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ABSTRACT

In this paper, we propose a novel algorithm for image recon-

struction from compressive measurements of wavelet coeffi-

cients. By incorporating independent Laplace priors on sepa-

rate wavelet sub-bands, the inhomogeneity of wavelet coeffi-

cient distributions and therefore the structural sparsity within

images are modeled effectively. We model the problem by

adopting a Bayesian formulation, and develop a fast greedy

reconstruction algorithm. Experimental results demonstrate

that the reconstruction performance of the proposed algorithm

is competitive with state-of-the-art methods while outperform-

ing them in terms of running times.

Index Terms— compressive sensing, wavelet transforms,

signal reconstruction, bayesian methods.

1. INTRODUCTION

Compressive Sensing (CS) [1, 2] is a new methodology for

unifying sampling and compression, allowing sampling at very

low rates compared to the Nyquist rate, and requiring that

the transmitted signal, or some linear representation of it, is

sparse or at least compressible (near-sparse). The CS mea-

surements typically consist of a limited set of random projec-

tions, usually less than the length of the input signal, from

where the original information should be recovered. Spar-

sity prior information can be incorporated into the CS recon-

struction problem by minimizing the number of non-zero co-

efficients, or the l0-norm, of the estimated (decoded) signal,

which results in a highly complex non-convex inverse prob-

lem. Hence, as it is commonly done in the literature [3, 4,

5, 6], sparsity can also be imposed by minimizing instead the

l1-norm, as a convex approximation to the l0-norm.

Together with the near-sparsity typically provided by the

responses of wavelet coefficients to a wide range of piecewise

smooth signals and natural images, we can observe that the
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distribution of the coefficients is not homogeneous through

all scales, and even through different sub-bands at each scale

(e.g., [7]). The idea of incorporating a priori structural in-

formation into the CS decoding process has been recently

proposed in the Model-Based CS approach in [8, 9], where

a clustered parent-child relationship of the Hidden Markov

Tree (HMT) model is used for the wavelet coefficients [10].

Thus, a fixed statistical model for the wavelet tree statistics

is obtained after a training stage, leading to an ad-hoc, but

efficient, solution. On the other hand, by adopting a similar

HMT model, a Bayesian CS approach is developed in [11]

which also exploits the parent-child relationships along the

wavelet tree, but the inference is performed online by statisti-

cal sampling methods, which are computationally expensive.

In this paper, we develop a Bayesian formulation which

exploits the multiscale structure of the wavelet coefficients

and models each subband separately by utilizing different in-

dependent Laplace priors. We propose a reconstruction al-

gorithm which jointly estimates the unknown wavelet coeffi-

cients and the required algorithmic parameters. We demon-

strate the advantages of separate modeling of wavelet sub-

bands with experimental results and show that the proposed

method provides state-of-the-art reconstruction performance

with much faster convergence rates.

2. PROBLEM FORMULATION

Let w be an N ×1 signal, Φ an M ×N matrix with M < N ,

and n a white i.i.d. Gaussian N × 1 noise vector. The CS

encoding can be expressed as

y = Φw + n, (1)

where the measurement matrix Φ has to satisfy the Restricted

Isometry Property [1] and the signal w has to be sparse. By

considering w as the wavelet coefficient vector provided by

the Wavelet Transform (WT) of a given signal or image x, and

by ignoring the scaling coefficients, without loss of generality

we can think of the CS problem as if the measurement matrix

is applied directly on the wavelet coefficients instead of the
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image. Thus, the classical convex CS decoding problem is to

recover w by minimizing

ŵ = argmin
w

{β‖y − Φw‖2

2
+ λ‖w‖1}.

In our approach we divide w into its B sub-bands, w =
(wt

1
, . . . ,wt

B)t, and we enforce sparsity independently on each

sub-band by formulating the problem

ŵ = argmin
w

{β‖y − Φw‖2

2
+

B∑

b=1

λb‖wb‖1}. (2)

Note that no inter-scale constraints are imposed between the

sub-bands, but different regularizers are associated with each

sub-band. We will examine next these concepts from the

Bayesian point of view, and also provide estimates for all the

needed parameters.

3. BAYESIAN MODELING

We formulate the problem in Eq. (2) following the Bayesian

approach in [6, 12]. The observation model is given by

p(y|w, β) = N (y|Φw, β−1),

and the l1 regularization term can be reformulated by assum-

ing independent Laplacian priors for each sub-band wb

p(w|λ) =

B∏

b=1

p(wb|λb) =

B∏

b=1

Nb∏

i=1

λb exp(−λb|wbi|)

=
B∏

b=1

λNb

b exp(−λb‖wb‖1), (3)

where B is the number of sub-bands and Nb the number of

elements in each sub-band wb.

To perform inference in a tractable way using the Laplace

prior, we utilize the hierarchical form by first defining

p(wb|γb) =

Nb∏

i=1

N (wbi|0, γbi),

where γb = (γb1, . . . , γbNb
), and then using

p(γbi|λb) = Γ(γbi|1, λb/2) =
λb

2
exp

(
−

λbγbi

2

)
,

i = 1, . . . , Nb. (4)

Notice that by integrating out the auxiliary parameters γbi, we

finally obtain the desired Laplacian distribution prior on every

sub-band b, which is governed by the parameter λb:

p(wb|λb) =

∫
p(wb|γb)p(γb|λb)dγb

=

Nb∏

i=1

∫
p(wbi|γbi)p(γbi|λb)dγbi

=
λ

Nb/2

b

2Nb

exp

(
−

√
λb

Nb∑

i=1

|wbi|

)
.

In addition, a Jeffrey’s prior is assumed for each one of the

parameters λb, that is p(λb) ∝ 1/λb.

The joint distribution of our hierarchical Bayesian model

is defined by p(w, γ, λ, β,y) = p(y|w, β)p(w|γ)p(γ|λ)p(λ).

3.1. Bayesian Inference

Following the work in [6, 12, 5, 13], the inference procedure

is based on the following decomposition:

p(w, γ, λ, β|y) = p(w|γ, λ, β,y)p(γ, λ, β|y).

The term p(w|γ, λ, β,y) is found to be proportional to the

joint distribution p(w, γ, λ, β,y), and is a multivariate Gaus-

sian distribution with parameters

Σ =
(
βΦT Φ + Λ

)−1

,

μ = ΣβΦT y,

with Λ a block diagonal matrix where each diagonal block has

the form Λb = diag(1/γbi). Since p(γ, λ, β|y) is proportional

to the joint distribution p(y, γ, β, λ), then the hyperparame-

ters can be estimated by maximizing

L = ln

∫
p(y|w, β)p(w|γ)p(γ|λ)p(λ)dw (5)

= −
1

2
ln |C| −

1

2
yT C−1y +

Nb∑

b=1

(Nb − 1) lnλb

−
Nb∑

b=1

λb

2

∑

i

γbi,

where C = (β−1I + ΦΛ−1ΦT ). By maximizing L for each

λb, we obtain the following update equation:

λb =
Nb − 1

∑Nb

i=1
γbi/2

. (6)

For convenience, and to match the iterative update estimation

of the parameters γbi, we rewrite matrix C as:

C = β−1I+
∑

lj �=bi

γljφljφ
T
lj +γbiφbiφ

T
bi = C−bi +γbiφbiφ

T
bi.

Thus, for each iteration on bi, given band b ∈ {1, . . . , B} and

coefficient i ∈ {1, . . . , Nb}, we can define

sbi = φt
biC

−1

−biφbi qbi = φt
biC

−1

−biy.

Using these quantities as in [5, 6], if q2

bi − sbi < λb, then γbi

is set equal to zero and the corresponding basis vector φbi is

pruned from the model. Otherwise, if q2

bi − sbi ≥ λb, then γbi

is updated using

γbi =
−sbi(sbi + 2λb) + sbi

√
(sbi + 2λb)2 − 4λb(sbi − q2

bi + λb)

2λbs2

bi

.

(7)
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Note that this procedure provides a systemic way of adding

relevant bases to the model, as well as pruning irrelevant ones.

At each iteration only one basis is updated, which is chosen as

the one that results in the maximum increase of the likelihood

in Eq. 5. Then, the corresponding parameters γbi and λb are

calculated using Eq. 7 and 6, respectively. Finally, the noise

parameter β is approximated using the observation only.

4. EXPERIMENTAL RESULTS

For both computational and storage reasons, we restricted the

experiments to image patches of size 64 × 64 pixels, thus us-

ing up to 4096 wavelet coefficients. Four standard test images

were used, namely: Barbara, Boat, Cameraman and House,

whose respective crops begin at pixels: (27,253), (361,181),

(95,36) and (11,91). To assure a near sparse behavior on the

wavelet sub-bands for such small image patches, we only per-

formed a two scale decomposition using the Haar wavelet,

and did not consider the low-pass residual during the CS sam-

pling and recovery processes. Figures of merits were finally

averaged over five runs of different realizations of the mea-

surement random matrix Φ with an added Gaussian observa-

tion noise with standard deviation σn = 0.3. The proposed

algorithm (LAPMS) was compared with: Bayesian CS us-

ing Laplace priors (LAP) [6]; Bayesian CS (BCS) [5]; Basis

Pursuit (BP) [3]; GPSR [4]; and the Tree-Structured Wavelet

CS (TSWCS) [11]. The performance of the algorithms was

measured in terms of both the reconstruction error and the ex-

ecution time. The reconstruction error was calculated by the

relative error ‖w − ŵ‖2/‖w‖2, and the execution time was

obtained directly from the reported time of the MATLAB c©
implementation.

The reconstruction error achieved for each image using

different number of measurements is shown in Figure 1. We

observe that LAPMS outperforms the original single scale

LAP algorithm, and it is overall only slightly worse than both

BP and TSWCS, while outperforming both on the Boat im-

age. Furthermore, LAPMS is clearly better than BCS and

GPSR for all images.

We have also observed that both LAP and LAPMS per-

form comparably better with respect to the other methods as

the input signals become sparser. Since the reduced dimen-

sionality of the patches decreases the sparsity of their wavelet

representations, it is expected that even better comparative re-

sults will be obtained on larger images.

In addition, it can be shown that the wavelet coefficients

for the test images show different sparsity patterns across dif-

ferent scales and orientations. For instance, hard-threshol-

ding of the coefficients demonstrate that diagonal details are

much sparser than both horizontal and vertical ones. This di-

versity is effectively captured by LAPMS, appropriately es-

timating the parameters λb aimed to control the sparsity for

each sub-band. Specifically, empirical results indicated that

each estimated λb is inversely proportional to the sparsity

a) b)

c) d)

Fig. 1. Comparison on the Reconstruction Error of the CS

algorithms for different images. a) Barbara; b) Boat; c) Ca-

meraman; d) House.

level found on its corresponding original wavelet sub-band

(not shown due to space limitations).

Figure 2 shows a visual example comparing the recon-

struction of the CS methods tested using the House patch.

Note that the methods providing multiscale adaptation, namely

TSWCS and LAPMS, achieve fewer visual artifacts and a

better reconstruction of the edge of the roof. Nevertheless,

LAPMS only needed a third of the time required by TSWCS.

Note also that BP, while providing a low error, shows strong

artifacts, which is a fact observed throughout most of our ex-

periments.

Table 1 (upper part) shows the averaged results for the

reconstruction error obtained from the four plots in Figure 1,

where LAPMS consistently outperforms the original LAP me-

thod, while keeping an acceptable performance compared to

both BP and TWSCS. On the other hand, Table 1 (bottom

part) shows the averaged execution time of the methods. Al-

though on average LAPMS is only 3% better in reconstruc-

tion performance than the original LAP, it converges faster

by a 10% factor. In addition LAPMS is at least twice as fast

as TSWCS, and even four times faster than BP, with a slight

decrease in the reconstruction accuracy on the order of 10%.

5. CONCLUSIONS

In this work we presented a novel algorithm for image recon-

struction from compressive measurements of wavelet coeffi-

cients. In order to handle a priori information on the typically

variant structure of wavelet coefficients of natural images, a

multiscale Laplacian prior was incorporated into a hierarchi-
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a) b) c)

d) e) f)

Fig. 2. Reconstructed House image from 1000 measurements

using the following CS methods: a) BCS (error: 0.030, time:

21s.); b) BP (0.025, 74s.); c) GPSR (0.028, 80s.); 4) TSWCS

(0.025, 91s.); e) LAP (0.027, 35s.); f) LAPMS (0.024, 30s.)

cal Bayesian model leading to an efficient constructive imple-

mentation. Experimental results show that the reconstruction

performance is significantly improved due to the utilization of

multiscale signal priors. The proposed method also provides

a competitive performance compared to other state-of-the-art

methods in terms of reconstruction error. Moreover, it is also

at least two to four times faster than existing algorithms with

lower reconstruction error. These results reinforce the impor-

tance of using a priori information regarding the structural

nature of the data to be recovered, and also point out the fa-

vorable trade off between execution time and reconstruction

error of the proposed algorithm. Future work will include

more advanced prior models for the wavelet coefficients.
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