
 Open access Proceedings Article DOI:10.1109/ICASSP.2010.5495638

Bayesian compressive sensing for phonetic classification — Source link

Tara N. Sainath, Avishy Carmi, Dimitri Kanevsky, Bhuvana Ramabhadran

Institutions: IBM, University of Cambridge

Published on: 14 Mar 2010 - International Conference on Acoustics, Speech, and Signal Processing

Topics: Support vector machine and TIMIT

Related papers:

 Robust Face Recognition via Sparse Representation

 Regression Shrinkage and Selection via the Lasso

 Sparse coding for speech recognition

 An Introduction To Compressive Sampling

 Compressed sensing

Share this paper:

View more about this paper here: https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-
2s5cfpk1d4

https://typeset.io/
https://www.doi.org/10.1109/ICASSP.2010.5495638
https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4
https://typeset.io/authors/tara-n-sainath-25a6bczxeg
https://typeset.io/authors/avishy-carmi-1vht9ljysx
https://typeset.io/authors/dimitri-kanevsky-3445teho5t
https://typeset.io/authors/bhuvana-ramabhadran-29lfiy17uo
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/institutions/university-of-cambridge-2qc4lk4s
https://typeset.io/conferences/international-conference-on-acoustics-speech-and-signal-14bc3mci
https://typeset.io/topics/support-vector-machine-gc9ia0ms
https://typeset.io/topics/timit-1y93le2j
https://typeset.io/papers/robust-face-recognition-via-sparse-representation-4bfqv6y74o
https://typeset.io/papers/regression-shrinkage-and-selection-via-the-lasso-6mx35txfr5
https://typeset.io/papers/sparse-coding-for-speech-recognition-1nvyp8tzpg
https://typeset.io/papers/an-introduction-to-compressive-sampling-2hmwh5fxcd
https://typeset.io/papers/compressed-sensing-3z461x7qos
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4
https://twitter.com/intent/tweet?text=Bayesian%20compressive%20sensing%20for%20phonetic%20classification&url=https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4
https://typeset.io/papers/bayesian-compressive-sensing-for-phonetic-classification-2s5cfpk1d4

BAYESIAN COMPRESSIVE SENSING FOR PHONETIC CLASSIFICATION

Tara N. Sainath1, Avishy Carmi2, Dimitri Kanevsky1 and Bhuvana Ramabhadran1

1IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2 The Signal Processing Group, Department of Engineering, University of Cambridge, UK

1tnsainat@us.ibm.com, 2ac599@cam.ac.uk, 1{kanevsky, bhuvana}@us.ibm.com

ABSTRACT

In this paper, we introduce a novel bayesian compressive sensing

(CS) technique for phonetic classification. CS is often used to char-

acterize a signal from a few support training examples, similar to

k-nearest neighbor (kNN) and Support Vector Machines (SVMs).

However, unlike SVMs and kNNs, CS allows the number of sup-

ports to be adapted to the specific signal being characterized. On

the TIMIT phonetic classification task, we find that our CS method

outperforms the SVM, kNN and Gaussian Mixture Model (GMM)

methods. Our CS method achieves an accuracy of 80.01%, one of

the best reported result in the literature to date.

Index Terms— Compressive sensing, Pattern classification

1. INTRODUCTION

Parametric modeling techniques, such as Gaussian Mixture Models

(GMMs) continue to be extremely popular for pattern recognition

tasks in speech recognition. While these techniques allow for fast

model training and scoring, training samples are pooled together for

parameter estimation, resulting in a loss of information that exists

within individual training samples. Alternatively, non-parametric

methods, including k-nearest neighbors (kNNs) [1] and Support Vec-

tor Machines (SVMs) [2] utilize the details of actual training exam-

ples. Since the number of training examples in speech tasks can be

very large, both of these non-parametric techniques adopt a common

theme of using a few number of training examples to characterize a

test vector. However, both techniques do not adapt their supports to

each test example. SVMs select a sparse subset of relevant train-

ing examples, known as support vectors, and use these supports to

characterize “all” examples in the test set. Similarly kNN methods

characterize a test point by selecting a small fixed number of k points

from the training set which are closest to the test vector, and voting

on the class that has the highest occurrence from these k samples. In

theory, adapting the number of k points per test vector could help.

In recent years, compressive sensing (CS) [3] has become a pop-

ular technique to represent a test signal by a few small training exam-

ples. Mathematically speaking, in a typical CS formulation, a matrix

H is constructed consisting of possible examples of the signal, that is

H = [h1;h2 . . . ;hn]. To reconstruct a signal y from H , CS solves

the equation y = Hβ. A sparseness condition is enforced on β, such

that it selects a small number of examples from H to describe y. CS

has typically been used for signal compression and recover, though

recently it has also shown success in face recognition [4] over lin-

ear SVM and 1-NN methods. One benefit of CS is that for a given

test example, CS adaptively selects the relevant support vectors β
from the training set H . It is this benefit of CS that motivates us to

explore its benefit over SVMs, kNNs and GMMs in speech recog-

nition. Specifically, we compare the performance of CS to the three

classifiers on the benchmark TIMIT phonetic classification task [5].

In this paper, we introduce three novel contributions in applying

CS for phonetic classification. First, we explore a novel method for

solving the CS problem. State-of-the-art methods for sparse signal

recovery typically utilize the Lasso technique to solve for the support

vectors [6]. However, this method only provides a point estimate for

β, and can thus be considered to be a sub-optimal solution. Recently,

we have introduce an Approximate Bayesian Compressive Sensing

(ABCS) formulation [7] which allows us to derive a closed-form

recursion for estimating sparseness parameters. We have found that

this ABCS method offered improvements over to the Lasso method

for a small fMRI binary classification task [7]. In this paper, we

explore the generality of ABCS for a large scale 39-phone TIMIT

classification task. In addition, the benefit of this Bayesian approach

is that it allows us to build CS on top of other Bayesian classifiers,

for example a GMM. Therefore, we will show that one can think of

CS as being a non-parametric classifier on top of a GMM.

A CS problem simply gives a solution of sparse vectors β given

a set of training examples in H and a test vector y. Our second con-

tribution introduces a framework of using the CS solution to gener-

ate an actual classification decision. Finally, many non-parametric

methods such as SVM have been shown to offer better performance

when the data is mapped to a nonlinear space. Thus far, CS tech-

niques represent y as a combination of examples in H , where both

y and H reside in the original input space. Our third contribution

is the introduction of nonlinearity into CS but constructing H such

that it contains both linear and non-linear features. We find that this

non-linear CS approach offers improvements over linear CS.

Our experiments on TIMIT are conducted with two different fea-

ture sets. Using MFCC features, we find that our nonlinear CS ap-

proach outperforms both the GMM and kNN methods, and offers

similar performance to the SVM. Next, using discriminative feature

space Boosted Maximum Mutual Information (fBMMI) features, we

find that CS technique offers an accuracy of 80.01% which outper-

forms both the GMM, kNN and SVM methods, and is close to the

best reported result of 81.3% in the literature to date ([8]).

The rest of this paper is organized as follows. Section 2 reviews

our novel ABCS formulation, while Section 3 discusses applying CS

to phonetic classification. Section 4 presents the experiments per-

formed, followed by a discussion of the results in Section 5. Finally,

Section 6 concludes the paper and discusses future work.

2. ABCS DERIVATION

In this section, we formulate the ABCS solution. Ultimately, we

would like to use CS to solve the following problem:

y = Hβ s.t. ‖ β ‖21< ǫ for β (1)

4370978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

Here ‖ β ‖21< ǫ denotes a sparseness-promoting semi-gaussian

constraint, which we will describe in more detail below. In addition,

y is a frame of data from the test set such that y ∈ ℜm where m
is the dimension of the feature vector y. H is a matrix of training

examples and H ∈ ℜm×n where m << n. We assume that y
satisfies a linear model as: y = Hβ + ζ where ζ ∼ N(0, R). This

allows us to represent p(y|β) as a Gaussian distribution as:

p(y|β) ∝ exp(−1/2(y −Hβ)TR−1(y −Hβ)) (2)

Assuming β is a random variable with prior p(β), we can obtain

the maximum a posteriori (MAP) estimate for β as follows: β∗ =
argmaxβ p(β|y) = maxβ p(y|β)p(β). In the ABCS formulation,

we assume that p(β) is actual the product of two prior constraints,

namely a Gaussian constraint pG(β) and a semi-gaussian constrain

pSG(β) which enforces sparseness. Below, we present a two-step

solution to solve the following problem in the ABCS framework.

β∗ = argmax
β

p(y|β)pG(β)pSG(β) (3)

2.1. Step 1

In step 1, we solve for the β which maximizes the following ex-

pression. Equation 4 is equivalent to solving the equation y = Hβ
without enforcing a sparseness constraint on β [7].

β∗ = argmax
β

p(y|β)pG(β) (4)

We assume that pG(β) is a Gaussian, i.e., pG(β) =
N(β|β0, P0). Here β0 and P0 are initialized statistical moments uti-

lized in the algorithm. In [7], we show that the solution to Equation

4 has a closed form solution given by Equations 5a and 5b.

β∗ = β1 =
(

I − P0H
T (HP0H

T +R)−1H
)

β0+

P0H
T (HP0H

T +R)−1y (5a)

Similarly, we can express the variance of β1 as P1 =
E
[

(β − β1)(β − β1)
T
]

, given more explicitly by Equation 5b.

P1 = (I − P0H
T (HP0H

T +R)−1H)P0 (5b)

2.2. Step 2

Step 1 essentially solved for the pseudo-inverse of y = Hβ, of

which there are many solutions. In this section, we impose an ad-

ditional constraint that β will have a sparseness-promoting semi-

Gaussian prior, as given by Equation 6. Here σ2 is a constant pa-

rameter which controls the degree of sparseness of β.

pSG(β) = exp

(

−
||β||21
2σ2

)

(6)

Given the solutions to Step 1 in Equations 5a and 5b, we

can simply rewrite Equation 4 as another Gaussian as p′(β|y) =
p(y|β)pG(β) = N(β|β1, P1). Therefore, let us assume now that

we would like to solve for the MAP estimate of β given the con-

straint that it is semi-gaussian, in other words:

β∗ = argmax
β

p′(β|y)pSG(β) (7)

In order to represent pSG(β) as a Gaussian the same way that

p(y|β) in Equation 2 was represented, let us define βi to be the ith

entry of the vector β. We introduce a matrix Ĥ of which the entries

are set as Ĥi(βi) = sign(βi), for i = 1, . . . , n. Here Ĥi(βi) = +1

for βi > 0, Ĥi(βi) = −1 for βi < 0, and Ĥi(βi) = 0 for βi = 0.

This matrix Ĥ is motivated from the fact that

‖ β ‖21= (
∑

i

(|βi|))2 = (
∑

i

(Ĥi(βi)βi))2 = (Ĥβ)2 (8)

Substituting the expression for ‖ β ‖21 given in Equation 8 and

assuming a that y = 0, we can rewrite Equation 6 as Equation 9.

Notice that Equation 9 has the same form as Equation 2 with H and

R now replaced by Ĥ and σ respectively.

pSG(β) = p(y = 0|β) = exp

(

−(0− Ĥβ)2

2σ2

)

(9)

The only problem with using Equation 7 to solve for β is the de-

pendency of Ĥ on β in Equation 5a. Therefore, we make an assump-

tion, by calculating Ĥ based on the sign of the previously estimated

β. In other words Ĥi(βi) ≈ Ĥi(βi
k−1). With this approximation

we can use Equations 5a and 5b to solve Equation 9. However, be-

cause of this semi-gaussian approximation, we must estimate β and

P iteratively. As [7] shows, this iteration also requires that we set

σ2 as σ2 × d, where d is the total number of iterations of Step 2.

Equation 10 gives the recursive formula which solves Equation 7 at

iteration k for k > 1 to d. Note that p′(β|y) = N(β|βk−1, Pk−1).

βk = βk−1 −
Pk−1Ĥ

T

ĤPk−1ĤT + d× σ2
Ĥβk−1 (10a)

Pk =

[

I −
Pk−1Ĥ

T

ĤPk−1ĤT + d× σ2

]

Pk−1 (10b)

In [7], we show that for large σ2 and large k, the estimate of

β and P using the approximate semi-gaussian given in Equation 9

is bounded from the estimate of these parameters for the true semi-

gaussian given in Equation 6 by O(1/σ2).

3. ABCS FOR CLASSIFICATION

Now that we have described the ABCS formulation, in this section

we discus how CS can be used for classification.

3.1. Classification Based on Sparse Representation

The goal of classification is to use training data from k differ-

ent classes to determine the best class to assign to test vector y.

First, let us consider taking all training examples ni from class i
and concatenate them into a matrix Hi as columns, i other words

Hi = [xi,1, xi,2, . . . , xi,ni
] ∈ ℜm×ni , where x ∈ ℜm represents

a feature vector from the training set of class i with dimension m.

Given sufficient training examples from class i, [4] shows that a test

sample y from the same class can be represented as a linear combi-

nation of the entries in Hi weighted by β, that is:

y = βi,1xi,1 + βi,2xi,2 + . . .+ βi,ni
xi,ni

(11)

However, since the class membership of y is unknown, we define

a matrix H to include training examples from all k classes in the

training set, in other words the columns of H are defined as H =
[H1,H2, . . . , Hk] = [x1,1, x1,2, . . . , xk,nk

] ∈ ℜm×N . Here m is

the dimension of each feature vector x and N is the total number of

all training examples from all classes. We can then write test vector

4371

y as a linear combination of all training examples, in other words

y = Hβ. Ideally the optimal β should be sparse, and only be non-

zero for the elements in H will belong to the same class as y. This

motivates us to solve for the sparse representation of β using the

ABCS formulas presented in Section 2.

3.2. Classification Rule

Now that we have described our method to solve for β is via ABCS,

we now discuss how to assign y as belonging to a specific class.

Ideally, all nonzero entries of β should correspond to the entries in H
with the same class as y. In this ideal case, y will assign itself to one

training example from H , and we can assign y to the class which has

the largest support in β. However, due to noise and modeling error, β
belonging to other classes could potentially be non-zero. Therefore,

we compute the l2 norm for all β entries within a specific class, and

choose the class with the largest l2 norm support.

More specifically, let us define a selector δi(β) ∈ ℜN as a vector

whose entries are non-zero except for entries in β corresponding to

class i. We then compute the l2 norm for β for class i as ‖ δi(β) ‖2.

The best class for y will be the class in β with the largest l2 norm.

Mathematically, the best class i∗ is defined as

i∗ = max
i

‖ δi(β) ‖2 (12)

3.3. Construction of H

Since parametric techniques such as GMMs continue to be popular

for pattern recognition tasks in speech recognition, this implies the

availability of training data required to sufficiently estimate model

parameters. Pooling together all training data from all classes into H
will make the columns of H large (i.e., can be greater than 100,000

for TIMIT), and will make solving for β using Equations 5 and 10

intractable. Furthermore, given H ∈ ℜm×N , [3] shows that condi-

tion given by Equation 13 must hold in order for the CS solution of

β to be sparse. Here s is the number of non-zero support vectors in

β. For sufficiently large N , Equation 13 will not hold.

m > 2s log(N) (13)

Therefore, to reduce the size of N and make ABCS problem

more solvable, for each y, we find a neighborhood of closest points

to y in the training set using a kd-tree [1]. These k neighbors become

the entries of H . k is chosen to be in the large to ensure that β is

sparse and all training examples are not chosen from the same class.

3.4. Choice of P0

As discussed in Section 2.1, constants P0 and β0 must be chosen

to initialize the ABCS algorithm. Recall that β0 and the diagonal

elements of P0 all correspond to a specific class. We choose β0 to be

0 since we do not have a very confident estimate of β and we assume

its sparse around 0 anyways. We choose to initialize a diagonal P0

where the entries corresponding to a particular class are proportional

to the GMM posterior for that class. The intuition behind this is that

the larger the initial P0, the more weight is given to examples in

H belonging to this class in ABCS. Therefore, the GMM posterior

picks out the most likely supports, and ABCS provies an addition

step by using the actual training data to refine these supports.

3.5. Non-Linear CS

The traditional CS implementation represents y as a linear com-

bination of samples in H . Many pattern recognition algorithms,

such as SVMs [2] have shown better performance can be achieved

by a nonlinear mapping of the feature set to a higher dimensional

space. After this mapping, a weight vector w is found which

projects all dimensions within a particular feature vector to a sin-

gle dimension where different classes are linearly separable. We

can think of this weight vector w as selecting some linear com-

bination of dimensions within a feature vector to make it linearly

separable. The goal of CS is to find a linear combination of ac-

tual features, not dimensions within a feature vector. Therefore,

we introduce nonlinearity into CS, by constructing H such that

the entries of H themselves are nonlinear. For example, one such

nonlinearity is to square all the elements within H . That is if

we define Hlin = [x1,1, x1,2, . . . , xk,nk
], then H2 is defined as

H2 = [x2

1,1, x
2

1,2, . . . , x
2

k,nk
] and similarly H3 would take cubed

products of each of the x entries. We could also take products be-

tween different xi as Hinner = [x1,1x1,2, x1,1x1,3 . . . , xk,8xk,nk
].

We then take a specific nonlinear Hnonlin and combine it with the

linear Hlin to form a new Htot = [Hlin, Hnonlin] and use ABCS to

solve for β. In Section 5.1, we discuss the performance of the ABCS

algorithm for different choices of nonlinear H .

4. EXPERIMENTS

Classification experiments are conducted on TIMIT [5] acoustic

phonetic corpus. The corpus contains over 6,300 phonetically rich

utterances divided into three sets. The standard NIST training set

consists of 3,696 sentences, used to train various models used by

the recognizer. The development set is composed of 400 utterances

and is used to train various classifier tuning parameters. The full test

set includes 944 utterances, while the core test set is a subset of the

full test set containing 192 utterances. In accordance with standard

experimentation on TIMIT [9], the 61 phonetic labels are collapsed

into a set of 48 for acoustic model training, ignoring the glottal stop

[q]. For testing purposes, the standard practice is to collapse the 48

trained labels into a smaller set of 39 labels [9].

We compare two sets of segmental features in our experiments.

First, we represent each frame in our signal by a 13 dimensional

MFCC. We split each phonetic segment into thirds, taking the av-

erage of these frame-level features around 3rds, and splice them to-

gether to form a 39 dimensional vector. This allows us to capture

time dynamics into each segment. Then, at each segment, segmen-

tal feature vectors to the left and right of this segment are joined

together and a Linear Discriminative Analysis (LDA) transform is

applied to project 117 dimensional feature vector down to 40 di-

mensions. We also explore using discriminative features, namely

Feature Space Boosted Maximum Mutual Information (fBMMI) fea-

tures. Again, we first compute these features at a frame level, and

then employ a similar averaging scheme as with the MFCC features

to create a segmental feature vector. Then, at each segment, fea-

tures from the neighboring frames are spliced together and an LDA

is applied to reduce these features down to 40 dimensions.

First, we analyze the performance of the CS classifier for dif-

ferent choices of linear and nonlinear H as described in Section

3.4. Next, we compare the performance of CS with three other stan-

dard classifiers used on this task, namely a Gaussian Mixture Model

(GMM), Support Vector Machine (SVM) [2] and k-nearest Neigh-

bors (kNN) classifier [1]. The parameters of each classifier were

optimized for each feature set on the development set. Specifically,

we found that modeling each phone as a 16-component GMM was

appropriate. The kernel type and parameters within this kernel were

optimized for the SVM. In addition, the number of k closest neigh-

bors for kNN was also learned. And finally, for CS the size of Hlin

4372

was optimized to be 200 examples from the kd-tree. In addition to

compute Hnonlin, 100 columns were randomly chosen from Hlin

to compute each type of nonlinear H .

5. RESULTS

5.1. Performance for Different H

Table 1 shows the accuracy on the development set for different

choices of H using MFCC features. Notice that the nonlinear

CS-HlinH
2 method offers improvements over the linear CS-Hlin

method. Taking HlinH
2H3 offers addition improvements, though

overtraining occurs when higher order features past H3 are used.

Furthermore, there is very little difference between squaring indi-

vidual entries of H (i.e. HlinH
2) or taking products between dif-

ferent entries of H (i.e., HlinHinner). While not shown here, sim-

ilar trends were also observed for fBMMI features. Since the CS-

HlinH
2H3 method offers the best performance of the CS methods,

we will report the results for this classifier in subsequent sections.

Method Dev-MFCC

CS-Hlin 76.64

CS-HlinH
2 76.84

CS-HlinH
2Hinner 76.53

CS-HlinH
2H3 76.89

CS-HlinH
2H3H4 76.86

Table 1. Accuracy for Different H using MFCC features

5.2. Comparison of Different Classifiers

Table 2 compares the performance of the CS classifier with the

GMM, kNN and SVM methods for both MFCC and fBMMI fea-

tures. Classifiers which are not statistically significant from the CS

classifier, as confirmed by McNemar’s Test, are also indicated by

‘=’. First, notice that when MFCC features are used, CS outpeforms

both then kNN and GMM methods, and offers similar performance

to the SVM. When discriminative features are used, the GMM tech-

nique is closely matched to the SVM though CS is able provide fur-

ther gains over these two methods. This is one of the benefits of CS -

a discriminative non-parametric classifier built on top of the GMM.

Method MFCC fBMMI

GMM 74.19 78.31

kNN 73.69 79.58 (=)

SVM 76.20 (=) 78.38

CS-HlinH
2H3 76.44 80.01

Table 2. Accuracy for Different Classifiers on TIMIT Testcore Set

5.3. Analysis of Results

To better understand the gains achieved by the CS classifier com-

pared to the other three techniques, Figure 1 plots the relative dif-

ference in error rates within 6 broad phonetic classes (BPCs) for CS

compared to the three other methods. First, notice that CS offers

improvements over the GMM in all BPCs, again confirming its ben-

efit of a non-parametric discriminative classifier on top of the GMM.

Secondly, while the SVM technique offers improvements over the

CS method in the vowel/semi-vowel class, the CS method signifi-

cantly outperforms the SVM in the weak fricative, stop and closure

classes. Finally, the CS method offers slight improvements over the

kNN method in the nasal, strong fricative and stop classes, while

kNN offers slight improvements in the vowel, weak fricative and clo-

sure classes. Thus, we can see that with the exception of the GMM,

the gains from CS do not come from it outperforming the kNN and

SVM techniques within all BPCs, but only within certain BPCs.

1 2 3 4 5 6
−10

0

10

20

30

40

50

60

70

vow/sv nas
sf

wf

st

cl

Broad Phonetic Classes

R
e
la

ti
v
e
 D

if
fe

re
n
c
e
 i
n
 E

rr
o
r

(%
)

GMM−CS

SVM−CS

kNN−CS

Fig. 1. Rel. Diff. in Error Rates Between CS and Other Methods

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the use of a bayesian CS approach and
applied this to phonetic classification. On the TIMIT phonetic clas-
sification task, we found that our nonlinear CS method outperformed
the GMM, SVM and kNN methods and offered an accuracy of
80.01%, close to the best reported result in the literature. In the
future, we would like to explore the use of CS for speech recogni-
tion. Specifically, since CS appears to offer extra discrimination on
top of a GMM, we would like to explore using it to provide acous-
tic scores for Hidden Markov Model (HMM) states, the output of
which follows a GMM distribution. In addition, we would like to
explore methods to decrease the computational complexity of the
CS method, making it more usable for speech recognition tasks.

7. REFERENCES

[1] D. Mount and S. Arya, ANN: A Library for Approximate

Nearest Neighbor Searching, 2006, Software available at
http://www.cs.umd.edu/ mount/ANN/.

[2] C. Chang and C. Lin, LIBSVM: A Library for Support Vector Machines,
2001, Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] D. Donoho, “Compressed sensing,” IEEE Transactions on Information

Theory, vol. 52, pp. 1289–1306, 2006.

[4] J. Wright, A.Y. Yang, A. Ganesh, S. Shankar Sastry, and Y. Ma, “Robust
Face Recognition via Sparse Representation,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 31, pp. 210–227, 2009.

[5] L. Lamel, R. Kassel, and S. Seneff, “Speech Database Development:
Design and Analysis of the Acoustic-Phonetic Corpus,” in Proc. of the

DARPA Speech Recognition Workshop, 1986.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[7] A. Carmi, P. Gurfil, D. Kanevsky, and B. Ramabhadran, “ABCS: Ap-
proximate Bayesian Compressed Sensing,” Tech. Rep., Human Lan-
guage Technologies, IBM, 2009.

[8] H. Chang and J. Glass, “Hierarchical Large-Marging Gaussian Mixture
Models for Phonetic Classification,” in Proc. ASRU, 2007.

[9] K. F. Lee and H. W. Hon, “Speaker-independent Phone Recognition Us-
ing Hidden Markov Models,” IEEE Transacations on Acoustics, Speech

and Signal Processing, vol. 37, pp. 1641–1648, 1989.

4373

