nine
initial samples were selected from the set at random. The
tenth initial sample was selected using the parameter estima-
tions discussed in the “Parameter estimations” section. The
Bayesian optimization routine then computes the objective
functions for each of these sample points against the target.
It then fits a GPR model to the RMSE as a function of the
parameters. The expected improvement of this GPR model
is then computed for the parameter values of the remaining
pre-sampled data set. The pre-sampled point with the highest
expected improvement is added to the model’s data set, and
the process is repeated.

Parameter estimations

In any optimization process, initial parameter estimates and
imposed ranges for each parameter must be determined
before any optimization algorithm can run. Ranges that are
too broad can yield slow convergence, while a narrow range
might exclude the optimal parameter values. Determination
of these ranges sometimes requires expert knowledge of a
particular system. An approach that aspires to generalize to
novel materials must have a robust systematic strategy for
determining practical ranges for parameters without relying
on expert experience with a specific material. To that end,
parameter estimates for the CG model are deduced from
the target data and general principles of molecular mechan-
ics. This procedure may be applied to any material without
detailed experience with that material.

Given the stretching potential Ustretch in Eq. 1, the Boltz-
mann distribution for the length l of a particular bond is

P(l) ∝ �(l) · exp
[
−Ustretch(l)

kBT

]
(5)

where �(l) ∝ l2 is the number of microstates which exhibit
a particular value of l. Here it is proportional to the surface
area of a sphere with radius l. The approximate probability
distribution over l is therefore

P(l) = Cl2 exp

[
− kl
kBT

(l − l0)
2
]

. (6)

This form was used to fit the bond length distribution data
from the target simulation at T=453 K, using kl , l0 as fit
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parameters. Some examples of these distributions are shown
in Fig. 2. The resulting values were used to select one of the
initial samples of the parameter space at the start of the BO
process, and nine other samples were chosen at random from
the data set.

The probability distribution for the bond angle is very
similar to that for the bond length, except that the number of
microstates is determined by the area of a cone with interior
angle 180◦ − θ , which is proportional to sin θ . Therefore the
probability distribution over θ has the form

P(l) = C sin θ exp

[
− kθ

kBT
(θ − θ0)

2
]

. (7)

Using this form to fit the target bond angle distribution, the
resulting parameter values were used to select one of the
ten initial samples for the bending potential phase of the
parameterization. Examples of the bond angle distributions
from CG simulations are shown in Fig. 3.

Because the target data set was drawn from the parameter
space outlined in Table 1, the searchable parameter space is
known in advance. However, this is not the case in a gen-
uine coarse-graining task. We therefore note that the bounds
of the parameter search could be set much narrower, based
on the fit to the target distribution, without foreknowledge
of the correct parameters. From our observations of several
hundred target simulations, the parameter estimations using

Fig. 2 Convergence of the probability distribution for the bond length to
an example target. The “estimated” and “iteration” curves correspond to
the square and circle points in Fig. 4. True parameters for this targetwere
kl = 25.5, l0 = 4.53, kθ = 7.43, θ0 = 104.2, ε = 0.48, σ = 9.49

Fig. 3 Convergence of the probability distribution for the bond angle to
an example target. The estimated and iteration curves correspond to the
square and circle points in Fig. 5.True parameters for this target were
kl = 41.3, l0 = 5.79, kθ = 46.4, θ0 = 156.6, ε = 1.19, σ = 4.15

the Boltzmann distributions are usually accurate to within
a few percent. Further, l0 and θ0 are almost always within
10% of the target, and kl and kθ are almost always within
50% of the target. The use of the full range of parameters
listed in Table 1 to generate the initial samples and carry out
the parameter search is therefore more of a challenge than
an advantage for the search due to the unnecessarily wide
search space.

Regarding the non-bonded interaction, the pair distri-
bution function g(r) from the target simulation provides
estimates for the length scale σ and energy scale ε as these
are correlated with the location and height of the first peak,
respectively. The location of the first peak of g(r) provided a
sufficient estimate of σ to initialize the parameter search,
but the energy scale ε is sometimes challenging to esti-
mate. Various estimations of ε as a function of peak height
were tested, and none achieved consistent accuracy. Perhaps
a more sophisticated analysis of g(r) could extract a more
useful estimate of ε, but in practice, the Bayesian search can
discover the true ε evenwith a random initialization. Thenon-
bonded interaction represents the collective Van der Waals
interaction between the atoms represented by a CGbead. Van
der Waals forces typically have a strength on the order of 0.1
kcal/mol, so the non-bonded interaction energy was limited
to a range of 0.01 < ε < 1 kcal/mol. Typical length scales for
this interaction between monomers are on the order of a few
angstroms, so the protocol presented here was investigated
in a range of 1< σ < 10Å.
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It is noted that this use of the Boltzmann distribution to
estimate appropriate parameter values can be directly applied
to any material for which the ground-truth probability dis-
tributions have been measured. This strategy generalizes to
other systems or CG models where different microscopic
structural measurements are relevant. The specific probabil-
ity distributions calculated here apply to the CG model used
in this work. If a different model were needed for a spe-
cific application, the Boltzmann distributions for that model
could be calculated in a similar exercise. This use of funda-
mental principles of statistical mechanics avoids the need for
material-specific expert knowledge to initialize the parame-
terization process.

Bottom-up tuning of bonded interactions

Bottom-up approaches employ information on atomistic
structural properties from target data to parameterize the
interactions in the CG model. In this study, we first carried
out the bottom-up method to determine the bonded potential
parameters between the CG beads by considering the bond
length and angle distributions. The statistical optimization

framework based on BO was formulated to find the bonded
potential parameters (kl , l0, kθ , θ0) byminimizing the RMSE
between theCG simulation and target data for bond and angle
distributions. The objective function for the bond length was

f (kl , l0): min

√∑N
l=1(P

CG
l (kl , l0) − P target

l )

N
, (8)

and the objective function for the bond angle is given by

f (kθ , θ0): min

√∑N
θ=1(P

CG
θ (kθ , θ0) − P target

θ )

N
. (9)

Figure 2 contains examples of differences between distribu-
tions PCG

l (kl , l0) and the target data P target
l . These curves

demonstrate the protocol’s ability to rapidly discover an
approximate match for the model parameters. After just two
iterations, the model kl and l0 are within 9% and 1% of
the target, respectively. Then the parameters are iteratively
improved it until an indistinguishable result is found. Fig-
ure 4 presents the evolution of the GPR model of Eq. 8 (blue
background indicates a lower prediction of f, yellow higher)

Fig. 4 Exploration of the space
of stretching potential
parameters kl , l0 driven by
Bayesian optimization. The
black + marks represent the
sample points included in the
GPR model up to a particular
iteration. The black X marks the
true parameters which generated
the target data. The black
triangle marks the estimated
parameters using the Boltzmann
distribution. The black square
marks the initial sample closest
to these estimated parameters.
The black circle identifies the
queried sample with the
minimum objective. The colored
background field represents the
GPR model fit to the queried
samples (black +). The colored
points represent the expected
improvement for candidate
parameters for the next iteration.
For both the GPR field and the
EI points, blue indicates lower
values, and yellow higher
values. True parameters for this
target were kl = 25.5, l0 =
4.53, kθ = 7.43, θ0 =
104.2, ε = 0.48, σ = 9.49
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with successive samples. By iteration 36, the correct value
of kl has been identified, and at iteration 157 the sample in
the data set with the values of kl and l0 closest to the target
has been discovered. The optimal region demonstrates that
the discrepancy between the target data and the samples is
muchmore sensitive to l0 than it is to kl . That is, the dark blue
band spans a range of 0.5 Å in l0, or about 10%, but a range
of at least 20 kcal/molÅ2 in kl , almost a factor of 2 around
the target. The concentration of potential samples with high
EI (yellow points), near the target, demonstrates protocol’s
ability to identify regions of interest.

Because this study was carried out using a pre-existing set
of CG simulations with random parameters, the exploration
of the two-dimensional space of l0 and kl ignores the random
changes in θ0, kθ , σ, and ε between simulations with similar
bond stretching parameters. In a coarse-graining application,
the acquisition function would be calculated over the whole
parameter space, and a new simulation would be run with
novel parameters. We have relied on the pre-existing data
set here to avoid running hundreds of new simulations, each
taking about a CPU hour, for each of our 200 targets. The
disadvantage of this strategy is that we don’t probe the rate
that this workflow would converge if it had full control of all
parameters.

It should be noted that the example target used for Figs. 2
and 4 was selected deliberately from the worst cases of slow
convergence to illustrate this convergence process. Typically
the initial approximation from the Boltzmann distribution
is much more accurate, and the Bayesian search mostly
validates that this solution is correct. This example target
(kl = 25.5, l0 = 4.53, kθ = 7.43, θ0 = 104.2, ε =
0.48, σ = 9.49) was chosen because the initial estimate was
somewhat inaccurate due to the influence of the non-bonded
interaction.This situation creates both anopportunity to illus-

trate the convergence process, and to demonstrate that the
parameter search can be robust against such irregularities.
The deceptiveness of the objective function is seen clearly in
iteration 36 in Fig. 4. There are several sample points that are
closer to the target than the lowest-RMSE point (identified
with a circle). This happens because mismatched values for
the non-bonded parameters are perceived by the GPR model
as noise. So while the circled point may have less accurate
stretching parameters than the closer samples, its particular
non-bonded parameters make its distributions a better match
to the target data. As the protocol continues to explore the
parameter space, it eventually discovers best-fitting parame-
ters in spite of this challenge.

Figure 3 presents the convergence of the bond angle dis-
tribution as the angle potential parameters are refined. Once
again this target was selected intentionally from among the
worst cases of initial estimate to illustrate the process of
parameter space exploration. In this case, BO initially prefers
a localminimum, seen as the areawith highEI (yellowpoints)
in the “Initial” state in Fig. 5. As samples are accumulated,
the GPR model variance within that basin is reduced, and
BObegins seeking new information in areas of high variance.
New samples discover the global optimum, and the sampling
preference shifts to the more optimal region (yellow points
at iteration 143).

Top-down tuning of pairwise interactions

Developing transferable force field parameters in classical
CG MD simulations has long been a challenge, especially
for complex macromolecules. Classical techniques include
optimizing the radial distribution function, which frequently
necessitates an extra correction term to account for pressure
variations in order to accurately model the thermodynamic

Fig. 5 Exploration of the space of bending potential parameters kθ , θ0
driven by Bayesian optimization. The black + marks represent the sam-
ple points included in the GPR model up to a particular iteration. The
black X marks the true parameters which generated the target data. The
black triangle marks the estimated parameters using the Boltzmann
distribution. The black square marks the initial sample closest to these
estimated parameters. The black circle identifies the queried sample

with the minimum objective. The colored background field represents
the GPR model fit to the queried samples (black +). The colored points
represent the expected improvement for candidate parameters for the
next iteration. For both the GPR field and the EI points, blue indicates
lower values, and yellow higher values. True parameters for this target
were kl = 41.3, l0 = 5.79, kθ = 46.4, θ0 = 156.6, ε = 1.19, σ =
4.15
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behavior (Bayramoglu et al. 2012; Reith et al. 2023). In
our framework, after bonds and angle parameters have been
determined, the non-bonded interaction parameters (σ and
ε) are tuned by minimizing the RMSE of the density vs. tem-
perature curve using

f (σ, ε): min

√∑N
T=1(ρ

CG
T (σ, ε) − ρ

target
T )

N
. (10)

By asserting temperature-independent values of σ and ε, but
tuning their values based on a range of temperatures, the CG
model has been shown to reproduce viscoelastic response
G(t), the mean squared displacement, and the full depen-
dence of density on temperature, even outside of the training
range, capturing the glass transition temperature (Shireen
et al. 2022).

The convergence to an example target (kl = 23.1, l0 =
4.05, kθ = 7.42, θ0 = 179.8, ε = 0.247, σ = 8.31) is illus-
trated in Fig. 6. The initial estimates of σ and, particularly, ε
are poor, yielding density measurements far from the target.
After 2 iterations, a sample with a much closer value of ε

is found which has the correct density at least at lower tem-
peratures. After 105 iterations, a sample has been found with
more accurate σ , but less accurate ε, which has better density
agreement across the whole temperature range. Subsequent
iterations refine the parameters to improve the densitymatch.

Figure 7 visualizes the predictions of the objective func-
tion from the GPR for varying ε and σ . As seen in the broad

Fig. 6 Convergence of the temperature-dependent density to the tar-
get data. The estimated and iteration curves correspond to the square
and circle points in Fig. 7. True parameters for this target were kl =
23.1, l0 = 4.05, kθ = 7.42, θ0 = 179.8, ε = 0.247, σ = 8.31

scatter of potential samples with high expected improvement
(yellow points), there is a very high uncertainty in the model
parameters. However, the uncertainty decreases with iter-
ations by gaining more knowledge of the search space as
the GPR model obtains more data. These figures also illus-
trate the trade-off between exploration and exploitation. The
exploitation aspect of BO can be clearly seen in the clus-
tering of selected points, i.e., more data is collected in the
region where the predicted RMSE is the lowest. However,
The broad region of parameter space with high EI suggests
that the GPR model is not confident in locations that merit
further sampling, even after 350 iterations. This is in con-
trast to Fig. 4, in which high EI is tightly constrained to a
narrow band in l0, and even exploration along the kl axis is
slow. Relative to that focused exploitation, the broad scatter
of samples in Fig. 7 is due to a weak dependence of the objec-
tive function on σ and ε, so the variance in the GPRmodel is
high, and BO automatically favors a more exploratory search
in this case.

Results

Resource requirements

After each iteration of the protocol, the model accuracy
is evaluated in two ways. One is to find the parameter val-
ues which minimize the GPR model. The other is to find the
sampled point with the minimumRMSE relative to the target
data. These two measurements (presented in Fig. 8) roughly
decrease with the number of samples at approximately the
same rate, while the favored sample tends to be a better esti-
mate of the model parameters than the minimum of the GPR
model. Note that, due to the restriction to the pre-sampled set
of parameter points, the stagnation of the stretching param-
eters curve at MAE near 0.03 after 200 samples is due to the
limit of how close the closest pre-sampled point lies to the
target. In some cases, the initial estimate using theBoltzmann
distribution was more accurate than the closest available pre-
sampled point. The available points appear to densely sample
the parameter space in Figs. 4, 5, and 7, but these are 2D pro-
jections of a 6D space in which the true distance between
simulations is much larger. If new simulations were run with
fully customized parameters, the error floors in Fig. 8 could
be significantly lower. Note also that the minimum of the
GPR model is on average a less accurate prediction of the
correct model parameters than the sample point with the low-
est RMSE. This is likely because the GPR model assumes
the samples of the objective function are noisy, so it doesn’t
strictly place the minimum of the surrogate model at the best
sample.

A previous method for systematic coarse-graining relied
on a dense neural network (NN), which was trained with
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Fig. 7 Exploration of the space
of non-bonded potential
parameters kθ , θ0 driven by
Bayesian optimization. The
black + marks represent the
sample points included in the
GPR model up to a particular
iteration. The black X marks the
true parameters which generated
the target data. The black
triangle marks the estimated
parameters using the Boltzmann
distribution. The black square
marks the initial sample closest
to these estimated parameters.
The black circle identifies the
queried sample with the
minimum objective. The colored
background field represents the
GPR model fit to the queried
samples (black +). The colored
points represent the expected
improvement for candidate
parameters for the next iteration.
For both the GPR field and the
EI points, blue indicates lower
values, and yellow higher
values. True parameters for this
target were kl = 23.1, l0 =
4.05, kθ = 7.42, θ0 =
179.8, ε = 0.247, σ = 8.31

distribution data as inputs and parameter values as outputs
(Shireen et al. 2022). It then receives a novel distribution and
returns an estimate of the model parameters which would
produce that distribution. Data for the accuracy of this pre-
vious method as a function of the training set size are also
included in Fig. 8 (filled blue triangles) to demonstrate the
improved efficiency of the protocol presented here. Note that
the accuracy of the bending and non-bonded parameters have
not been analyzed as a function of training set size, but the
mean absolute error for the bending parameters was 0.05
with 1300 samples. This suggests that the inaccuracy of the
bending parameters in Fig. 8 relative to those for stretching
is not a deficiency of the Bayesian protocol, but a quality of
the CG parameter space. That is, it seems that P(θ) is just
not as sensitive to kθ and θ0 as P(l) is to kl and l0.

Pitfalls

Regarding the non-bonded interactions, Fig. 8 might seem to
suggest that BO is performing poorly, but this may simply be

a more severe case of insensitive parameters. Note that the
optimal region of the parameter space in Fig. 7 (low RMSE,
illustrated as blue background), is very broad and shallow.
The ρ(T ) curves in Fig. 6 demonstrate that even when σ

and ε are not perfect matches to the target, the density may
still be reproduced faithfully. This may mean that the top-
down approach to parameterization doesn’t tightly constrain
the non-bonded parameters, at least at the temperature range
studied here. This could be advantageous as it leaves flexi-
bility if other rheological properties need to be matched in
addition to density in the future.

Another potential pitfall for the protocol as specified is the
possibility that the different objective functions are not fully
independent from the ignored parameters. That is, P(l) for
instance could be distorted by the influence of non-bonded
interactions. In particular, large values of σ>7Å sometimes
result inmisidentified parameters, particularly if kl or kθ < 1.
Figure 2 demonstrates a mild case of this, as the peak of
P(l) is at l ≈ 4.7 Å, noticeably higher than the true rest
length of 4.5 Å, leading to the initial over-estimation of l0.
In these cases, the effect of the non-bonded interaction can

123



Rheologica Acta

Fig. 8 Accuracy of model parameters as a function of the number of
CG simulations used by the protocol. Absolute error is here measured
by mapping the parameter ranges in Table 1 to the range [0,1] as in
Shireen et al. (2022) to enable comparison between parameters with dif-
ferent scales. Triangles represent the parameters for the bond stretching
potential. Squares represent the bond bending potential. Circles repre-
sent the Lennard-Jones non-bonded potential. Filled symbols represent
the minimum of the GPR (or NN) model, while open symbols represent
the sampled simulation with the lowest RMSE compared to the target.
The filled blue triangles represent the accuracy of the NN developed in
Shireen et al. (2022), with different training set sizes. Results for our
protocol are averaged over 200 independent targets with independent
sets of initial samples

overwhelm the bonded interactions. For example, sometimes
P(l) becomes bimodal. In principle, a similar optimization
routine could overcome this complexity, but the assumption
in this workflow that the interactions are independent makes
this case challenging. As with any ML based protocol, solu-
tions should be sanity-checkedwhere possible. Nevertheless,
the protocol seems to navigate toward fitting solutions. Ulti-
mately, for the purpose of systematic coarse-graining, no
correct solution is defined a priori, so as long as the optimizer
can reduce the discrepancy between target and CG data sys-
tematically, the resulting parameterization could be useful.
This challenge is particularly important when multiple rhe-
ological properties are to be measured and inaccuracies in
parameters could have different effects on different proper-
ties.

Conclusion

Wehave described a novel protocol that leverages the proper-
ties of Bayesian inference to efficiently tune parameters for a
polymer model to reproduce previously generated data. This

work reduces the cost of developing models for which simu-
lating time scales needed to measure experimentally relevant
rheological properties is tractable. For this investigation, the
target data set was generated using the same polymer model
so that the accuracy of the identified parameters could be
validated. This protocol could now be applied to data from
more costly higher resolutionmodels or experiments to iden-
tify appropriate parameters to represent a system using the
cheaper coarse-grained model.

In this study, accuracy was measured as a function of the
computational investment in exploring the parameter space,
so the explorationwas not terminated at a particular threshold
accuracy. In a production context, one would likely identify
the necessary precision relative to the target data, and halt
the optimizer when sufficient precision is achieved.

The same broad framework could be executed with minor
variations in the objective functions. The probability dis-
tributions for bonded monomers are an obvious choice for
polymers, but different metrics could be used to evaluate
the discrepancy between target and sample distributions. For
instance, the correlation could be used instead of the RMSE.
This would have the advantage of restricting the range of the
objective to [-1,1], which could enable a simultaneous multi-
objective optimization. Alternatively, the three optimization
phases could be interwoven, updating each parameter once
in turn to tune them in parallel. Another important consid-
eration is the variety of available properties from which to
derive an objective function. Previous work has considered
properties such as The Debye-Waller factor, Young’s mod-
ulus, and yield stress in addition to density (Giuntoli et al.,
2020). While the temperature-dependent density seems to
be sufficient as a top-down objective to capture a variety of
material properties (Shireen et al., 2022), a systematic com-
parison of the efficiency of different objective functions and
the trade-offs in accuracy of the various properties of interest
would benefit the field of rheological simulations. The best
casewould be to find one objective function, possibly amulti-
objective construction, that yields adequate accuracy on all
properties, but perhaps different models will be necessary
for applications that demand high precision for a particular
property.

For some parameters investigated here, parameter ranges
could be narrowed down significantly. Particularly, σ and l0
can usually be read off from P(l) and g(r) data as long as σ <

l0 (a physically meaningful constraint that distance from one
monomer to the next is not shorter than themonomer size). A
systematic survey of the effect of individual parameters one
at a time, with the other parameters set at estimated values
could provide practical limits for the rangeswithout incurring
the combinatorial cost of varying multiple parameters.

The parameter spaces explored in this investigation clearly
exhibit some local optima which are distinct from the global
optimum, especially when the sample data set is sparse, so
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the ability of Bayesian optimization to escape local optima is
critical to the success of this protocol. However, the rugged-
ness of the landscape seems to be limited to large scales.
For instance, kl=30 is not dramatically different than kl=31,
all other parameters being equal. A potential improvement
could be to develop a heuristic for identifying when the basin
of the global optimum has been discovered, and switch to
a greedier search algorithm to refine the precision of the
parameters.

We note in closing that the proposed framework could also
bear utility for other classes of simulation than polymers. In
many contexts, there are models with parameters that do not
map analytically to more realistic data. When such models
have several parameters, or rugged parameter landscapes,
determining appropriate parameters can be a combinatorially
difficult problem. An adaptation of the workflow presented
here could be useful in such cases.
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