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Bayesian Compressive Sampling for Pattern Synthesis with Max-

imally Sparse Non-Uniform Linear Arrays

G. Oliveri and A. Massa

Abstract

This paper introduces a numerically-efficient technique based on the Bayesian Compres-

sive Sampling (BCS) for the design of maximally-sparse linear arrays. The method is

based on a probabilistic formulation of the array synthesisand it exploits a fast relevance

vector machine (RV M ) for the problem solution. The proposed approach allows thede-

sign of linear arrangements fitting desired power patterns with a reduced number of non-

uniformly spaced active elements. The numerical validation assesses the effectiveness and

computational efficiency of the proposed approach as a suitable complement to existing

state-of-the-art techniques for the design of sparse arrays.

Key words: Array synthesis, sparse arrays, bayesian compressive sampling, relevance vector

machine.
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1 Introduction

Synthesizing antenna arrays with a minimum number of elements is a problem of high impor-

tance in those applications (e.g., satellite communications, radars, biomedical imaging, acous-

tics, and remote sensing) where the weight, the consumption, and the hardware/software com-

plexity of the radiating device have a strong impact on the whole cost of the overall system

[1][2].

Non-uniform arrangements have potential advantages with respect to uniform layouts [3] such

as (a) significantly increased resolution (i.e, decreased mainlobe width) [4], (b) sidelobe level

control/reduction [5], and (c) enhanced efficiency in dealing with physically-constrained ge-

ometries (e.g., conformal architectures) [6]. However, sparsening array elements has the main

drawback of reducing the control of the beam shape [1]-[7] and several approaches for the de-

sign and optimization of sparse arrangements have been proposed in the last 50 years [1]-[30]

to properly address such an issue.

Dealing with beam shape control, two different problems areusually considered in the state-

of-the-art literature [20]: (I ) the minimization of the peak sidelobe level (PSL) by determining

a fixed set ofN element positions over an aperture and sometimes the corresponding weights;

(II ) the synthesis of a maximally-sparse array(1) radiating a desired pattern. A wide set of

methods concerned withProblem I [2] has been investigated including random approaches

[11][15], dynamic programming [12],FIR-filter design [16], stochastic optimization meth-

ods [17][18][20][24][27][28], analytical techniques [22][30], and hybrid algorithms [25][29],

as well. On the contrary,Problem IIhas received less attention and few methods have been de-

veloped [2][3][13][14][19][20][21][23][26]. Because ofthe limitations of available computers,

first attempts relied on techniques requiring as few computational resources as possible such as

the steepest descent method [13] and the iterative least-square technique [14]. However, those

approaches have strong limitations as, for example, the need toa-priori know the number of ac-

tive elements of the array and the aperture size [13][14]. Inorder to overcome these drawbacks,

a technique exploiting the simplex search was developed in [3] to find the sparsest array match-

(1) An array with the minimum number of active elements,P , over a lattice (regular or irregular) ofN
positions.
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ing a given reference pattern. Moreover, a mixed linear programming approach was introduced

in [19] with the same aim. Further developments ranging froma recursive inversion algorithm

based on the Legendre transform [21][26] up to the use of a stochastic optimizer based on the

simulated annealing technique [20] or a generalized Gaussian quadrature approach [23] have

been successively analyzed. More recently,Problem II has been solved by means of an inno-

vative technique based on the Matrix Pencil Method (MPM) [7]. Thanks to its efficiency, the

MPM generally outperforms other synthesis techniques in termsof convergence speed and

array performances [7]. Despite its effectiveness, such anapproach presents some limitations:

1. the locationsdp, p = 1, ..., P , of theP active elements of the array are proportional to the

complex values of the non-zero roots of the generalized eigenvalue problem described in

[7]. Consequently,unphysicalcomplex solutions (i.e.,dp ∈ C) can be generated [7] and

an approximation [i.e.,dMPM
p = ℜ (dp)] is required (p. 2957 - [7]) whose impact on the

array performances cannot bea-priori estimated nor neglected;

2. no requirements on the element positions [7] can be stated. Thus, no geometrical regular-

ity or user-desired geometric features on the synthesized array can bea-priori enforced;

3. the method may fail in synthesizing/matching shaped beampatterns because of the imag-

inary parts ofdp, p = 1, ..., P are not usually negligible (p. 2958 - [7]).

This paper is aimed at proposing an innovative, flexible, andcomputationally-efficient com-

plement to the existing synthesis methods that solveProblem II. The method, based on the

Bayesian Compressive Sampling (BCS) [31], is devoted to find the maximally-sparse array

with the highesta-posterioriprobability to match a user-defined reference pattern. Towards

this end, an efficientBCS solver exploiting a fast relevance vector machine (RVM) algorithm

[31] is adopted.

The outline of the paper is as follows. Section 2 is aimed at mathematically formulating the

synthesis problem and describing an algorithm for minimizing a suitable cost function that

depends on the degree of sparseness of the array and the mismatch between the desired power

pattern and the actual one. Section 3 provides a selected setof numerical results to validate
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the proposed approach as well as to compare its performanceswith state-of-the-art techniques.

Finally, some conclusions are drawn (Sect. 4).

2 Mathematical Formulation

2.1 BCS Formulation

Let us consider a symmetric linear arrangement ofM = 2× N − χ (χ = 0 if an even number

of elements is at hand,χ = 1 otherwise) isotropic elements,wn ∈ R being the real excitation

of then-th element pair (n = 1, ..., N). The synthesis problem is that of finding the set of array

weights such that (a) the radiated pattern is sufficiently close to a given reference one,EREF (u),

and (b) the numberP of active(i.e.,wn = w−n = δnpwp, p = 1, .., P , δnp being the Kronecker

function) array elements is as small as possible [3]. Towards this end, theBCS formulation

is considered and similarly to [3] the following assumptions are taken into account: (a) the

reference pattern is approximated in an arbitrary set ofK angular positionsuk, k = 1, ..., K,

within the visible range (uk ∈ [−1, 1]); (b) the set ofP active positions are constrained to

a large, but finite, user-chosen set ofM (i.e., M ≫ P ) candidate locations not necessarily

belonging to a regular lattice. Mathematically, the problem can be formulated as follows

Synthesis Problem - Given a set ofK samples of the reference pattern,EREF ∈

RK , and a fidelity factorε find the set of array weights,w, which is maximally

sparse subject to‖EREF − E‖2 ≤ ε

where‖·‖ is theℓ2-norm, EREF , [EREF (u1) , ..., EREF (uK)]H , w , [w1, ..., wN ]H , E ,

[E (u1) , ..., E (uK)]H whosek-th entry is given byE (uk) =
∑N

n=1 νnwncos
[

2πdnuk

λ

]

, λ being

the wavelength,dn the distance of then-th location from the array center (d1 = 0 if χ = 1), and

νn is the Neumann’s number [9] defined asνn = 2− χ if n = 1, andνn = 2 otherwise.

The synthesized pattern samplesE can be then expressed as

E = Ψw (1)

whereΨ ∈ RK×N and its(k, n)-th element is given byψ (k, n) = νncos
[

2πdnuk

λ

]

.
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To recast the problem at hand as aBCS problem, the following three steps are necessary. Let

us first rewrite theℓ2-norm constraint (‖EREF − E‖2 ≤ ε) as(2) [34]

EREF −Ψw = e (2)

wheree = [e1, ..., eK ]T is a zero mean Gaussian error vector [31][33][34] with an user-defined

varianceσ2 proportional to the mismatching with the reference pattern(i.e.,σ2 ∝ ε). Then, let

us modelEREF through a Gaussian likelihood model

p
(

EREF |
[

w, σ2
])

=
1

(2πσ2)
K

2

exp

(

− 1

2σ2
‖EREF −Ψw‖2

)

(3)

to recast the original problem as the following linear regression one with sparseness constraints

(LRSC)

LRSC Problem - GivenEREF ∈ RK findw andσ2 which maximize the a-posteriori

probabilityp (w, σ2 |EREF ) subject to the constraint thatw is maximally-sparse

Finally, the sparseness ofw [33][34] is enforced. As regards the Bayesian formulation,such a

task is accomplished by introducing a sparseness prior(3) overw [31]. Hereinafter, the Gaussian

hierarchical prior [32][33][34] is invoked

p (w|a) =

∏N
n=1

√
an exp

(

−anw2
n

2

)

(2π)
N

2

(4)

wherea , [a1, ..., aN ] andan (n = 1, ..., N) is then-th independent hyperparameter controlling

the strength of the prior overwn [32]. To fully specify (4), the hyperpriors overa [i.e., p(a)]

andσ2 [i.e., p
(

1
σ2

)

] have to be defined. The Gamma distributions are here considered [32]

p(a) =

N
∏

n=1

G (an|α1, α2) (5)

and
(2) It is worth pointing out that Eq. (2) and theℓ2-norm constraint are mathematically equivalent [34].
(3) In Bayesian inference, aprior represents thea-priori knowledge about an unknown quantity in probabilis-

tic terms.
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p

(

1

σ2

)

= G

(

1

σ2

∣

∣

∣

∣

α3, α4

)

(6)

whereαi (i = 1, ..., 4) is the i-th scale prior, G (an|α1, α2) ,
α

α1
2

a
α1−1
n e−α2a

Γ(α1)
, andΓ(α1) ,

∫

∞

0
tα1−1e−tdt is the gamma function [32]. Thanks to (4), (5), and (6), the original synthesis

problem can be finally formulated as

BCS Problem - GivenEREF ∈ RK , findwBCS, aBCS , andσ2
BCS which maximize

p ([w, a, σ2] |EREF ).

2.2 BCS Solver - The RVM Procedure

In order to solve theBCS Problemby determining the unknown parameterswBCS, aBCS , and

σ2
BCS, theRVM method [32][31] is applied. Towards this end, let us consider that the posterior

over all unknowns can be expressed as

p
([

w, a, σ2
]

|EREF

)

= p
(

w
∣

∣

[

EREF , a, σ
2
])

p
([

a, σ2
]

|EREF

)

. (7)

Moreover, because of (3) and (4), the posterior distribution overw

p
(

w
∣

∣

[

EREF , a, σ
2
])

=
p (EREF | [w, σ2]) p (w|a)

p (EREF | [a, σ2])
(8)

turns out to be equal to the following multivariate Gaussiandistribution [34]

p
(

w
∣

∣

[

EREF , a, σ
2
])

=
1

(2π)
N+1

2

√

det (Σ)
exp

{

−(w − µ)H (Σ)−1 (w − µ)

2

}

(9)

where the posterior mean and the covariance are given byµ = ΣΨH
EREF

σ2 andΣ =
(

ΨT Ψ
σ2 + A

)

−1

,

respectively, beingA , diag (a1, ..., aN).

As for the second term on the right-hand side of (7), the delta-function approximation is used

[32] to model the hyperparameter posterior

p
([

a, σ2
]

|EREF

)

≈ δ
(

aBCS , σ
2
BCS

)

(10)
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whereaBCS andσ2
BCS are the most probable values,(aBCS , σ

2
BCS) = arg maxa,σ2 {p ([a, σ2] |EREF )},

also called hyperparameter posteriormodes. In order to determine their values, let us consider

that

p
([

a, σ2
]

|EREF

)

∝ p
(

EREF

∣

∣

[

a, σ2
])

p (a) p
(

σ2
)

(11)

and let us assume uniform scale priors. Then,p (σ2) andp (a) become constant values [32] and

the maximization of (11) is equivalent to maximize the termp (EREF |a, σ2), whose logarithm

is given by [32]

L
(

a, σ2
)

, log
[

p
(

EREF |a, σ2
)]

= −1

2

[

N log 2π + log |C|+ E
H
REFC

−1
EREF

]

(12)

whereC = σ2I + ΨA−1ΨT . It is worthwhile to point out that it is not possible to perform

the maximization of the “marginal likelihood” (12) in an exact fashion, but atype-II maximum

likelihoodprocedure [34] can be profitably exploited for determining an iterative re-estimation

of (aBCS , σ
2
BCS). Such a technique, whose Matlab implementation is available in [35], is sum-

marized in the Appendix.

Finally, by substituting (9) and (10) in (7), one obtains that

p
([

w, a, σ2
]

|EREF

)

≈ p
(

w
∣

∣

[

EREF , a, σ
2
])⌋

(a,σ2)=(aBCS ,σ2
BCS) . (13)

The posterior over all unknowns results a multivariate Gaussian function (9) only depend-

ing on the unknown setw once(aBCS , σ
2
BCS) have been determined. Therefore, the value

of wBCS = arg maxw {p ([w, a, σ2] |EREF )} turns out to be equal to the posterior mean of

p (w |[EREF , a, σ
2] )⌋(a,σ2)=(aBCS ,σ2

BCS) given by

wBCS = µ⌋(a,σ2)=(aBCS ,σ2
BCS) . (14)
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2.3 BSC Synthesis Method - Algorithmic Implementation

The algorithmic implementation of theBCS-based pattern synthesis consists of the following

steps:

1. Input Phase- Set the reference patternEREF (u), the grid of admissible locations (dn;

n = 1, ..., N), the set of pattern sampling points (uk; k = 1, ..., K), the target variance

σ2 of the error terme, and itsinitial estimateσ2
0 for the sequential solver of theRVM

algorithm (see the Appendix);

2. Matrix Definition- Fill the entries of the matricesEREF , Ψ, e, andÊREF = EREF + e;

3. Hyperparameter Posterior Modes Estimation- Find (aBCS , σ
2
BCS) by maximizing (12)

as described in the Appendix;

4. Array Weights Estimation- FindwBCS by (14);

5. Output Phase- Return the estimated array weights,wBCS, the number of active array

elements,PBCS = −χ + 2 ‖wBCS‖0(4), and the corresponding hyperparameter modes

(aBCS , σ
2
BCS).

Starting from an user-required patternEREF (u) (i.e., its sampled representationEREF ), the

control parameters of the synthesis process are the following variables: (a) dn, n = 1, ..., N ; (b)

uk, k = 1, ..., K; (c) σ2, and (d) σ2
0. Consequently, it is possible to synthesize arbitrary reference

patterns specifying the pattern matching accuracy (c) and the sequential solver initialization

(d). Moreover, theBCS method allows one to enforce pattern constraints within thewhole or

in a subset of the visible range (b) as well as to set suitable geometrical features of the array

arrangement (a).

3 Numerical Analysis and Assessment

This section is devoted to numerically assess potentialities and limitations of the proposedBCS

approach for the design of sparse linear arrays. The numerical analysis is carried out by con-

sidering a set of representative/benchmark reference patterns to evaluate the effectiveness and

(4)In this paper‖x‖0 is theℓ0-norm ofx (i.e., the number of non-zero elements ofx).
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reliability of theBCS in approximating a user-desired pattern. In order to evaluate the “degree

of optimality” of the array designs, the following metrics and pattern descriptors are used: the

matching errorξ defined as(5)

ξ ,

∫ 1

0
|EREF (u)− E(u)|2 du
∫ 1

0
|EREF (u)|2 du

, (15)

the aperture lengthL, the mean inter-element spacing∆L = L
P−1

, and the minimum spacing

∆Lmin = minp=1,..,P−1 {|dp+1 − dp|}.

3.1 BCS Sensitivity Analysis

As a first numerical experiment, the synthesis of a non-uniform array matching a Dolph-Chebyshev

pattern [2] is considered. A broadside Dolph-Chebyshev pattern withL = 9.5λ andPSL =

−20 [dB] is assumed as reference. Let us notice that such a pattern can be synthesized through

a uniform array withPUNI = 20 λ
2
-spaced elements. TheBCS synthesis has been carried out

by samplingEREF (u) at K points (uk ∈ [0, 1], uk = k−1
K−1

, k = 1, ..., K) and assuming the

following grid of admissible locations

dn =
L (n− 1)

2 (N − 1)
, n = 1, ..., N. (16)

Figure 1(a) describes theBCS results by reporting the matching errorξ versus the number

of active elementsPBCS for different values of the control parameters:K = {5, ..., 25},

σ2 ∈ [10−5, 1], σ2
0 ∈ [10−5, 1], andN ∈ [5, 5× 104]. The Pareto front of the solution set in the

plane(ξ, PBCS) is indicated, as well. As it can be observed, differentBCS trade-off solutions

are obtained with accuracy and element number in the rangeξ ∈ [10−6, 2] andPBCS ∈ [5, 20],

respectively. By comparing the patterns related to three representative points of the Pareto front

(i.e.,PBCS = {8, 14, 20}) with the reference one [Fig. 1(b)], it turns out that the solution with

PBCS = 8 elements provides a very poor matching (ξ = 2.91× 10−1), while a reliable recon-

struction (ξ = 0.99 × 10−4) is yielded choosing the solution havingPBCS = 14 [Fig. 1(b)]

with a non-negligible saving of array elements with respectto theλ
2
-spaced uniform array (i.e.,

(5)Only u ∈ [0, 1] is considered in the definition ofξ for symmetry reasons.
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PBCS

PUNI

= 0.7). As a general by-product, it results that a value of the accuracy index around

the thresholdξ = 10−4 identifies an optimal trade-offBCS solution, whereas lowerξ values

usually require more radiating elements [PBCS = 20, ξ = 2.03 × 10−6 - Fig. 1(b)] without

significant/relevant improvements in the matching of the reference pattern. As regards the re-

sulting layouts, it is worth pointing out that the optimalBCS array (PBCS = 14) has an aperture

and an excitation displacement [Fig. 1(c)] close to those of the uniform array. This proves the

effective non-uniform sampling of the ideal current distribution affordingEREF (u). Otherwise,

different apertures [e.g.,LBCS⌋P=8 = 6.2λ vs. LBCS⌋P=14 = 9.5λ] and weights [Fig. 1(c)]

are synthesized in correspondence with greater values ofξ. As for the element arrangement,

a positive feature of theBCS arrays is the enlarged inter-element spacing with respect to the

corresponding uniform array [Fig. 1(c)] despite the closely-spaced admissible locations [Eq.

(16)].

In order to provide a deeper understanding about the sensitivity of theBCS performances on

the control parameters, Figures 2 and 3 summarize the results of a comprehensive numerical

analysis. More specifically, the matching error has been evaluated as a function ofK, or σ2
0,

or σ2, or N by setting the other parameters to the values used to obtain the optimal trade-off

with PBCS = 14 (i.e.,K = 15, σ2 = 10−2, σ2
0 = 2.0 × 10−3, N = 501). For completeness,

the behavior ofPBCS has been reported, as well. As expected [Fig. 2(a)], the pattern matching

improves as the number of samplesK of EREF (u) increases. However,ξ does not further

decreases beyond a threshold value (K = 15) slightly above the Nyquist threshold (KNyquist =

11) even though the corresponding number of array elementsPBCS still grows. A sampling

valueK betweenKNyquist and1.5KNyquist turns out to be a reliable choice as confirmed by

the behaviour of the plots of|EBCS(u)− EMPM(u)|2 for K = {7, 15, 24} [Fig. 3(a)], as well.

Indeed, the lowest value ofK gives the poorest fitting [ξ⌋K=7 = 0.91 - Fig. 3(a)], while

satisfactory reconstructions are obtained whenK > KNyquist (ξ⌋K=15 = 0.99 × 10−4). A

further increment ofK only marginally enhances the accuracy [ξ⌋K=24 = 0.98 × 10−4 - Fig.

3(a)].

Concerning the sensitivity toσ2, the integral error has small variations forσ2 < 10−2, while it

sharply increases afterwards [Fig. 2(b)] as pointed out by the plots of|EBCS(u)− EREF (u)|2

11



in correspondence with a set of representative values of ofσ2 (i.e.,σ2 = {10−5, 10−2, 1}) [Fig.

3(b)]. More sparse arrays are synthesized in correspondence with larger values ofσ2 at the

expense of higherξ values [Fig. 2(b)]. Good tradeoffs between accuracy and element reduction

then arise by settingσ2 ∈ [10−3, 10−1]. Such an outcome indicates that theBCS performances

are significantly less sensitive toσ2 than toK. As a matter of fact, a reduction ofξ of about

one order in magnitude requires a variation ofK of about10− 20% [Fig. 2(a)], while the same

effect holds true for a variation ofσ2 of more than two orders in magnitude [Fig. 2(b)]. Similar

deductions can be drawn from the behaviour of the integral error versusσ2
0 . Moreover, the

matching error increases almost monotonically withσ2
0, whereas lowPBCS values are obtained

within the rangeσ2
0 ∈ [5.0× 10−4, 5.0× 10−2] [Fig. 2(c)]. Such a range can be also assumed

as reference guideline since smallerσ2
0 values only marginally improve the matching accuracy

[σ2
0 = 10−5, ξ = 4.29 × 10−5 - Fig. 3(c)], while higher values do not allow reliable syntheses

[σ2
0 = 1, ξ = 0.1 - Fig. 3(c)].

Finally, the plots in Figure 2(d) are concerned with the sensitivity of theBCS on N . By

analyzing the behaviour ofPBCS, it comes out that great care must be exercised on the choice

of N to obtain a sparse array matching with a good accuracy the reference one. A good receipt

coming also from other heuristic analyses suggests to chooseN ∈
[

5× L
λ
; 100× L

λ

]

.

3.2 BCS Assessment - Synthesis of Broadside Patterns

The second set of experiments is aimed at assessing in a more exhaustive fashion the perfor-

mances of theBCS when dealing with broadside patterns. More specifically, Dolph-Chebyshev

reference patterns withL ∈ {9.5λ, 14.5λ, 19.5λ} andPSL ∈ {−20,−30,−40} [dB] have been

used and the Pareto fronts of theBCS solutions are shown in Fig. 4(a). As expected, wider

apertures require more elements to reach the accuracy thresholdξ = 10−4 (e.g.,PBCS⌋L

λ
=9.5 =

14, PBCS⌋L

λ
=14.5 = 20, andPBCS⌋L

λ
=19.5 = 36). On the contrary,PBCS does not generally

change when varying the peak sidelobe level (e.g.,PBCS⌋PSL=−20 dB = PBCS⌋PSL=−30dB =

PBCS⌋PSL=−40dB = 26). TheBCS method allows a saving of about30 − 35% of the array

elements with respect to the corresponding uniformlyλ
2
-spaced array still keeping a very ac-

curate pattern matching (i.e.,ξ < 10−4) [Tab. I]. This implies an increasing of the average

12



inter-element distance (∆L
λ/2
∈ [1.46, 1.56]) and, usually, of the minimum spacing between ad-

jacent elements (∆Lmin

λ/2
∈ [1.25, 1.56] except for the case withL = 19.5λ andPSL = −30

[dB]). On the other hand, the array aperture only slightly reduces (e.g.,LBCS

LUNI
= 0.995 when

L = 19.5λ andPSL = −30 [dB]) since it controls the mainlobe pattern matching.

As far as the “shape” of theBCS Pareto front is concerned [Fig. 4(a)], the plot of the matching

error shows a step-like behaviour whatever the array aperture andPSL conditions. Moreover,

it exists a threshold value ofPBCS below which theBCS cannot provide an accurate matching

for a givenEREF (u). For example, the caseL = 19.5λ - PSL = −30 [dB] shows thatξ

decreases of more than two orders in magnitude passing fromPBCS = 24 to PBCS = 26. This

is visually pointed out in Fig. 4(c) where the plots of|EBCS(u)|2 for PBCS = {24, 26} are

compared to the reference pattern.

Such a behaviour is further confirmed by the results in Fig. 4(b) where Taylor patterns [1] with

transition indexT = 6 and different sizes (i.e.,L ∈ {9.5λ, 14.5λ, 19.5λ}) andPSLs (i.e.,

PSL ∈ {−20,−30,−40} [dB]) are taken into account. Also in this case, a small variation of

PBCS (PBCS = 24 → 26) leads to a significant improvement of the reconstruction accuracy

(ξ⌋PBCS=24 = 8.11× 10−3→ ξ⌋PBCS=26 = 3.13× 10−5). The reliable solutions withξ < 10−4

provide also for Taylor syntheses an accurate matching of the reference pattern with negligible

errors confined to very low sidelobes, far from the mainlobe [see the inset of Fig. 4(d)], which

do not contain relevant portions of the radiated power.

As for the element saving with respect to theλ
2
-spaced arrangement, the values in Tab. I confirm

that PBCS

PUNI
∈ [0.65, 0.70] as well as the conclusion drawn for the Dolph-Chebyshev patterns on

the distribution of the array elements (i.e.,1.43 ≤ ∆L
λ/2
≤ 1.55). Concerning the computational

issues, theBCS turns out to be very efficient (tBCS < 0.35 [s] - Tab. I) whatever the broadside

reference pattern, despite the non-optimized implementation of the Matlab code.

In order to complete the analysis of the performance of theBCS approach when dealing with

broadside patterns, comparisons with state-of-the-art techniques have been carried out, as well.

Towards this purpose, theMPM approach [7](6) has been considered because of its efficiency

and the enhanced matching accuracy compared to similar methods such as the Prony technique

(6)A MATLAB implementation of theMPM has been used for the numerical tests (mpencil function -
http://www.mathworks.se/matlabcentral/index.html) by setting the default parameters as suggested in [7].

13



[7]. The results from the analysis of different Dolph-Chebyshev references are summarized

in Fig. 5 where the plots ofξ versusP for bothBCS andMPM (7) arrays are shown. Let

us consider the test case characterized by a reference pattern with PSL = −30 [dB] defined

over a linear aperture of lengthL = 9.5λ [Fig. 5(a)]. In such a case, theMPM provides

a more accurate fitting than theBCS whatever the number of array elements (e.g.,P = 12:

ξ⌋BCS = 7.02× 10−3 vs. ξ⌋MPM = 1.04× 10−4 [7]) and theBCS generally requires a larger

P to satisfy the conditionξ ≤ 10−4 (PBCS = 14 → ξ⌋BCS = 2.62 × 10−5 vs. PMPM = 13

→ ξ⌋BCS = 2.76 × 10−6). TheBCS performances come closer to those of theMPM as

L increases [L = 14.5λ - Fig. 5(b) andL = 19.5λ - Fig. 5(c)] and sometimes theBCS

outperforms theMPM in terms of fitting index for both small and large values ofP [Figs.

5(b)-5(c)]. Moreover and with reference to Figs. 5(c)-5(e), it results that the efficiency of the

BCS enhances whenPSL reduces. As a matter of fact, theMPM overcomes theBCS when

L = 19.5λ andPSL = −20 [dB] [Fig. 5(d)], while ξBCS < ξMPM for the apertureL = 19.5λ

with PSL = −40 [dB] [Fig. 5(e)] as also pictorially pointed out by the plots ofEMPM(u) and

EBCS(u) synthesized with the correspondingP = 26-element arrangement [inset of Fig. 5(e)].

As it can be observed, theBCS properly matches the reference pattern within the entire visible

range, while theMPM accuracy worsen near the mainlobe and in the far sidelobes.

Similar conclusions hold true when dealing with Taylor reference patterns. The behavior ofξ

versusP (Fig. 6) still indicates that theMPM outperforms theBCS concerning the minimum

P to reach the matching thresholdξ = 10−4 when dealing with small arrays and highPSLs

[PMPM = 12→ ξMPM = 9.89 × 10−5 vs. PBCS = 14→ ξBCS = 7.82 × 10−5 - Fig. 6(a)],

while theBCS betters theMPM performance for largerL with low peak sidelobe levels

[PMPM = 26→ ξMPM = 2.38×10−4 vs.PBCS = 26→ ξBCS = 3.62×10−5 - Fig. 6(e)]. This

is further confirmed by the patterns of the optimal trade-offsolutions displayed in the insets of

the pictures of Fig. 6.

(7)Please notice that only theMPM arrays withSV D-truncation parameter below10−3 have been reported
in order to guarantee an accurate pattern matching [7].
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3.3 BCS Assessment - Synthesis of Shaped Patterns

In order to evaluate the flexibility of the proposed approach, numerical tests concerned with

shaped patterns have been also performed. The first experiment deals with the reconstruction of

flat top patterns defined over an aperture ofL = 4.5λ with differentPSLs as in [36]. The plots

of ξ as a function ofP show that neither theMPM nor theBCS is able to reduce the number

of array elements of the uniform array (being0.6λ its inter-element distance) synthesized in

[36] still keeping a good accuracy, although theBCS [PBCS = 10→ξBCS = 4.55×10−6 - Fig.

7(a)] reduces the array aperture with respect to [36] (LBCS

L
< 0.97 - Tab. II). On the contrary,

theMPM defines wider arrangements (LMPM

L
= 1.74), as shown in Fig. 7(d), without yielding

a good matching with the reference patterns (ξMPM > 2.5 × 10−3 - Tab. II). The enhanced

accuracy of theBCS is also pointed out by the plots ofEREF (u), EBCS(u), andEMPM(u) in

the insets of Figs. 7(a)-7(c) related to the arrays withPBCS = PMPM = 10. For completeness,

the distributions of the array excitations along the array extension are given in Fig. 7(d). As it

can be observed and also predicted in [7], the worsening of the performances of theMPM is

mainly due to the errors in estimating the element positionscaused by the non-negligible values

of the imaginary parts of the non-zero roots of the associated eigenvalue problem.

The second experiment considers as reference theWoodwardpattern withL = 8.5λ analyzed

in [37]. The plots ofξ versusP show that theBCS faithfully reconstructs the reference pattern

synthesizing an array ofPBCS = 12 elements [ξBCS = 2.79×10−5 - Fig. 8(a)] with a reduction

of about1
3

of the array elements with respect to the uniform layout (PUNI = 18). As a side effect

of the approximation, the optimalBCS trade-off slightly improves thePSL of the reference

pattern (PBCS = 12 → PSLBCS = −20.2 [dB] vs. PSLUNI = −20 [dB] - Tab. III), as

well. On the contrary, both theMPM synthesis in [37] and theMPM pattern generated with

PMPM = 12 elements do not provide an accurate fitting [PMPM = 12 → ξMPM = 4.02 ×

10−3 - Fig. 8(a)], unless using more antenna elements (e.g.,PMPM = 14), and significantly

worsen thePSL (PMPM = 12→ PSLMPM = −13.2 [dB]) as highlighted by the plots of the

associated patterns [Fig. 8(b)]. For completeness, the behaviour of the array excitations and

the corresponding figures of merit are reported in Fig. 8(c) and Tab. III, respectively. As for

the computational costs, theBCS still retains the numerical efficiency proved in synthesizing
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broadside patterns (Tab. III).

Similar conclusions can be also drawn when considering wider reference apertures. For exam-

ple, with reference to a Woodward reference pattern withL = 19.5λ [Fig. 9(a)], theBCS yields

an accurate approximation with less elements than theMPM (PBCS = 26 vs. PMPM = 28).

Moreover, the accuracy of theMPM significantly worsens when using the same number of

active elements of theBCS solution [P = 26 - ξMPM = 4.81 × 10−2, PSLMPM = −3.6

[dB] vs. ξBCS = 3.52 × 10−5, PSLBCS = −17.4 - Tab. IV and Fig. 9(b)]. As for the array

arrangement, theBCS provides a more widely-spaced design characterized by the following

parameters:∆Lmin

λ/2
= 0.975 and ∆L

λ/2
= 1.56 (Tab. IV).

3.4 BCS Assessment - Constrained Synthesis

This section is devoted to assess the reliability of theBCS approach in solving constrained

synthesis problems (i.e., matching a reference pattern under some explicit geometric and/or

radiation constraints). Towards this aim, the synthesis ofa Dolph-Chebyshev pattern withL =

19.5λ andPSL = −30 [dB] under different synthesis constraints has been addressed.

The first test case has been formulated by enforcing the pattern matching constraints in the

angular regionuk /∈ [um, uM ], beingum = 0.5 anduM = 0.6. As desired, the pattern of the

optimalBCS trade-off solution (ξ = 3.71× 10−5 - Tab. V) fits in a faithful way the reference

one within the constrained region as well as in the transition regions close to the unconstrained

angular range [Fig. 10(b)]. It is also of interest to observe that the distribution ofthe array

excitations of theBCS synthesis and those of the uniform array quite significantlydiffer [Fig.

10(a)].

To further verify the efficiency of theBCS to include pattern constraints in the synthesis process

without affecting the reliability of the matching in the remaining portion of the pattern, the

constraint has been moved in another region of the visible range by settingum = 0.8 and

uM = 1.0. As expected, the trade-off pattern carefully matches the reference in the constrained

region (ξ = 6.81×10−5 - Tab. V), while uncontrolled lobes appear foru > 0.8 [Fig. 11(b)]. The

use of a directive element [e.g., acos(θ) radiating element] might then enable the control of the

sidelobes in the whole visible region [Fig. 11(b)] with a significant saving of active elements
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in comparison with the uniform array synthesizing the entire Dolph pattern (PBCS = 21 vs.

PUNI = 40).

The last part of the numerical assessment is aimed at analyzing the capability of theBCS ap-

proach to also take into account geometrical constraints. Towards this end and considering the

same reference pattern of the previous experiments, two different aperture-blockage problems

have been defined: (i) dn /∈ [5.3λ, 6.5λ] and (ii ) dn /∈ [0.0λ, 1.0λ]. The plots of the synthe-

sized trade-off arrangements assess the effectiveness andreliability of theBCS technique in

constraining the element positions to desired locations [Fig. 12(a) and 13(a)], while designing

sparse arrangements (∆L > λ/2 - Tab. V) with reduced apertures (LBCS < 19.47), as well. It

is also worthwhile to point out that, notwithstanding the non-negligible reduction of the admis-

sible spatial region for the array elements (more than10% in both cases), theEBCS(u) pattern

matches the referenceEREF (u) with a great care [Fig. 12(b) and Fig. 13(b)] as confirmed by

the values of the matching index [(i) ξ = 5.82× 10−6 and (ii ) ξ = 4.81× 10−5 - Tab. V].

4 Conclusions

In this paper, theBCS has been applied to the synthesis of sparse arrays with desired radiation

properties. The pattern matching problem has been properlyreformulated in a suitable Bayesian

framework and successively solved with a fast solver. An extensive numerical validation has

been carried out dealing with different reference patterns, array sizes, and constraints to assess

the feasibility and reliability of theBCS approach as well as its efficiency, flexibility, and accu-

racy. Selected comparisons with state-of-the-art techniques have highlighted the advantages and

limitations of theBCS synthesis in terms of sensitivity on control parameters, performances,

and computational complexity. The proposed technique has shown the following main features:

• several tradeoffs solutions can be easily obtained by meansof simple modifications of the

control parameters (σ2, uk, dn, andσ2
0) (Sect. 3.1);

• BCS favorably compares with state-of-the-art techniques suchas theMPM [7] in terms

of accuracy, array sparseness, and computational burden when matching reference broad-

side patterns (Sect. 3.2);
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• on average the number of active elements in aBCS array turns out to be smaller than

the corresponding uniform arrangement (PBCS ≈ 0.7÷ 0.65PUNI) still providing a high

accuracy in matching the reference pattern (i.e.,ξ ≤ 10−4);

• BCS usually outperformsMPM when dealing with shaped beampatterns (Sect. 3.3);

• application-specific constraints on either the radiation pattern or the geometrical charac-

teristics of the array can be easily and efficiently taken into account (Sect. 3.4).

Subjects of future researches will be the analysis of the mutual coupling effects in the presence

of realistic array elements as well as an enhanced exploitation of directive elements. Further

extensions, out-of-the-scope of the present paper, will concern with complex excitations and

non-symmetric layouts.
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Appendix

- Sequential Solver for the Maximization of L (a, σ2)

The marginal likelihood maximization algorithm proposed in [34] is hereinafter customized to

deal with user-defined pattern matching problems. Startingfrom the knowledge ofEREF and

Ψ, the following sequence is iteratively (r being the iteration index) applied:

1. Initialization (r = 0) - Set[σ2]
(r)

= var [EREF ]× σ2
0 and then-th entry of the diagonal

matrixA(r) , diag
(

a
(r)
1 , ..., a

(r)
N

)

as follows

a(r)
n =

‖ψn‖4

‖ψT
n EREF‖2 − [σ2](r) ‖ψn‖2

(17)

if n = n̂ anda(r)
n =∞ otherwise,̂n andψn being randomly picked integers within[1, N ]

and then-th column ofΨ, respectively;
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2. Update - EvaluateΣ(r) = Σ
(

A(r), [σ2]
(r)

)

andµ(r) = µ
(

A(r), [σ2]
(r)

)

to compute the

sparsityfactorss(r)
n = ψT

nC
−1
−nψn,n = 1, ..., N and thequalityfactorsz(r)

n = ψT
nC

−1
−nEREF ,

n = 1, ..., N whereC−n = C − a−1
n ψnψ

T
n ;

3. Candidate Basis Vector Evaluation - Select ther-th candidate basis vector(8) ψn, n = r,

and computeΘ(r)
n =

(

z
(r)
n

)2

− s(r)
n . If Θ

(r)
n > 0, then update the value ofa(r)

n by means

of (17), otherwise seta(r)
n =∞;

4. Convergence Check - Compute the value ofΘ(r)
n ∀n ∈ 1, ..., N . If Θ

(r)
n ≤ τ ∀n (τ

being thetolerance factorusually set to10−8 [35]), then terminate. Otherwise, update

the iteration index (r ← r + 1) and go to step 2.

(8)Please refer to [34] for a review of the strategies for candidate selection.
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FIGURE CAPTIONS

• Figure 1. BCS Sensitivity Analysis(Dolph-Chebyshev:L = 9.5λ, PSL = −20 dB)

- Plot of the representative points of a set ofBCS solutions in the (ξ, PBCS) plane (a).

Power patterns (b) and corresponding layouts (c) of the reference and of a set of repre-

sentativeBCS arrays.

• Figure 2. BCS Sensitivity Analysis(Dolph-Chebyshev:L = 9.5λ, PSL = −20 dB) -

Behaviours ofξ andPBCS versus (a) K, (b) σ2, (c) σ2
0, and (d) N .

• Figure 3. BCS Sensitivity Analysis(Dolph-Chebyshev:L = 9.5λ, PSL = −20 dB) -

Plots of|EREF (u)−EBCS(u)|2 of representativeBCS solutions computed at different

values of (a) K, (b) σ2, (c) σ2
0 , and (d) N .

• Figure 4. BCS Assessment(Broadside Pattern Synthesis) - Pareto fronts in the (ξ, PBCS)

plane (a)(b) and power patterns (c)(d) of representativeBCS solutions when matching

(a)(c) Dolph-Chebyshev and (b)(d) Taylor reference patterns.

• Figure 5. BCS Assessment(Broadside Pattern Synthesis) - Representative points in the

(ξ, P ) plane ofBCS andMPM solutions synthesized when matching the reference

Dolph-Chebyshevpatterns characterized by: (a) L = 9.5λ - PSL = −30 [dB], (b)

L = 14.5λ - PSL = −30 [dB], (c) L = 19.5λ - PSL = −30 [dB], (d) L = 19.5λ -

PSL = −20 [dB], and (e) L = 19.5λ - PSL = −40 [dB].

• Figure 6. BCS Assessment(Broadside Pattern Synthesis) - Representative points in the

(ξ, P ) plane ofBCS andMPM solutions synthesized when matching the reference

Taylor patterns characterized by: (a) L = 9.5λ - PSL = −30 [dB], (b) L = 14.5λ -

PSL = −30 [dB], (c) L = 19.5λ - PSL = −30 [dB], (d) L = 19.5λ - PSL = −20

[dB], and (e) L = 19.5λ, PSL = −40 [dB].

• Figure 7. BCS Assessment(Shaped Pattern Synthesis:L = 5.4λ [36]) - Representative

points in the (ξ, P ) plane ofBCS andMPM solutions synthesized when matching the

referenceShapedpatterns [36] characterized by: (a) PSL = −20 dB, (b) PSL = −30

[dB], and (c) PSL = −40 [dB]. Array excitations (d).
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• Figure 8. BCS Assessment(Flat-Top Pattern Synthesis:L = 8.5λ [37]) - Representative

points in the (ξ, P ) plane ofBCS andMPM solutions (a), optimal trade-off beampat-

terns (b), and associated array excitations (c).

• Figure 9. BCS Assessment(Flat Top Pattern Synthesis:L = 19.5λ) - Representative

points in the (ξ, P ) plane ofBCS andMPM solutions (a), optimal trade-off beampat-

terns (b), and associated array excitations (c).

• Figure 10. BCS Assessment[Constrained Synthesis - Dolph-Chebyshev:L = 19.5λ,

uk /∈ (0.45, 0.55)] - Array excitations (a) and power patterns (b).

• Figure 11. BCS Assessment(Constrained Synthesis - Dolph-Chebyshev:L = 19.5λ,

uk /∈ (0.8, 1.0]) - Array excitations (a) and power patterns when using isotropic or direc-

tive elements (b).

• Figure 12. BCS Assessment[Constrained Synthesis- Dolph-Chebyshev:L = 19.5λ,

dn /∈ (5.3λ, 6.5λ)] - Array excitations (a) and power patterns (b).

• Figure 13. BCS Assessment[Constrained Synthesis- Dolph-Chebyshev:L = 19.5λ,

dn /∈ (0.0λ, 1.0λ)] - Array excitations (a) and power patterns (b).

TABLE CAPTIONS

• Table I. BCS Assessment(Broadside Pattern Synthesis) - Array performance indexes.

• Table II. BCS Assessment(Shaped Pattern Synthesis:L = 5.4λ [36]) - Array perfor-

mance indexes.

• Table III. BCS Assessment(Shaped Pattern Synthesis:L = 8.5λ [37]) - Array perfor-

mance indexes.

• Table IV. BCS Assessment(Shaped Pattern Synthesis:L = 19.5λ) - Array performance

indexes.
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• Table V. BCS Assessment(Constrained Synthesis- Dolph-Chebyshev:L = 19.5λ) -

Array performance indexes.
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Figure 13 - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Reference Pattern Uniform BCS

Type L [λ] PSL [dB] PUNI
LUNI

L
ξ [×10−5] PBCS

PUNI

∆Lmin

λ/2
∆L
λ/2

LBCS

L
t [×10−1s]

Dolph 9.5 −30 20 1.0 2.62 0.70 1.26 1.46 1.000 1.12

Dolph 14.5 −30 30 1.0 9.98 0.66 1.35 1.52 1.000 2.93

Dolph 19.5 −20 40 1.0 7.10 0.65 1.50 1.56 0.997 2.14

Dolph 19.5 −30 40 1.0 3.03 0.70 0.78 1.42 0.995 1.18

Dolph 19.5 −40 40 1.0 9.09 0.65 1.56 1.56 1.000 1.13

Taylor 9.5 −30 20 1.0 7.82 0.70 1.22 1.46 1.000 1.27

Taylor 14.5 −30 30 1.0 9.64 0.66 1.35 1.52 1.000 3.14

Taylor 19.5 −20 40 1.0 8.53 0.65 1.34 1.55 0.994 1.92

Taylor 19.5 −30 40 1.0 3.13 0.65 0.80 1.43 0.993 1.48

Taylor 19.5 −40 40 1.0 3.62 0.65 1.36 1.54 0.990 1.01
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Reference Pattern Method Indexes

L [λ] PSL [dB] ξ P ∆Lmin

∆LUNI

∆L
∆LUNI

L
LUNI

t [s]

5.4 −20 [36] − 10 1.00 1.00 1.00 −

5.4 −20 BCS 4.55× 10−6 10 0.34 0.96 0.96 1.5× 10−1

5.4 −20 MPM 7.82× 10−3 10 0.99 1.74 1.74 3.3× 10−2

5.4 −30 [36] − 10 1.00 1.00 1.00 −

5.4 −30 BCS 8.27× 10−6 10 0.39 0.96 0.96 1.4× 10−1

5.4 −30 MPM 3.45× 10−3 10 0.99 1.74 1.74 2.5× 10−2

5.4 −40 [36] − 10 1.00 1.00 1.00 −

5.4 −40 BCS 3.53× 10−6 10 0.63 0.97 0.97 1.6× 10−1

5.4 −40 MPM 0.84× 10−3 10 0.99 1.74 1.74 2.9× 10−2

Table II - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Uniform BCS MPM MPM [37]

L [λ] 8.5 8.33 8.36 8.50

PSL [dB] −20 −20.2 −13.2 −14.63

P 18 12 12 9

P
PUNI

− 0.66 0.66 0.50

∆Lmin

∆LUNI
− 1.18 < 0.01 1.42

∆L
∆LUNI

− 1.51 1.52 2.12

L
LUNI

− 0.980 0.984 1.00

t [s] − 2.0× 10−1 2.8× 10−1 −

ξ − 2.79× 10−5 4.02× 10−3 7.02× 10−3

Table III - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Uniform (WLM) BCS MPM

L [λ] 19.5 19.5 19.5

PSL [dB] −17.2 −17.4 −3.6

P 40 26 26

P
PUNI

− 0.65 0.65

∆Lmin

∆LUNI
− 0.975 < 0.01

∆L
∆LUNI

− 1.56 1.56

L
LUNI

− 1.0 1.0

t [s] − 1.4× 10−1 3.3× 10−1

ξ 3.52× 10−5 4.81× 10−2

Table IV - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Reference Pattern Constraint BCS Indexes

L [λ] PSL [dB] ξ P ∆Lmin[λ] ∆L [λ] L [λ] t [×10−1s]

19.5 −30 uk /∈ (0.5, 0.6) 3.71× 10−5 26 0.455 0.776 19.36 2.17

19.5 −30 uk /∈ (0.8, 1) 6.81× 10−5 21 0.585 0.928 19.50 1.40

19.5 −30 dn /∈ (5.3, 6.5) [λ] 5.82× 10−6 36 0.067 0.556 19.47 1.61

19.5 −30 dn /∈ (0, 1) [λ] 4.81× 10−5 30 0.029 0.670 19.44 1.65
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