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Abstract—For wideband spectrum sensing, compressive 
sensing has been proposed as a solution to speed up the high 
dimensional signals sensing and reduce the computational 
complexity. Compressive sensing consists of acquiring the 
essential information from a sparse signal and recovering it at the 
receiver based on an efficient sampling matrix and a 
reconstruction technique. In order to deal with the uncertainty, 
improve the signal acquisition performance, and reduce the 
randomness during the sensing and reconstruction processes, 
compressive sensing requires a robust sampling matrix and an 
efficient reconstruction technique. In this paper, we propose an 
approach that combines the advantages of a Circulant matrix 
with Bayesian models. This approach is implemented, extensively 
tested, and using several metrics its results are compared to those 
of 1 norm minimization with Circulant and random matrices. 
These metrics are Mean Square Error, reconstruction error, 
correlation, recovery time, sampling time, and processing time. 
The results show that our technique is faster and more efficient 
in compressing and recovering signals. 

Keywords—Cognitive radio networks; Wideband spectrum 
sensing; Compressive sensing; Bayesian models; Circulant 
matrices; 1 norm minimization. 

I.  INTRODUCTION 

Spectrum sensing is one of the main processes of the 
cognitive radio cycle [1-5]. In order to sense the wideband radio 
spectrum, communication systems must use multiple RF 
frontends simultaneously, which results in long delays, high 
hardware cost, and computational complexity [6]. To address 
these problems, fast and efficient sensing techniques are 
needed. Compressive sensing has been proposed as a low cost 
solution to speed up the scanning process and reduce the 
computational complexity. It involves three main processes: 
sparse representation, encoding, and decoding. During the first 
process, the signal, S, is projected in a sparse basis. During the 
second process, S is multiplied by a sampling matrix,	 , of 
MxN elements to extract M samples from N of the signal, S, 
where M << N. In the last process, the signal is reconstructed 
from the few M measurements [6-9]. 

For the encoding process, a number of sampling matrices 
have been proposed in the literature, including random matrix 
[10, 11], Circulant matrix [12, 13], Toeplitz matrix [13], and 
deterministic matrix [14]. Because of their simplicity, more 
interest has been paid to random matrices. These matrices are 

randomly generated with independent and identically 
distributed (i.i.d) elements such as Gaussian and Bernoulli 
distributions [9, 10]. In general, compressive sensing requires 
that the sampling matrix satisfies the Restrict Isometry Property 
(RIP) condition [15]. RIP is a characteristic of orthonormal 
matrices bounded with a Restrict Isometry Constant (RIC), 
which is a positive number between 0 and 1 that respects the 
RIP condition [16]. This condition guarantees the uniqueness 
of the reconstructed solution,	 , during the decoding process. 
For random matrices, the matrix satisfies the RIP condition for 
small RIC [10, 11]. However, these matrices require a great 
deal of processing time and high memory capacity to store the 
matrix coefficients [12, 13]. Because of the randomness, the 
results are uncertain, which makes the signal reconstruction 
inefficient.  

Unlike random matrices, Circulant matrices are efficient, 
fast in terms of signal acquisition, and require fewer 
measurements [12]. A Circulant matrix is a structured matrix 
determined using a predefined vector by a cyclic permutation 
[13]. This matrix satisfies the RIP condition for a small number 
of measurements [17]. Unlike random matrices, Circulant 
matrices are not universal. Universality means the sampling 
matrix can be used to compress a signal sparse in any domain. 
In addition, Circulant matrices have been used only with the ℒ1 
norm minimization technique [12, 13, 18].  

For the decoding process, a number of algorithms that 
exploit the sparsity feature of signals have been proposed in the 
literature [18-28]. A sparse signal can be estimated from a few 
measurements by solving the underdetermined system using 
three different types of algorithms: Iterative relaxation [18], 
Greedy [19], and Bayesian models [21]. The iterative 
relaxation category includes techniques that solve the 
underdetermined system using linear programing. Some 
techniques classified under this category are ℒ1 norm 
minimization known as basis pursuit [18], gradient descent 
[24], and iterative thresholding [25]. Greedy algorithms consist 
of selecting a local optimal at each step in order to find the 
global optimum, which corresponds to the estimated signal 
coefficients. Examples of techniques classified under this 
category are matching pursuit [26], orthogonal matching 
pursuit [27, 28], and stage wise orthogonal matching pursuit 
[29]. Bayesian compressive sensing algorithms consist of using 
a Bayesian model to estimate the unknown parameters in order 
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to deal with uncertainty in measurements. Examples of 
techniques classified under this category are: Bayesian model 
using relevance vector machine learning [10], Bayesian model 
using Laplace priors [21], and Bayesian model via belief 
propagation [22]. All these Bayesian based algorithms were 
used only with random matrices.  

Iterative relaxation algorithms are more accurate compared 
to Greedy algorithms, but they are complex, uncertain, require 
high number of measurements, and, thus high processing time. 
On the other hand, Greedy algorithms are fast and require low 
processing time; however, they are inefficient, uncertain, and 
require more measurements for the reconstruction process. 
Bayesian based techniques combine the strengths of both 
categories. They are fast, accurate, require less measurements 
for a high recovery rate, and can deal with uncertainty. In this 
paper, we propose an approach that combines the strengths of 
both Circulant matrices and Bayesian models to address the 
previously mentioned problems during the encoding and 
decoding processes.  

The paper is organized as follows. Section II presents the 
methodology followed for both encoding and decoding 
processes as well as the performance evaluation. Section III 
discusses the simulation results of the proposed approach based 
on specific metrics. Finally, a conclusion is given at the end. 

II. METHODOLOGY 

A. Bayesian compressive sensing  
As previously explained, compressive sensing involves 

three processes: sparse representation, sensing matrix, and 
reconstruction, as shown in Fig. 1. In our approach, for the 
sparsity representation process, we assumed the signal to be 
sparse. For the sensing matrix process, we used the Circulant 
matrix and for the reconstruction process, we used the Bayesian 
model. 

 
Fig. 1. Block diagram of compressive sensing model.  

The Circulant matrix, C, is generated from a vector c, where ( , ) = ( )	 ( ) for i, j = 0…N. It is expressed as  

 = … ⋯⋯⋮ 					⋮ ⋮ 							⋮ ⋮…                           (1) 

Where c is a vector given as	( , , … , ). 
The values of c are chosen randomly according to a suitable 

probability distribution to reduce the amount of randomness of 
the sensing matrix. During the encoding process, each column 
of the matrix C is obtained by right cyclic shifting the previous 
column. Then, a MxN partial Circulant matrix, Mc, is defined 
as the submatrix of C and considered for the signal sampling, 
with M<<N. The signal, S, is then multiplied by  for signal 

compression. This multiplication is fast because of the reduced 
number of random coefficients in the Circulant matrix [11, 12].  

For the reconstruction process, we used the Bayesian 
model, which is a probabilistic approach that requires a prior 
knowledge of parameters to calculate the posterior distribution 
of the unknown parameters. The Bayesian compressive sensing 
process consists of finding the sparse solution of a regression 
problem by exploiting the probabilistic distributions. It solves 
the underdetermined system and finds the accurate solution by 
estimating efficiently the unknown parameters using the 
information that we have about the system. It is based on two 
main elements: the knowledge about the linear relationship 
between the signal measurements and the original signal, and 
the knowledge about the fact that the original signal is k-sparse. 
Under the Bayesian model, the k-sparse signal is acquired 
through a product with the Circulant matrix. A noise, W, is 
added to the signal measurements, which includes the noise 
measurements and the sparse representation error. Fig. 2 
illustrates the simulation methodology of our proposed model. 

 
Fig. 2. The model of the Bayesian compressive sensing with Circulant 
matrix. 

The noisy measurements can be formulated as  

  = 	 +                              (2) 

According to the Theorem of Central Limit for N >> M, W 
can be approximated as a zero mean Gaussian noise with 
unknown variance δw, which can be expressed as N (0, δw). The 
signal to be approximated can be considered as a Gaussian 
variable with S = (S1, S2,… , SN). Therefore, the Bayesian model 
implies that the noisy measurements, R, is an i.i.d Gaussian and 
depends on the unknown S and δw. This is expressed as 

  | , 	 	~	 ( , 	 )             (3) 

Fig. 3 illustrates the proposed Bayesian model in which the 
unknown signal, noise, and vector to generate the Circulant 
sampling matrix are parents of the noisy measurements. Noise 
variance δw, signal mean μS, and signal variance δs are the 
parameters of the noise and the signal that need to be estimated. 



 
 

3 
 

 
Fig. 3. Graphical model of the Bayesian compressive sensing technique. 

The model specifies the conditional probabilities of the 
measurements P(R/S) and the noise	 ( | ). P(R/S) and P( | ) present the probability densities of R, as functions of 
the values taken by the signal and the noise variance 
respectively. The conditional probability of the signal to be 
estimated given the measurements can be expressed through 
the Bayes’ rule as  

			 ( / ) = ( / ) ( )∑ ( / ′) ( ′)      (4) 

where S’ represents the other alternative solution of the 
underdetermined system. Consequently, the Gaussian 
likelihood of the noisy measurements can be expressed from 
the previous conditional probability as P( | , ) = (2π ) exp( − ‖ − ‖ )      (5) 

Given a vector c, the Circulant sampling matrix coefficients 
are generated to be used for the Bayesian reconstruction 
process. This matrix should be the same as the one used for 
compression to reduce the randomness. With prior knowledge 
that S is sparse and  is known, S and δw are the two quantities 
to be estimated. The prior density of the unknown signal P(S/k) 
in terms of sparsity can be expressed as 

        ( / ) = ( /2) ( ∑ )            (6) 

where k is a parameter that represents the sparsity of S = (S1, 
S2,…,SN). Using the Bayesian model, the underdetermined 
system in (2) becomes a linear problem with S sparse and (2) 
can be reformulated as  

= arg	min	 	 ‖ − 	 ‖ + ‖ ‖    (7) 

where z is a positive scalar. The objective of our Bayesian 
model is to find the posterior probabilistic distribution for S and 
δw taking into account the known evidences. The maximum 
posterior probability corresponds to the sparsest solution of the 
undetermined system presented in equation (7).  

The algorithm calculates the joint probability distribution of 
all unknown parameters and computes the prior distribution of 
each element of S with the hyper parameters a and b. The hyper 
parameter a = (a1, a2,…, aN) represents the initial posterior of 
the signal variance and the hyper parameter b represents the 
initial posterior of the noise variance. The prior distribution of 
S given the hyper parameters a and b can be expressed as the 
product of the conjugate prior of signal variance ( / , ) 
and the likelihood function of Si, which is defined as a zero 
mean Gaussian prior for each signal coefficients	 ( /0, ). 
It is also called the marginal likelihood for Bayes estimation 
[16]. This probability of the signal given a and b is expressed  
as ( / , ) = 	∏ ( /0, ) ( / , )          (8) 

The algorithm optimizes the hyper parameters for the 
Gaussian process in an iterative loop, estimates new values of 
a and b, and then maximizes the marginal likelihood using the 
new estimated values of a and b. The algorithm is based on the 
previous results for learning and searching for the new values 
of the hyper parameters a and b. Taking into account the 
assumption about the knowledge of a and b in addition to 	and R, the posterior probabilistic distribution of S can be 
expressed as a Gaussian distribution S ~ N (μS, δS) with a mean 
μS and variance δS which are given by  

            
= 	 	 									 = ( 	 + ) 	                        (9) 

where A = diag(a1, a2, …, aN). The last estimated value of b 
represents the noise variance. At the end of the algorithm, the 
signal is approximated and the uncertainty is reduced.  

B.  Performance evaluation 
In order to evaluate the efficiency of our approach, the 

results of this model have been compared to the results of the 
basis pursuit technique [13] using several metrics. These 
metrics are: Mean Square Error, reconstruction error, 
correlation coefficients, processing time, recovery time, and 
sampling time. 

The reconstruction error is a metric that calculates the norm 
of the difference between the expected signal and the original 
signal divided by the norm of the original signal. It is expressed 
as 

= − 	‖ ‖  (10) 

Mean Square Error is a metric that measures the average 
magnitude of the squared difference between the reconstructed 
signal and the original signal. It corresponds to one of the loss 
functions used for error estimation. It is given by 

         = 	∑ ( − )           (11) 
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Correlation measures the similarity between the original 
signal, S, and the reconstructed signal,	 . The measure of 
correlation is known as the correlation coefficient Cc, which is 
a scalar quantity that takes values between -1 and 1. It is 
expressed as = 	∑( ) 	−	(∑ )	( ∑ )	(∑ ) 	− 	(∑ ) (∑ ) 	− 	 ∑     

(12) 

When Cc is positive and less than 1, it means the two signals 
are positively correlated and the strength of the correlation is 
expressed with a percentage value. When Cc is null, it means 
there is no relationship between the two signals. When Cc is 
negative and greater than -1, it means the two signals are 
negatively correlated and the strength of the correlation is 
expressed with a percentage value. 

Recovery time is the time required by the reconstruction 
process to reconstruct the signal. Sampling time is the time 
required by the sampling matrix process in order to compress 
the signal using a specific matrix. Finally, the processing time 
is the time required to perform all processes. 

III.  RESULTS AND DISCUSSION 

The two algorithms, Bayesian compressive sensing and ℒ1 
norm minimization with the Circulant matrix, were 
implemented and extensively tested. Their efficiencies were 
compared using the metrics previously mentioned (Re, MSE, Cc, 
tp, tr and ts). In this performance evaluation, we investigated the 
efficiency of the Circulant matrix in sampling signals and 
compared its results with those of random matrices. We also 
investigated the performance of our Bayesian model and 
compared its results with the basis pursuit technique.  

Examples of the results are shown in Figs. 4 to 7. Fig. 4(a) 
shows an example of original signals with 200 samples and 15 
spikes. The noise was added to the original signal and fed to the 
two algorithms. Fig. 4(b) shows the output signal after applying 
the Circulant sampling matrix and the Bayesian technique to 
the signal with added noise. Fig. 4(c) represents the output 
signal after applying random sampling and basis pursuit 
technique to the original signal with added noise. As one can 
see in Fig. 4(c), the output signal has more fluctuations than the 
output signal shown in Fig. 4(b). These fluctuations correspond 
to the null coefficients that are not reconstructed as zero 
coefficients. Thus, the reconstruction with the Circulant matrix 
is more efficient compared to the reconstruction with random 
matrix.  

 
Fig. 4. Example of input signals an outputs after applying the reconstruction 
techniques (a) Input signal; (b) Output signal using Bayesian combined with 
Circulant matrix technique; (c) Output signal using Bayesian combined with 
random matrix technique. 

The sampling time, ts, was computed for each technique. 
The results show that random sampling matrix requires a great 
deal of time to process compared to the Circulant matrix. For 
example, for the signal seen in Fig. 4(a), the ts of Circulant 
matrix is 0.06 ms while the ts of random matrix is 0.30 ms. This 
result shows that dense matrices are slow in terms of 
computation because of the high required number of 
measurements and the randomness of their coefficients.  

Figs. 5(b) and (c) show the reconstructed signal using basis 
pursuit and Bayesian model with Circulant matrix technique, 
respectively. As one can see, for the Bayesian model, the output 
signal is similar to the original signal and the spikes are 
completely recovered. However, the output signal of basis 
pursuit presents more fluctuations than the output signal of the 
Bayesian model, as shown in Fig. 5(b). All the results show that 
the Bayesian reconstruction is more efficient than basis pursuit 
reconstruction. In addition, the sparsity level of the output 
signal is 14 for the Bayesian technique and 200 for the basis 
pursuit technique. The basis pursuit technique cannot estimate 
the exact value of each coefficient of the original signal, and it 
estimates the zero values as non-zero values with low 
magnitude. Moreover, the number of measurements to recover 
the signal needed by each technique is 15 for the Bayesian 
technique while it is 200 for the basis pursuit technique. Thus, 
the Bayesian technique is more efficient in reconstructing the 
original signal and it also requires fewer measurements than the 
basis pursuit algorithm. 
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Fig. 5. Example of input signals and outputs after applying the reconstruction 
techniques (a) Input signal; (b) Output signal using Bayesian technique 
combined with Circulant matrix; (c) Output signal using basis pursuit 
technique combined with Circulant matrix. 

Fig. 6 shows the mean square error as a function of the 
number of samples N for the two reconstruction techniques, 
Bayesian and basis pursuit. As expected, for both techniques 
the MSE decreases with the increase of the number of samples. 
For N from 0 to 100, the Bayesian technique has lower MSE 
than the basis pursuit algorithm. For higher values of N, MSE 
of both techniques are slightly similar.  

 
Fig. 6. Mean Square Error as a function of number of samples N. 

Fig. 7 shows an example of results of the mean square error 
as a function of the sparsity level for the two techniques, 
Bayesian and basis pursuit. As can be seen, the MSE values 
corresponding to the Bayesian technique and those 
corresponding to the basis pursuit technique are slightly similar 
and they increase with the increase of the sparsity. This figure 
also shows that the more the number of non-zero elements of 
the signal increases, the more the reconstruction becomes 
inefficient. One can conclude that the two techniques minimize 
the MSE with the same way with the increase of sparsity level.  

 
Fig. 7. Mean square reconstruction error as a function of sparsity level k.  

For the other metrics, Table I gives an example of results of 
the comparison performance. As shown in this table, for the 
reconstruction error Re, the Bayesian technique has an average 
of 0.77% of reconstruction error. However, the basis pursuit 
has 6.7% of reconstruction error. Thus, Bayesian is 80 times 
more efficient than the basis pursuit with the same matrix. 
Unlike the basis pursuit, Bayesian technique permits to 
reconstruct the signal with a very small number of errors, which 
can be explained by the fact that the technique is able to deal 
with the uncertainty. Basis pursuit reconstructs the signal with 
high error level, which can be explained by the fact that this 
technique cannot handle uncertainty due to the noisy 
measurements. 

This table also shows that for the correlation metric, the 
Bayesian technique presents an average of 100% of correlation 
while the basis pursuit technique presents an average of 
82.87%. Thus, both techniques present a high correlation with 
values close to 100%, which indicates that the two signals are 
positively correlated. However, the Bayesian technique 
presents a better correlation coefficient. 

For the recovery time, the Bayesian technique requires an 
average of 0.90 ms to recover the original signal, but the basis 
pursuit technique requires 7.20 ms. This represents 12 times the 
recovery time of the Bayesian technique, thus slower. For the 
processing time, Bayesian technique requires an average of 
0.96 ms to process while the basis pursuit requires an average 
of 7. 26 ms. Thus, the Bayesian is 7 times faster than the basis 
pursuit. 

TABLE I.  TECHNIQUES COMPARISON BASED ON METRICS 

Re (%) Cc (%) tr (ms) tp (ms) 

Our technique 0.77 100.00 0.90 0.96 

Basis Pursuit with 
Circulant matrix [6] 

61.72 82.87 7.20 7.26 

These examples of results show that the Bayesian technique 
with Circulant matrix is more accurate, faster, and deals with 
uncertainty. In addition, our model requires less measurements, 
less sampling time, less recovery time, and less processing 
time. It also estimates the original signal with a low sparsity 
level, high correlation, and low Mean Square Error as well as 
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handles uncertainty during the encoding and decoding 
processes. Thus, our proposed approach includes the strengths 
of both Bayesian reconstruction and Circulant sampling matrix.  

CONCLUSIONS 

In this paper, we have proposed a Bayesian approach that 
combines the Circulant sampling matrix with the Bayesian 
model. This approach reduces the randomness and deals with 
uncertainty during the compressive sensing processes. It also 
speeds up the spectrum sensing and scanning of the radio 
spectrum in cognitive radio networks. The results of the 
proposed approach are discussed and compared to those of 
basis pursuit with Circulant and random matrix techniques. The 
performance comparison involved several metrics that evaluate 
most aspects of the characteristics of compressive sensing 
approaches, including reconstruction success, speed, 
robustness, efficiency, memory, and certainty. The results show 
that the Bayesian based algorithm with Circulant matrix is more 
efficient and faster in compressing and recovering signals than 
the Bayesian with random matrix as well as the basis pursuit 
with Circulant and random matrices.  
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