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Abstract Recent decades have seen enormous improve-
ments in computational inference for statistical models; there
have been competitive continual enhancements in a wide
range of computational tools. In Bayesian inference, first
and foremost, MCMC techniques have continued to evolve,
moving from random walk proposals to Langevin drift, to
Hamiltonian Monte Carlo, and so on, with both theoretical
and algorithmic innovations opening new opportunities to
practitioners. However, this impressive evolution in capacity
is confronted by an even steeper increase in the complexity
of the datasets to be addressed. The difficulties of modelling
and then handling ever more complex datasets most likely
call for a new type of tool for computational inference that
dramatically reduces the dimension and size of the raw data
while capturing its essential aspects. Approximate models
and algorithms may thus be at the core of the next computa-
tional revolution.

Keywords Bayesian analysis · MCMC algorithms ·
ABC techniques · Optimisation

B Peter J. Green
P.J.Green@bristol.ac.uk

Krzysztof Łatuszyński
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1 Introduction

One may reasonably balk at the terms “computational statis-
tics” and “Bayesian computation” since, from its very start,
statistics has always involved some computational step to
extract information, something manageable like an estimator
or a prediction, from raw data. This necessarily incomplete
and unavoidably biased review of the recent past, current
state, and immediate future of algorithms for Bayesian infer-
ence thus first requires us to explain what we mean by
computation in a statistical context, before turning to what we
perceive as medium term solutions and possible deadends.

Computations are an issue in statistics whenever process-
ing a dataset becomes a difficulty, a liability, or even an
impossibility. Obviously, the computational challenge varies
according to the time when it is faced: what was an issue
in the nineteenth century is most likely not so any longer
(take for instance the derivation of the moment estimates of
a mixture of two normal distributions so painstakenly set by
Pearson 1894 for estimating the ratio of “forehead” breadth–
body length on a dataset of 1000 crabs or the intense algebraic
derivations found in the analysis of variance of the 1950s and
1960s Searle et al. 1992).

The introduction of simulation tools in the 1940s fol-
lowed hard on the heels of the invention of the computer
and certainly contributed an impetus towards faster and bet-
ter computers, at least in the first decade of this revolution.
This shows that these tools were both needed, and unavailable
without electronic calculators. The introduction of Markov
chain Monte Carlo is harder to pin down as some partial
versions can be traced all the way back to 1944–1945 and
the Manhattan project at Los Alamos (Metropolis 1987). It
is surprisingly much later, i.e., only by the early 1990s, that
such methods became part of the Bayesian toolbox, that is,
some time after the devising of other computer-dependent
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tools like the bootstrap or the EM algorithm, and despite the
availability of personal computers that considerably eased
programming and experimenting (Robert and Casella 2011).
It is presumably pointless to try to attribute this delay to a
definite cause but a certain lack of probabilistic culture within
the statistics community is probably partly to blame.

What makes this time-lag in MCMC methods becom-
ing assimilated into the statistics community even more
surprising is that fact that Bayesian inference having a
significant role in statistical practice was really on hold
pending the discovery of flexible computational tools that
(implicitly or explicitly) delivered values for the medium–
high-dimensional integrals that underpin the calculation of
posterior distributions, in all but toy problems where con-
jugacy provided explicit answers. In fact, until Bayesians
discovered MCMC, the only computational methodology
that seemed to offer much chance of making practical
Bayesian statistics practical was the portfolio of quadrature
methods developed under Adrian Smith’s leadership at Not-
tingham (Naylor and Smith 1982; Smith et al. 1985, 1987).

The very first article in the first issue of Statistics and

Computing, whose quarter-century we celebrate in this spe-
cial issue, was (to the journal’s credit!) on Bayesian analysis,
and was precisely in this direction of using clever quadrature
methods to approach moderately high-dimensional posterior
analysis (Dellaportas and Wright 1991). By the next (sec-
ond) issue, sampling-based methods had started to appear,
with three papers out of five in the issue on or related to
Gibbs sampling (Verdinelli and Wasserman 1991; Carlin and
Gelfand 1991; Wakefield et al. 1991).

Now, reflecting upon the evolution of MCMC methods
over the 25 or so years they have been at the forefront
of Bayesian inference, the focus has evolved a long way,
from hierarchical models that extended the linear, mixed
and generalised linear models (Albert 1988; Carlin et al.
1992; Bennett et al. 1996) which were initially the focus, and
graphical models that stemmed from image analysis (Geman
and Geman 1984) and artificial intelligence, to dynamical
models driven by ODE’s (Wilkinson 2011b) and diffusions
(Roberts and Stramer 2001; Dellaportas et al. 2004; Beskos
et al. 2006), hidden trees (Larget and Simon 1999; Huelsen-
beck and Ronquist 2001; Chipman et al. 2008; Aldous et al.
2008) and graphs, aside with decision making in highly com-
plex graphical models. While research on MCMC theory
and methodology is still active and continually branching
(Papaspiliopoulos et al. 2007; Andrieu and Roberts 2009;
Łatuszyński et al. 2011; Douc and Robert 2011), progres-
sively incorporating the capacities of parallel processors and
GPUs (Lee et al. 2009; Jacob et al. 2011; Strid 2010; Suchard
et al. 2010; Scott et al. 2013; Calderhead 2014), we wonder
if we are not currently facing a new era where those meth-
ods are no longer appropriate to undertake the analysis of
new models, and of new formulations where models are no

longer completely defined. We indeed believe that imprecise
models, incomplete information and summarised data will
become, if not already, a central aspect of statistical analysis,
due to the massive influx of data and the need to provide non-
statisticians with efficient tools. This is why we also cover in
this survey the notions of approximate Bayesian computation
(ABC) and comment on the use of optimisation tools.

The plan of the paper is that in Sects. 2 and 3 we discuss
recent progress and current issues in Markov chain Monte
Carlo and ABC, respectively. In Sect. 4, we highlight some
areas of modern optimisation that, through lack of famil-
iarity, are making less impact in the mainstream of Bayesian
computation than we think justified. Our Discussion in Sect. 5
raises issues about data science and relevance to applications,
and looks to the future.

2 MCMC, targeting the posterior

When MCMC techniques were introduced to the mainstream
statistical (Bayesian) community in 1990, they were received
with skepticism that they could 1 day become the central tool
of Bayesian inference. For instance, despite the assurance
provided by the ergodic theorem, many researchers thought
at first that the convergence of those algorithms was a mere
theoretical anticipation rather than a practical reality, in con-
trast to traditional Monte Carlo methods, and hence that they
could not be trusted to provide “exact” answers. This per-
spective is obviously obsolete by now, when MCMC output
is considered as “exact” as regular Monte Carlo, if possibly
less efficient in some settings. Nowadays, MCMC is again
attracting more attention (than in the past decade, say, where
developments were more about alternatives, some of which
described in the following sections), both because of method-
ological developments linked to better theoretical tools, for
instance in the handling of stochastic processes, and because
of new advances in accelerated computing via parallel and
cloud computing.

2.1 Basics of MCMC

The introduction of Markov chain based methods within
Monte Carlo thus took a certain amount of argument to
reach the mainstream statistical community, when compared
with other groups who were using MCMC methods 10–
30 years earlier. It may sound unlikely at the current stage
of our knowledge, but using methods that (a) generated cor-
related output, (b) required some burnin time to remove the
impact of the initial distribution and (c) did not lead to a
closed form expression for asymptotic variances were indeed
met with resistance at first. As often, the immense comput-
ing advantages offered by this versatile tool soon overcame
the reluctance to accept those methods as similarly “exact”
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as other Monte Carlo techniques, applications driving the
move from the early 1990s. We reproduce below the generic
version of the “all variables at once” Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970; Besag et al.
1995; Robert and Casella 2011) as it (still) constitutes in our
opinion a fundamental advance in computational statistics,
namely that, given a computable density π (up to a normal-
ising constant) on Θ, and a proposal Markov kernel q(·|·),
there exists a universal machine that returns a Markov chain
with the proper stationary distribution, hence an associated
operational MCMC algorithm.

Algorithm 1 Metropolis–Hastings algorithm (generic ver-
sion)

Choose a starting value θ (0)

for n = 1 to N do

Generate θ∗ from a proposal q(·|θ (n−1))

Compute the acceptance probability

ρ(n) = 1 ∧ π(θ∗) q(θ (n−1)|θ∗)
/

π(θ (n−1)) q(θ∗|θ (n−1))

Generate un ∼ U(0, 1) and take θ (n) = θ∗ if un ≤ ρ(n), θ (n) =
θ (n−1) otherwise.

end for

The first observation about the Metropolis–Hastings is that
the flexibility in choosing q is a blessing, but also a curse
since the choice determines the performance of the algo-
rithm. Hence a large part of the research on MCMC along the
past 30 years (if we arbitrarily set the starting date at Geman
and Geman 1984) has been on choice of the proposal q to
improve the efficiency of the algorithm, and in characterising
its convergence properties. This typically requires gathering
or computing additional information about π and we discuss
some of the fundamental strategies in subsequent sections.
Algorithm 1, and its variants in which variables are updated
singly or in blocks according to some schedule, remains
a keystone in standard use of MCMC methodology, even
though the newer Hamiltonian Monte Carlo (HMC) approach
(see Sect. 2.3) may sooner or later come to replace it. While
there is nothing intrinsically unique to the nature of this algo-
rithm, or optimal in its convergence properties (other than
the result of Peskun 1973 on the optimality of the acceptance
ratio), attempts to bypass Metropolis–Hastings are few and
limited. For instance, the birth-and-death process developed
by Stephens (2000) used a continuous time jump process
to explore a set of models, only to be later shown (Cappé
et al. 2002) to be equivalent to the (Metropolis–Hastings)
reversible jump approach of Green (1995).

Another aspect of the generic Metropolis–Hastings that
became central more recently is that while the accept–reject
step does overcome need to know the normalising constant, it

still requires π, if unnormalised, and this may be too expen-
sive to compute or even intractable for complicated models
and large datasets. Much recent research effort has been
devoted to the design and understanding of appropriate mod-
ifications that use estimators or approximations of π instead
and we will take the opportunity to summarise some of the
progress in this direction.

2.2 MALA and manifold MALA

Stochastic differential equations (SDEs) have been and still
are informing Monte Carlo development in a number of sem-
inal ways. A key insight is that the Langevin diffusion on Θ

solving

dθt = 1

2
∇ log π (θt ) dt + d Bt , (1)

has π as its stationary and limiting distribution. Here Bt is
the standard Brownian motion and ∇ denotes gradient. The
crude approach of sampling an Euler discretisation (Kloeden
and Platen 1992) of (1) and using it as an approximate sample
from π was introduced in the applied literature (Ermak 1975;
Doll and Dion 1976). The method results in a Markov chain
evolving according to the dynamics

θ (n)|θ (n−1) ∼ Q
(

θ (n−1), ·
)

:= θ (n−1) + h

2
∇ log π

(

θ (n−1)
)

+ h1/2 N (0, Id×d) , (2)

for a chosen discretisation step h. There is a delicate trade-
off between accuracy of the approximation improving as
h → 0 and sampling efficiency [as measured, e.g., by the
effective sample size (ESS)] improving when h increases.
This solution was soon followed by its Metropolised ver-
sion (Rossky et al. 1978) that uses the Euler approxi-
mation of (2) to produce a proposal in the Metropolis–
Hastings algorithm 1, by letting q(·|θ (n−1)) := θ (n−1) +
h
2 ∇ log π(θ (n−1))+h1/2 N (0, Id×d).While in the probability
community Langevin diffusions and their equilibrium distri-
butions had also been around for some time (Kent 1978),
it was the Roberts and Tweedie (1996a) paper (motivated
by Besag 1994 comment on Grenander and Miller 1994)
that brought the approach to the centre of interest of the
computational statistics community and sparked systematic
study, development and applications of Metropolis adjusted
Langevin algorithms (hence MALA) and their cousins.

There is a large body of empirical evidence that at the
extra price of computing the gradient, MALA algorithms
typically provide a substantial speed-up in convergence
on certain types of problems. However for very light-
tailed distributions the drift term may grow to infinity and
cause additional instability. More precisely, for distributions
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with sufficiently smooth contours, MALA is geometrically
ergodic (c.f. Roberts and Rosenthal 2004) if the tails of π

decay as exp{−|θ |β} with β ∈ [1, 2], while the random
walk Metropolis algorithm is geometrically ergodic for all
β ≥ 1 (Roberts and Tweedie 1996a; Mengersen and Tweedie
1996). The lack of geometrical ergodicity has been precisely
quantified by Bou-Rabee and Hairer (2012).

Various refinements and extensions have been proposed.
These include optimal scaling and choice of the discretisation
step h, adaptive versions (both discussed in Sect. 2.4), combi-
nations with proximal operators (Pereyra 2015; Schreck et al.
2013), and applications and algorithm development for the
infinite-dimensional context (Pillai et al. 2012; Cotter et al.
2013). One particular direction of active research is consid-
ering a more general version of Eq. (1) with state-dependent
drift and diffusion coefficient

dθt =
(

σ(θt )

2
∇ log π (θt ) + γ (θt )

2

)

dt +
√

σ (θt ) d Bt

γi (θt ) =
∑

j

∂σi j (θt )

∂θ j

, (3)

which also has π as invariant distribution (Xifara et al. 2014,
c.f. Kent 1978). The resulting proposals are

q
(

·|θ (n−1)
)

:= h

2

(

σ
(

θ (n−1)
)

∇ log π
(

θ (n−1)
)

+ γ
(

θ (n−1)
))

+ h1/2 N
(

0, σ
(

θ (n−1)
))

+ θ (n−1).

Choosing appropriate σ for improved ergodicity is how-
ever nontrivial. The idea has been explored in Stramer and
Tweedie (1999a, 1999b), Roberts and Stramer (2002) and
more recently Girolami and Calderhead (2011) introduced a
mathematically-coherent approach of relating σ to a metric
tensor on a Riemannian manifold of probability distribu-
tions. The resulting algorithms are termed Manifold MALA
(MMALA), Simplified MMALA (Girolami and Calderhead
2011), and position-dependent MALA (PMALA) (Xifara
et al. 2014), and differ in implementation cost, depending
on how precise is the use they make of versions of Eq. (3).
The approach still leaves the specification of the metric to
be used in the space of probability distributions to the user,
however there are some natural choices. One can, for exam-
ple, take the Hessian of π and replace its eigenvalues by
their absolute values λi → |λi |. Building the metric ten-
sor from this spectrally-positive version of the Hessian of
π and randomising the discretisation step size h results in
an algorithm that is as robust as random walk Metropolis,
in the sense that it is geometrically ergodic for targets with
tail decay of exp{−|θ |β} for β > 1 (see Taylor 2014). A
robustified version of such a metric has been introduced in

Betancourt (2013) and termed SoftAbs. Here one approx-
imates the absolute value of the eigenspectrum of the
Hessian of π with a smooth strictly positive function λi →
λi

exp {αλi }+exp {−αλi }
exp {αλi }−exp {−αλi } , where α is a smoothing parameter. The

metric stabilises the behaviour of both MMALA, and HMC
algorithms (discussed in the sequel), in the neighbourhoods
where the signature of the Hessian changes.

2.3 Hamiltonian Monte Carlo

As with many improvements in the literature, starting with
the very notion of MCMC, Hamiltonian (or hybrid) Monte
Carlo (HMC) stems from Physics (Duane et al. 1987). After a
slow emergence into the statistical community (Neal 1999), it
is now central in statistical software like STAN (Stan Devel-
opment Team 2014). For a complete account of this important
flavour of MCMC, the reader is referred to Neal (2013),
which inspired the description below; see also Betancourt
et al. (2014) for a highly mathematical differential-geometric
approach to HMC.

This method can be seen as a particular and efficient
instance of auxiliary variables (see, e.g., Besag and Green
1993; Rubinstein 1981), in which we apply a deterministic-
proposal Metropolis method to the augmented target. In
physical terms, the idea behind HMC is to add a “kinetic
energy” term to the “potential energy” (negative log-target),
leading to the Hamiltonian

H(θ, p) = − log π(θ) + pT M−1 p/2,

where θ denotes the object to be simulated (i.e., the parame-
ter), p its speed or momentum and M the Hamiltonian matrix
of π. In more statistical language, HMC creates an auxiliary
variable p such that moving according to Hamilton’s equa-
tions

θ

dt
= ∂ H

∂p
= ∂ H

∂p
= M−1 p,

dp

dt
= −∂ H

∂θ
= ∂ log π

∂θ
,

preserves the joint distribution with density exp{−H(θ, p)},
hence the marginal distribution of θ, that is, π(θ). Hence, if
we could simulate exactly this joint distribution of (θ, p), a
sample from π(θ) would be a by-product. However, in prac-
tice, the equation is solved approximately and hence requires
a Metropolis correction. As discussed in, e.g., Neal (2013),
the dynamics induced by Hamilton’s equations is reversible
and volume-preserving in the (θ, p) space, which means in
practice that there is no need for a Jacobian in Metropolis
updates. The practical implementation relies on a k-th order
symplectic integrator (Hairer et al. 2006), most commonly
on the second order leapfrog approximation that relies on a

123



Stat Comput (2015) 25:835–862 839

small step level ǫ, updating p and θ via a modified Euler’s
method called the leapfrog that is reversible and being sym-
plectic, preserves volume as well. This discretised update can
be repeated for an arbitrary number of steps.

When considering the implementation via a Metropolis
algorithm, a new value of the momentum p is drawn from
the pseudo-prior ∝ exp{−pT M−1 p/2} and it is followed by
a Metropolis step, which proposal is driven by the leapfrog
approximation to the Hamiltonian dynamics on (θ, p) and
which acceptance is governed by the Metropolis acceptance
probability. What makes the potential strength of this aug-
mentation (or disintegration) scheme is that the value of
H(θ, p) hardly changes during the Metropolis move, which
means that it is most likely to be accepted and that it may
produce a very different value of π(θ) without modifying
the overall acceptance probability. In other words, mov-
ing along level sets is almost energy-free, but if the move
proceeds for “long enough”, the chain can reach far-away
regions of the parameter space, thus avoid the myopia of stan-
dard MCMC algorithms. As explained in Neal (2013), this
means that HMC avoids the inefficient random walk behav-
iour of most Metropolis–Hastings algorithms. What drives
the exploration of the different values of H(θ, p) is therefore
the simulation of the momentum, which makes its calibration
both quite influential and delicate (Betancourt et al. 2014) as
it depends on the unknown normalising constant of the tar-
get. (By calibration, we mean primarily the choice of the
time discretisation step ε in the leapfrog approximation and
of the number L of leapfrog leaps, but also the choice of the
precision matrix M).

2.4 Optimal scaling and adaptive MCMC

The convergence of the Metropolis–Hastings algorithm 1
depends crucially on the choice of the proposal distribution q,
as does the performance of both more complex MCMC and
SMC algorithms, that often are hybrids using Metropolis–
Hastings as simulation substeps.

Optimising over all implementable q appears to be a “dis-
aster problem” due to its infinite-dimensional character, lack
of clarity about what is implementable, what is not, and the
fact that this optimal q must depend in a complex way on
the target π to which we have only a limited access. In par-
ticular MALA provides a specific approach to constructing
π -tailored proposals and HMC can be viewed as a combina-
tion of Gibbs and special Metropolis moves for an extended
target.

In this optimisation context, it is thus reasonable to restrict
ourselves to some parametric family of proposals qξ , or more
generally of Markov transition kernels Pξ , where ξ ∈ Ξ is
a tuning parameter, possibly high-dimensional.

The aim of adaptive Markov chain Monte Carlo is concep-
tually very simple. One expects that there is a set Ξπ ⊂ Ξ of

good parameters ξ for which the kernel Pξ converges quickly
to π, and one allows the algorithm to search for Ξπ “on the
fly” and redesign the transition kernel during the simulation
as more and more information about π becomes available.
Thus an adaptive MCMC algorithm would apply the kernel
Pξ (n) to sample θ (n) given θ (n−1), where the tuning para-

meter ξ (n) is itself a random variable which may depend on
the whole history θ (0), . . . , θ (n−1) and on ξ (n−1). Adaptive
MCMC rests on the hope that the adaptive parameter ξ (n)

will find Ξπ , stay there essentially forever and inherit good
convergence properties.

There are at least two fundamental difficulties in exe-
cuting this strategy in practice. First, standard measures of
efficiency of Markovian kernels, like the total variation con-
vergence rate (c.f. Meyn and Tweedie 2009; Roberts and
Rosenthal 2004), L2(π) spectral gap (Diaconis and Stroock
1991; Roberts 1996; Saloff-Coste 1997; Levin et al. 2009)
or asymptotic variance (Peskun 1973; Geyer 1992; Tierney
1998) in the Markov chain central limit theorem will not
be available explicitly, and their estimation from a Markov
chain trajectory is often an even more challenging task than
the underlying MCMC estimation problem itself.

Secondly, when executing an adaptive strategy and trying
to improve the transition kernel on the fly, the Markov prop-
erty of the process is violated, therefore standard theoretical
tools do not apply, and establishing validity of the approach
becomes significantly more difficult. While the approach has
been successfully applied in some very challenging practi-
cal problems (Solonen et al. 2012; Richardson et al. 2010;
Griffin et al. 2014), there are examples of seemingly reason-
able adaptive algorithms that fail to converge to the intended
target distribution (Bai et al. 2011; Łatuszyński et al. 2013),
indicating that compared to standard MCMC even more care
must be taken to ensure validity of inferential conclusions.

While heuristics-based adaptive algorithms have been
considered already in Gilks et al. (1994), a remarkable
result providing a tool to address the difficulty of optimis-
ing Markovian kernels coherently is the Roberts et al. (1997)
paper on scaling the proposal variance. It considers settings
of increasing dimensionality and investigates efficiency of
the random walk Metropolis algorithm as a function of its
average acceptance rate. More specifically, given a sequence
of targets πd on the product state space Θd with iid compo-
nents constructed from conveniently smooth marginal f,

πd(θ) :=
d

∏

i=1

f (θi ) , for d = 1, 2, . . . , (4)

consider a sequence of Markov chains θd , d = 1, 2, . . . ,

where the chain θd = (θ
(n)
d )n=0,1,... is a random walk

Metropolis targeting πd with proposal increments distributed
as N (0, σ 2

d Id×d).
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It then turns out that the only sensible scaling of the pro-
posal as dimensionality increases is to take σ 2

d = l2d−1.

In this regime the sequence of time-rescaled first coordinate
processes

Z
(t)
d := θ

(⌊td⌋)
d,1 , for d = 1, 2, . . . ,

converges in a suitable sense to the solution Z of a SDE

d Z t = h(l)1/2d Bt + 1

2
h(l)∇ log f (Z t ) dt.

Hence maximising the speed of the above diffusion h(l) is
equivalent to maximising the efficiency of the algorithm as
the dimension goes to infinity. Surprisingly, there is a one-
to-one correspondence between the value lopt = argmax h(l)

and the mean acceptance probability of 0.234.
The magic number 0.234 does not depend on f and gives

a universal tuning recipe to be used for example in adaptive
algorithms: choose the scale of the increment so that approx-
imately 23 % of the proposals are accepted.

The result, established under restrictive assumptions, has
been empirically verified to hold much more generally, for
non iid targets and also in medium- and even low-dimensional
examples with d as small as 5. It has been also combined with
relative efficiency loss due to mismatch between the proposal
and target covariance matrices (see Roberts and Rosenthal
2001).

The simplicity of the result and easy access to the average
acceptance rate makes optimal scaling the main theoretical
driver in development of adaptive MCMC algorithms, and
adaptive MCMC is the main application and motivation for
researching optimal scaling.

A large body of theoretical work extends optimal scaling
formally to different and more general scenarios. For exam-
ple Metropolis for smooth non iid targets has been addressed,
e.g., by Bédard (2007), and in infinite dimensional settings
by Beskos et al. (2009). Discrete and other discontinuous tar-
gets have been considered in Roberts (1998) and Neal et al.
(2012). For MALA algorithms an optimal acceptance rate of
0.574 has been established in Roberts and Rosenthal (1998)
and confirmed in infinite-dimensional settings in Pillai et al.
(2012) along with the stepsize σ 2

d = l2d−1/3. Hybrid Monte
Carlo (see Sect. 2.3) has been analysed in a similar spirit by
Beskos et al. (2013) and Betancourt et al. (2014) concluding
that any value ∈ [0.6, 0.9] will be close to optimal and the
leapfrog step size should be taken as h = l × d−1/4. These
results not only inform about optimal tuning, but also provide
an efficiency ordering on the algorithms in d-dimensions.
Metropolis algorithms need O(d) steps to explore the state
space, while MALA and HMC need respectively O(d1/3)

and O(d1/4).

Further extensions include studying the transient phase
before reaching stationarity (Christensen et al. 2005; Jour-
dain et al. 2012, 2014), the scaling of multiple-try MCMC
(Bédard et al. 2012) and delayed rejection MCMC (Bédard
et al. 2014), and the temperature scale of parallel tempering
type algorithms (Atchadé et al. 2011b; Roberts and Rosen-
thal 2014). Interestingly, the optimal scaling of the discussed
in Sect. 2.5 pseudo-marginal algorithms as obtained in Sher-
lock et al. (2014), and extended to more general settings in
Doucet et al. (2012) and Sherlock (2014), suggests an accep-
tance rate of just 0.07.

While each of these numerous optimal scaling results
gives rise, at least in principle, to an adaptive MCMC design,
the pioneering and most successful algorithm is the Adap-
tive Metropolis of Haario et al. (2001). With its increasing
popularity in applications, this has fuelled the development
of the field.

Here one considers a normal increment proposal that esti-
mates the target covariance matrix from past samples and
applies appropriate dimension-dependent scaling and covari-
ance shrinkage. Precisely, the proposal takes the form

q
(

·|θ (n−1)
)

= N
(

θ (n−1), C (n)
)

, (5)

with the covariance matrix

C (n) = (2.38)2

d

(

ˆcov
(

θ (0), . . . , θ (n−1)
)

+ ε Id×d

)

, (6)

which is efficiently computed using a recursive formula.
Versions and refinements of the adaptive Metropolis algo-

rithm (Roberts and Rosenthal 2009; Andrieu and Thoms
2008) have served well in applications and motivated much
of the theoretical development. These include, among many
other contributions, adaptive Metropolis, delayed rejection
adaptive Metropolis (Haario et al. 2006), regional adaptation
and parallel chains (Craiu et al. 2009), and the robust ver-
sion of Vihola (2012) estimating the shape of the distribution
rather than its covariance matrix and hence suitable for heavy
tailed targets.

Analogous development of adaptive MALA algorithms
in Atchadé (2006) and Marshall and Roberts (2012) and of
adaptive HMC and Riemannian Manifold Monte Carlo in
Wang et al. (2013) building on the adaptive scaling theory,
resulted in a similar drastic mixing improvement as the orig-
inal Adaptive Metropolis.

Another substantial and still unexplored area where adap-
tive algorithms are applied for very high dimensional and
multimodal problems is model and variable selection (Nott
and Kohn 2005; Richardson et al. 2010; Lamnisos et al.
2013; Ji and Schmidler 2013; Griffin et al. 2014). These algo-
rithms can incorporate reversible jump moves (Green 1995)
and are guided by scaling limits for discrete distributions as
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well as temperature spacing of parallel tempering to address
multimodality. Successful implementations allow for fully
Bayesian variable selection in models with over 20,000 vari-
ables for which otherwise only ad hoc heuristic approaches
have been used in the literature.

To address the second difficulty with adaptive algorithms,
several approaches have been developed to establish their
theoretical underpinning. While for standard MCMC, con-
vergence in total variation and law of large numbers are
obtained almost trivially, and the effort concentrates on
stronger results, like CLTs, geometric convergence, nonas-
ymptotic analysis, and, maybe most importantly, comparison
and ordering of algorithms, adaptive samplers are intrin-
sically difficult. The most elegant and theoretically-valid
strategy is to change the underlying Markovian kernel at
regeneration times only (Gilks et al. 1998). Unfortunately,
this is not very appealing for practitioners since regenera-
tions are difficult to identify in more complex settings and
are essentially impractically rare in high dimensions. The
original Adaptive Metropolis of Haario et al. (2001) has
been validated (under some restrictive additional conditions)
by controlling the dependencies introduced by the adap-
tation and using convergence results for mixingales. The
approach has been further developed in Atchadé and Rosen-
thal (2005) and Atchadé (2006) to verify its ergodicity under
weaker assumptions and apply the mixingale approach to
adaptive MALA. Another successful approach (Andrieu and
Moulines 2006 refined in Saksman and Vihola 2010) rests on
martingale difference approximations and martingale limit
theorems to obtain, under suitable technical assumptions,
versions of LLN and CLTs. There are close links between
analysing adaptive MCMC and stochastic approximation
algorithms and in particular the adaptation step can be often
written as a mean field of the stochastic approximation proce-
dure; Andrieu and Robert (2001), Atchadé et al. (2011a) and
Andrieu et al. (2015) contribute to this direction of analysis.
Fort et al. (2011) develop an approach where both adap-
tive and interacting MCMC algorithms can be treated in the
same framework. This allows addressing “external adapta-
tion” algorithms such as the interacting tempering algorithm
(a simplified version of the celebrated equi-energy sampler
of Kou et al. 2006) or adaptive parallel tempering in Miaso-
jedow et al. (2013).

We present here the rather general but fairly simple cou-
pling approach (Roberts and Rosenthal 2007) to establishing
convergence. Successfully applied to a variety of adaptive
Metropolis samplers under weak regularity conditions (Bai
et al. 2011), adaptive Gibbs and adaptive Metropolis within
adaptive Gibbs samplers (Łatuszyński et al. 2013), it shows
that two properties Diminishing Adaptation and Containment

are sufficient to guarantee that an adaptive MCMC algorithm
will converge asymptotically to the correct target distribution.
To this end recall the total variation distance between two

measures defined as ‖ν(·)−μ(·)‖ := supA∈F |ν(A)−μ(A)|,
and for every Markov transition kernel Pξ , ξ ∈ Ξ and every
starting point θ ∈ Θ define the ε convergence function
Mε: Θ × Ξ → N as

Mε(θ, ξ) := inf
{

n ≥ 1:
∥

∥

∥
P

(n)
ξ (θ, ·) − π(·)

∥

∥

∥
≤ ε

}

.

Let {(θ (n), ξ (n))}∞n=0 be the corresponding adaptive MCMC
algorithm and by A(n)((θ, ξ), ·) denote its marginal distrib-
ution at time t, i.e.,

A(n)((θ, ξ), B) := P

(

θ (n) ∈ B|θ (0) = θ, ξ (0) = ξ
)

.

The adaptive algorithm is ergodic for every starting values
of θ and ξ if limn→∞ ‖A(n)((θ, ξ), ·)−π(·)‖ = 0. The two
conditions guaranteeing ergodicity are

Definition 1 (Diminishing Adaptation) The adaptive algo-
rithm with starting values θ (0) = θ and ξ (0) = ξ satisfies
Diminishing Adaptation, if

lim
n→∞

D(n) = 0 in probability, where

D(n) := sup
θ∈Θ

∥

∥Pξ (n+1)(θ, ·) − Pξ (n)(θ, ·)
∥

∥ .

Definition 2 (Containment) The adaptive algorithm with
starting values θ (0) = θ and ξ (0) = ξ satisfies Containment,
if for all ε > 0 the sequence {Mε(θ

(n), ξ (n))}∞n=0 is bounded
in probability.

While diminishing adaptation is a standard requirement,
Containment is subject to some discussion. On one hand,
it may seem difficult to verify in practice; on the other, it
may appear restrictive in the context of ergodicity results
under some weaker conditions (c.f. Fort et al. 2011). How-
ever, it turns out (Łatuszyński and Rosenthal 2014) that if
Containment is not satisfied, then the algorithm may still
converge, but with positive probability it will be asymptot-
ically less efficient than any nonadaptive ergodic MCMC
scheme. Hence algorithms that do not satisfy Containment
are termed AdapFail and are best avoided. Containment has
been further studied in Bai et al. (2011) and is in particu-
lar implied by simultaneous geometric or polynomial drift
conditions of the adaptive kernels.

Given that adaptive algorithms may be incorporated in
essentially any sampling scheme, their introduction seems
to be one of the most important innovations of the last
two decades. However, despite substantial effort and many
ingenious contributions, the theory of adaptive MCMC lags
behind practice even more than may be the case in other com-
putational areas. While theory always matters, the numerous
unexpected and counterintuitive examples of transient adap-
tive algorithms suggest that in this area theory matters even
more for healthy development.
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For adaptive MCMC to become a routine tool, a clear-
cut result is needed saying that under some easily verifiable
conditions these algorithms are valid and perform not much
worse than their nonadaptive counterpart with fixed parame-
ters. Such a result is yet to be established and may require
deeper understanding of how to construct stable adaptive
MCMC, rather than aiming heavy technical artillery at algo-
rithms currently in use without modifying them.

2.5 Estimated likelihoods and pseudo-marginals

There are numerous settings of interest where the target den-
sity π(·|y) is not available in closed form. For instance, in
latent variable models, the likelihood function ℓ(θ |y) is often
only available as an intractable integral

ℓ(θ |y) =
∫

Z
g(z, y|θ)dz,

which leads to

π(θ |y) ∝ π(θ)

∫

Z
g(z, y|θ)dz,

being equally intractable. A solution proposed from the early
days of MCMC (Tanner and Wong 1987) is to consider z

as an auxiliary variable and to simulate the joint distribu-
tion π(θ, z|y) on Θ × Z by a standard method, leading to
simulating the marginal density π(·|y) as a by-product. How-
ever, when the dimension of the auxiliary variable z grows
with the sample size, this technique may run into difficulties
as induced MCMC algorithms are more and more likely to
have convergence issues. An illustration of this case is pro-
vided by hidden Markov models, which have eventually to
resort to particle filters as Markov chain algorithms become
ineffective (Chopin 2007; Fearnhead and Clifford 2003).
Another situation where the target density π(·|y) cannot be
directly computed is the case of the “doubly intractable” like-
lihood (Murray et al. 2006a), when the likelihood function
ℓ(θ |y) ∝ g(y|θ) itself contains a term that is intractable, in
that it makes the normalising constant

Z(θ) =
∫

Y
g(y|θ)dy,

impossible to compute. The resulting posterior writes

π(θ |y) = π(θ)g(y|θ)

Z(θ)p(y)
, where

p(y) =
∫

Θ

π(θ)g(y|θ)

Z(θ)
dθ,

and consequently the Metropolis–Hastings acceptance rate
becomes

α(θ, θ ′) = min

{

1,
π(θ ′)g(y, θ ′)q(θ ′|θ)

π(θ)g(y, θ)q(θ |θ ′)
× Z(θ)

Z(θ ′)

}

,

and cannot be evaluated exactly for algorithmic purposes.
Examples of this kind abound in Markov random fields

models, as for instance for the Ising model (Murray et al.
2006b; Møller et al. 2006).

Both the approaches of Murray et al. (2006a) and Møller
et al. (2006) require sampling data from the likelihood
ℓ(θ |y), which limits their applicability. The latter uses in
addition an importance sampling function and may suffer
from poor acceptance rates.

Andrieu and Roberts (2009) propose a more general reso-
lution of such problems by designing a Metropolis–Hastings
algorithm that replaces the intractable target density π(·|y)

with an unbiased estimator, following an idea of Beaumont
(2003). The approach is termed pseudo-marginal. Rather
than evaluating the posterior exactly, a positive unbiased esti-
mate Sθ of π(θ |y) is utilised. More formally, a new Markov
chain is constructed that evolves on the extended state space
Θ ×R+, where at iteration n, given the pair (θ (n−1), S

(n−1)

θ (n−1) )

of parameter value and density estimate at this value, the
proposal (θ ′, Sθ ′) is obtained by sampling θ ′ ∼ q(·|θ (n−1))

and obtaining Sθ ′ , the estimate of π(θ ′|y). Analogously to
the standard Metropolis–Hastings step, the pair (θ ′, Sθ ′) is
accepted as (θ (n), S

(n)

θ (n)) with probability

min

{

1,
Sθ ′q(θ (n−1)|θ ′)

S
(n−1)

θ (n−1)q(θ ′|θ (n−1))

}

,

otherwise the proposal is rejected and the new value set as
(θ (n), S

(n)

θ (n)) := (θ (n−1), S
(n−1)

θ (n−1)).

It is not difficult to verify that the bivariate chain on
extended state space Θ ×R+ enjoys the correct π(θ |y) mar-
ginal on Θ and the approach is valid, see Andrieu and Roberts
(2009) for details (and also Andrieu and Vihola 2015 for an
abstracted account).

One specific instance of constructing unbiased estimators
of the posterior is presented in Girolami et al. (2013) and
based on random truncations of infinite series expansions.
The paper also offers an excellent overview of inference
methods for intractable likelihoods.

The performance of the pseudo-marginal approach will
depend on the quality of the estimators Sθ and hence stabil-
ising them as well as understanding this relationship is an
active area of current development. Often Sθ is constructed
as an importance sampler based on an importance sample
z. Thus in particular, the improvements from using multiple
samples of z to estimate π are of interest and can be assessed
from Andrieu and Vihola (2015) where the efficiency of the
algorithm is studied in terms of its spectral gap and CLT
asymptotic variance. Sherlock et al. (2014), Doucet et al.
(2012) and Sherlock (2014), on the other hand, investigate
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the efficiency as a function of the acceptance rate and vari-
ance of the noise, deriving the optimal scaling, as discussed
in Sect. 2.4.

As an alternative to the above procedure of using estimates
of the intractable likelihood to design a new Markov chain
on an extended state space with correct marginal, one could
naively use these estimates to approximate the Metropolis–
Hastings accept–reject ratio and let the Markov chain evolve
in the original state space. This would amount to drop-
ping the current realisation of Sθ and obtaining a new one
in each accept–reject attempt. Such a procedure is termed
Monte Carlo within Metropolis (Andrieu and Roberts 2009).
Unfortunately this approach does not preserve the stationary
distribution, and the resulting Markov chain may even not be
ergodic (Medina-Aguayo et al. 2015). If ergodic, the differ-
ence between stationary distribution, resulting from the noisy
acceptance must be quantified, which is a highly nontrivial
task and the bounds will rarely be tight (see also Alquier et al.
2014; Pillai and Smith 2014; Rudolf and Schweizer 2015 for
related methodology and theory). The approach is however
an interesting avenue since at the price of being biased, it
overcomes mixing difficulties of the exact pseudo-marginal
version.

Design and understanding of pseudo-marginal algorithms
is a direction of dynamic methodological development that in
the coming years will be further fuelled not only by complex
models with intractable likelihoods, but also by the need of
MCMC algorithms for Big Data. In this context the likeli-
hood function cannot be evaluated for the whole dataset even
in the iid case just because computing the long product of
individual likelihoods is infeasible. Several Big Data MCMC
approaches have been already considered in Welling and Teh
(2011), Korattikara et al. (2013), Teh et al. (2014), Bardenet
et al. (2014), Maclaurin and Adams (2014), Minsker et al.
(2014), Quiroz et al. (2014) and Strathmann et al. (2015).

2.6 Particle MCMC

While we refrain from covering particle filters here, since
others (Beskos et al. 2015) in this volume are focussing
on this technique, a recent advance at the interface between
MCMC, pseudo-marginals, and particle filtering is the notion
of particle MCMC (or pMCMC), developed by Andrieu
et al. (2011). This innovation is indeed rather similar to the
pseudo-marginal algorithm approach, taking advantage of
the state-space models and auxiliary variables used by par-
ticle filters. It differs from standard particle filters in that
it targets (mostly) the marginal posterior distribution of the
parameters.

The simplest setting in which pMCMC applies is one of a
state-space model where a latent sequence x0:T is a Markov
chain with joint density

p0 (x0| θ) p1 (x1|x0, θ) · · · pT (xT |xT −1, θ) ,

and is associated with an observed sequence y1:T such that

y1:T |x1:T , θ ∼
T

∏

i=1

qi (yi |xi , θ) .

The iterations of pMCMC are MCMC-like in that, at iter-
ation t, a new value θ ′ of θ is proposed from an arbitrary
transition kernel h(·|θ (t)) and then a new value of the latent
series x ′

0:T is generated from a particle filter approximation
of p(x0:T |θ ′, y1:T ). Since the particle filter returns as a by-
product (Del Moral et al. 2006) an unbiased estimator of the
marginal posterior of y1:T , q̂(y1:T |θ ′), this estimator can be
used as such in the Metropolis–Hastings ratio

q̂(y1:T |θ ′)π(θ ′)h(θ (t)|θ ′)

q̂(y1:T |θ)π(θ (t))h(θ ′|θ (t))
∧ 1.

Its validity follows from the general argument of Andrieu and
Roberts (2009), although some additional (notational) effort
is needed to demonstrate all random variables used therein
are correctly assessed (see Andrieu et al. 2011; Wilkinson
2011a, the latter providing a very progressive introduction
to the notions of pMCMC and particle Gibbs, which helped
greatly in composing this section). Note however that the
general validation of pMCMC as targetting the joint posterior
of the states and parameters and of the parallel particle Gibbs
sampler does not follow from pseudo-marginal arguments.

This approach is being used increasingly in complex
dynamic models like those found in signal processing
(Whiteley et al. 2010), dynamical systems like the PDEs
in biochemical kinetics (Wilkinson 2011b) and probabilis-
tic graphical models (Lindsten et al. 2014). An extension to
approximating the sequential filtering distribution is found
in Chopin et al. (2013).

2.7 Parallel MCMC

Since MCMC relies on local updating based on the current
value of a Markov chain, opportunities for exploiting paral-
lel resources, either CPU or GPU, would seem quite limited,
In fact, the possibilities reach far beyond the basic notion of
running independent or coupled MCMC chains on several
processors. For instance, Craiu and Meng (2005) construct
parallel antithetic coupling to create negatively correlated
MCMC chains (see also Frigessi et al. 2000), while Craiu
et al. (2009) use parallel exploration of the sample space
to tune an adaptive MCMC algorithm. Jacob et al. (2011)
exploit GPU facilities to improve by Rao-Blackwellisation
the Monte Carlo approximations produced by a Markov
chain, even though the parallelisation does not improve the
convergence of the chain. See also Lee et al. (2009) and
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Suchard et al. (2010) for more detailed contributions on the
appeal of using GPUs towards massive parallelisation, and
Wilkinson (2005) for a general survey on the topic.

Another recently-explored direction is “prefetching”.
Based on Brockwell (2006) this approach computes the
22, 23, . . . , 2k values of the posterior that will be needed
2, 3, . . . , k sweeps ahead by simulating the possible
“futures” of the Markov chain, according to whether the
next k proposals are accepted or not, in parallel. Running
a regular Metropolis–Hastings algorithm then means build-
ing a decision tree back to the current iteration and drawing
2, 3, . . . , k uniform variates to go down the tree to the appro-
priate branch. As noted by Brockwell (2006), “in the case
where one can guess whether or not acceptance probabilities
will be ‘high’ or ‘low’, the tree could be made deeper down
‘high’ probability paths and shallower in the ‘low’ probabil-
ity paths.” This idea is exploited in Angelino et al. (2014), by
creating “speculative moves” that consider the reject branch
of the prefetching tree more often than not, based on some
preliminary or dynamic evaluation of the acceptance rate.
Using a fast but close-enough approximation to the true tar-
get (and a fixed sequence of uniforms) may also produce
a “single most likely path” on which prefetched simulations
can be run. The basic idea is thus to run simulations and costly
likelihood computations on many parallel processors along
a prefetched path, a path that has been prefetched for its high
approximate likelihood. There are obviously instances where
this speculative simulation is not helpful because the actual
chain with the genuine target ends up following another path.
Angelino et al. (2014) actually go further by constructing
sequences of approximations for the precomputations. The
proposition for the sequence found therein is to subsample
the original data and use a normal approximation to the differ-
ence of the log (sub-)likelihoods. See Strid (2010) for related
ideas.

A different use of parallel capabilities is found in Calder-
head (2014). At each iteration of Calderhead’s algorithm, N

replicas are generated, rather than 1 in traditional Metropolis–
Hastings. The Markov chain actually consists of N compo-
nents, from which one component is selected at random as
a seed for the next proposal. This approach can be seen as a
special type of data augmentation (Tanner and Wong 1987),
where the index of the selected component is an auxiliary
variable. The neat trick in the proposal (and the reason for its
efficiency gain) is that the stationary distribution of the aux-
iliary variable can be determined and hence used N times in
updating the vector of N components. An interesting feature
of this approach is when the original Metropolis–Hastings
algorithm is expressed as a finite state space Markov chain on
the set of indices {1, . . . , N }. Conditional on the values of the
N dimensional vector, the stationary distribution of that sub-
chain is no longer uniform. Hence, picking N indices from
the stationary helps in selecting the most appropriate images,

which explains why the rejection rate decreases. The paper
indeed evaluates the impact of increasing the number of pro-
posals in terms of ESS, acceptance rate, and mean squared
jump distance. Since this proposal is an almost free bonus
resulting from using N processors, it sounds worth investi-
gating and comparing with more complex parallel schemes.

Neiswanger et al. (2013) introduced the notion of embar-
rassingly parallel MCMC, where “embarrassing” refers to the
“embarrassingly simple” solution proposed therein, namely
to solve the difficulty in handling very large datasets by run-
ning completely independent parallel MCMC samplers on
parallel threads or computers and using the outcomes of those
samplers as density estimates, pulled together as a product
towards an approximation of the true posterior density. In
other words, the idea is to break the posterior as

p(θ |y) ∝
m

∏

i=1

pi (θ |y), (7)

and to use the estimate

p̂(θ |y) ∝
m

∏

i=1

p̂i (θ |y),

where the individual estimates are obtained, say, nonpara-
metrically. The method is then “asymptotically exact” in the
weak (and unsurprising) sense of converging in the number
of MCMC iterations. Still, there is a theoretical justification
that is not found in previous parallel methods that mixed all
resulting samples without accounting for the subsampling.
And the point is made that, in many cases, running MCMC
samplers with subsamples produces faster convergence. The
decomposition of p(·) into its components is done by parti-
tioning the iid data into M subsets and taking a power 1/m of
the prior in each case. (This may induce issues about impro-
priety.) However, the subdivision is arbitrary and can thus
be implemented in cases other than the fairly restrictive iid
setting. Because each (subsample) nonparametric estimate
involves T terms, the resulting overall estimate contains Tm

terms and the authors suggest using an independent Metropo-
lis sampler to handle this complexity. This is in fact necessary
for producing a final sample from the (approximate) true pos-
terior distribution.

In a closely related way, Wang and Dunson (2013) start
from the same product representation of the target (poste-
rior), namely, (7). However, they criticise the choice made
by Neiswanger et al. (2013) to use MCMC approximations
for each component of the product for the following reasons:

(1) Curse of dimensionality in the number of parameters d;
(2) Curse of dimensionality in the number of subsets m;
(3) Tail degeneration;
(4) Support inconsistency and mode misspecification.
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Point 1 is relevant, but there may be ways other than ker-
nel estimation to mix samples from the terms in the product.
Point 2 is less of a clearcut drawback: while the Tm terms
corresponding to a product of m sums of T terms sounds
self-defeating, Neiswanger et al. (2013) use a clever device
to avoid the combinatorial explosion, namely operating on
one component at a time. Having non-manageable targets
is not such an issue in the post-MCMC era. Point 3 is for-
mally correct, in that the kernel tail behaviour induces the
kernel estimate tail behaviour, most likely disconnected from
the true target tail behaviour, but this feature is true for any
non-parametric estimate, even for the Weierstrass transform
defined below, and hence maybe not so relevant in practice.
In fact, by lifting the tails up, the simulation from the sub-
posteriors should help in visiting the tails of the true target.
Finally, point 4 does not seem to be life-threatening. Assum-
ing that the true target can be computed up to a normalising
constant, the value of the target for every simulated parame-
ter could be computed, eliminating those outside the support
of the product and highlighting modal regions.

The Weierstrass transform of a density f is a convolu-
tion of f and of an arbitrary kernel K. Wang and Dunson
(2013) propose to simulate from the product of the Weier-
strass transform, using a multi-tiered Gibbs sampler. Hence,
the parameter is only simulated once and from a controlled
kernel, while the random effects from the convolution are
related with each subposterior. While the method requires
coordination between the parallel threads, the components
of the target are separately computed on a single thread. The
clearest perspective on the Weierstrass transform may pos-
sibly be the rejection sampling version where simulations
from the subpriors are merged together into a normal pro-
posal on θ, to be accepted with a probability depending on
the subprior simulations.

VanDerwerken and Schmidler (2013) keep with the spirit
of parallel MCMC papers like consensus Bayes (Scott et al.
2013), embarrassingly parallel MCMC (Neiswanger et al.
2013) and Weierstrass MCMC (Wang and Dunson 2013),
namely that the computation of the likelihood can be broken
into batches and MCMC run over those batches indepen-
dently. The idea of the authors is to replace an exploration of
the whole space operated via a single Markov chain (or by
parallel chains acting independently which all have to “con-
verge”) with parallel and independent explorations of parts of
the space by separate Markov chains. The motivation is that
“Small is beautiful”: it takes a shorter while to explore each
set of the partition, hence to converge, and, more importantly,
each chain can work in parallel with the others. More specifi-
cally, given a partition of the space, into sets Ai with posterior
weights wi , parallel chains are associated with targets equal
to the original target restricted to those Ai s. This is there-
fore an MCMC version of partitioned sampling. With regard
to the shortcomings listed in the quote above, the authors

consider that there does not need to be a bijection between
the partition sets and the chains, in that a chain can move
across partitions and thus contribute to several integral eval-
uations simultaneously. It is somewhat unclear (a) whether
or not this impacts ergodicity (it all depends on the way the
chain is constructed, i.e., against which target) as it could lead
to an over-representation of some boundary regions and (b)
whether or not it improves the overall convergence proper-
ties of the chain(s). A more delicate issue with the partitioned
MCMC approach stands with the partitioning. Indeed, in a
complex and high-dimension model, the construction of the
appropriate partition is a challenge in itself as we often have
no prior idea where the modal areas are. Waiting for a cor-
rect exploration of the modes is indeed faster than waiting
for crossing between modes, provided all modes are repre-
sented and the chain for each partition set Ai has enough
energy to explore this set. It actually sounds unlikely that a
target with huge gaps between modes will see a considerable
improvement from the partitioned version when the partition
sets Ai are selected on the go, because some of the bound-
aries between the partition sets may be hard to reach with an
off-the-shelf proposal. A last comment about this innovative
paper is that the adaptive construction of the partition has
much in common with Wang–Landau schemes (Wang and
Landau 2001; Lee et al. 2005; Atchadé and Liu 2010; Jacob
and Ryder 2014).

3 ABC and others, exactly delivering an
approximation

Motivated by highly complex models where MCMC algo-
rithms and other Monte Carlo methods were too inefficient
by far, approximate methods have emerged where the output
cannot be considered as simulations from the genuine pos-
terior, even under idealised situations of infinite computing
power. These methods include ABC techniques, described in
more details below, but also variational Bayes (Jaakkola and
Jordan 2000), empirical likelihood (Owen 2001), integrated
nested Laplace approximation (INLA) (Rue et al. 2009) and
other solutions that rely on pseudo-models, or on summarised
versions of the data, or both. It is quite important to signal
this evolution as we think that it may be a central feature of
computational Bayesian statistics in the coming years. From
a statistical perspective, it also induces a somewhat para-
doxical situation where loss of information is balanced by
improvement in precision, for a given computational budget.
This perspective is not only interesting at the computational
level but forces us (as statisticians) to re-evaluate in depth the
nature of a statistical model and could produce a paradigm
shift in the near future by giving a brand new meaning to
George Box’s motto that “all models are wrong”.
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3.1 ABC per se

It seems important to discuss ABC in this partial tour of
Bayesian computational techniques as (a) they provide the
only approach to their model for some Bayesians, (b) they
deliver samples in the parameter space that are exact sim-
ulations from a posterior of some kind (Wilkinson 2013),
πABC(θ |y0) if not the original posterior π(θ |y0), where y0

denotes the data in this section (c) they may be more intuitive
to some researchers outside statistics, as they entail sim-
ulating from the inferred model, i.e., going forward from
parameter to data, rather than backward, from data to para-
meter, as in traditional Bayesian inference, (d) they can be
merged with MCMC algorithms, and (e) they allow drawing
inference directly from summaries of the data rather than the
data itself.

ABC techniques play a role in the 2000s that MCMC
methods did in the 1990s, in that they handle new mod-
els for which earlier (e.g., MCMC) algorithms were at a
loss, in the same way the latter (MCMC) were able to han-
dle models that regular Monte Carlo approaches could not
reach, such as latent variable models (Tanner and Wong 1987;
Diebolt and Robert 1994; Richardson and Green 1997). New
models for which ABC unlocked the gate include Markov
random fields, Kingman’s coalescent for phylogeographi-
cal data, likelihood models with an intractable normalising
constant, and models defined by their quantile function or
their characteristic function. While the ABC approach first
appeared a “quick-and-dirty” solution, to be considered only
until more elaborate representations could be found, those
algorithms have been progressively incorporated into the sta-
tistician’s toolbox as a novel form of generic nonparametric
inference handling partly-defined statistical models. They are
therefore attractive as much for this reason as for being handy
computational solutions when everything else fails.

A statistically intriguing feature of those methods is that
they customarily require—for greater efficiency—replacing
the data with (much) smaller-dimension summaries1 or sum-
mary statistics, because of the complexity of the former. In
almost every case calling for ABC, those summaries are not
sufficient statistics and the method thus implies from the start
a loss of statistical information, at least at a formal level, since
relying on the raw data is out of the question and therefore
the additional information it provides is moot. This imposed
reduction of the statistical information raises many relevant
questions, from the choice of summary statistics (Blum et al.
2013) to the consistency of the ensuing inference (Robert
et al. 2011).

1 Maybe due to their initial introduction in population genetics, the
oxymoron ‘summary statistics’ is now prevalent in descriptions of ABC
algorithms, included in the statistical literature, where the (linguistically
sufficient) term ‘statistic’ would suffice.

Although it has now diffused into a wide range of appli-
cations, the technique of ABC was first introduced by and
for population genetics (Tavaré et al. 1997; Pritchard et al.
1999) to handle ancestry models driven by Kingman’s coa-
lescent and with strictly intractable likelihoods (Beaumont
2010). The likelihood function of such genetic models is
indeed “intractable” in the sense that, while derived from
a fully defined and parameterised probability model, this
function cannot be computed (at all or within a manage-
able time) for a single value of the parameter and for the
given data. Bypassing the original example to avoid getting
mired into the details of population genetics, examples of
intractable likelihoods include densities with intractable nor-
malising constants, i.e., f (y|θ) = g(y|θ)/Z(θ) such as in
Potts (1952) and auto-exponential (Besag 1972) models, and
pseudo-likelihood models (Cucala et al. 2009).

Example 1 A very simple illustration of an intractable likeli-
hood is provided by Bayesian inference based on the median
and median absolute deviation statistics of a sample from an

arbitrary location-scale family, y1, . . . , yn
iid∼ σ−1g(σ−1{y−

μ}), as the joint distribution of this statistic is not available
in closed form.

The concept at the core of ABC methods can be seen as
both very naïve and intrinsically related to the foundations of
Bayesian statistics as inverse probability (Rubin 1984). This
concept is that data y simulated conditional on values of the
parameter close to the “true” value of the parameter should
look more similar to the actual data y0 than data y simulated
conditional on values of the parameter far from the “true”
value. ABC actually involves an acceptance/rejection step in
that parameters simulated from the prior are accepted only
when

ρ (y, y0) < ǫ,

where ρ(·, ·) is a distance and ǫ > 0 is called the tolerance. It
can be shown that the algorithm exactly samples the posterior
when ǫ = 0, but this is very rarely achievable in practice
(Grelaud et al. 2009). An algorithmic representation is as
follows:

Algorithm 2 ABC (basic version)
for t = 1 to N do

repeat

Generate θ∗ from the prior π(·)
Generate y∗ from the model f (·|θ∗)
Compute the distance ρ(y0, y∗)
Accept θ∗ if ρ(y0, y∗) < ǫ

until acceptance
end for

return N accepted values of θ∗
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Calibration of the ABC method in Algorithm 2 involves
selecting the distance ρ(·, ·) and deducing the tolerance from
computational cost constraints. However, in realistic settings,
ABC is never implemented as such because comparing raw
data to simulated raw data is rarely efficient, noise dominat-
ing signal (see, e.g., Marin et al. 2012 for toy examples).
It is therefore natural that one first considers dimension-
reduction techniques to bypass this curse of dimensionality.
For instance, if rudimentary estimates S(y) of the parameter
θ are available, they are good candidates. In the ABC litera-
ture, they are called summary statistics, a term that does not
impose any constraint on their form and hence leaves open the
question of performance, as discussed in Marin et al. (2012)
and Blum et al. (2013). A more practical version of the ABC
algorithm is shown in Algorithm 3 below, with a different
output for each choice of the summary statistic. We stress in
this version of the algorithm the construction of the tolerance
ǫ as a quantile of the simulated distances ρ(S(y0), S(y(t))),

rather than an additional parameter of the method.

Algorithm 3 ABC (version with summary)
for t = 1 to Nre f do

Generate θ (t) from the prior π(·)
Generate y(t) from the model f (·|θ (t))

Compute dt = ρ(S(y0), S(y(t)))

end for

Order distances d(1) ≤ d(2) ≤ . . . ≤ d(Nre f )

return the values θ (t) associated with the k smallest distances

An immediate question about this approximate algorithm
is how much it remains connected with the original poste-
rior distribution and in case it does not, where does it draw
its legitimacy. A first remark in this connection is that it
constitutes at best a convergent approximation to the pos-
terior distribution π(θ |S(y0)). It can easily be seen that
ABC generates outcomes from a genuine posterior distri-
bution when the data is randomised with scale ǫ (Wilkinson
2013; Fearnhead and Prangle 2012). This interpretation indi-
cates a decrease in the precision of the inference but it does
not provide a universal validation of the method. A second
perspective on the ABC output is that it is based on a non-
parametric approximation of the sampling distribution (Blum
2010; Blum and François 2010), connected with both indi-
rect inference (Drovandi et al. 2011) and k-nearest neighbour
estimation (Biau et al. 2014). While a purely Bayesian non-
parametric analysis of this aspect has not yet emerged, this
brings an additional if cautious support for the method.

Example 2 Continuing from the previous example of a
location-scale sample only monitored through the pair
median plus mad statistic, we consider the special case of
a normal sample y1, . . . , yn ∼ N (μ, σ 2), with n = 100.

Using a conjugate prior μ ∼ N (0, 10), σ−2 ∼ Ga(2, 5),

we generated 106 parameter values, along with the corre-
sponding pairs of summary statistics. When creating the
distance ρ(·, ·), we used both following versions:

ρ1

(

S
(

y0
)

, S(y)
)

= |med
(

y0
)

−med(y|/mad(med(Y)))

+ |mad
(

y0
)

−mad(y|/mad(mad(Y))),

ρ2

(

S
(

y0
)

, S(y)
)

= |med
(

y0
)

−med(y|/mad(med(Y)))

+ | log mad
(

y0
)

−log mad(y|/mad(log mad(Y))),

where the denominators are computed from the reference
table in order to scale the components properly. Figure 1
shows the impact of the choice of this distance, but even
more clearly the discrepancy between inference based on the
ABC and the true inference on (μ, σ 2).

The discrepancy can however be completely eliminated
by post-processing: Fig. 2 reproduces Fig. 1 by comparing
the histograms of an ABC sample with the version corrected
by Beaumont et al.’s (2002) local regression, as the latter is
essentially equivalent to a regular Gibbs output.

Barber et al. (2015) studies the rate of convergence for
ABC algorithms through the mean square error when approx-
imating a posterior moment. They show the convergence rate
is of order O(n

2/q+4), when q is the dimension of the ABC
summary statistic, associated with an optimal tolerance in
O(n

−1/4). Those rates are connected with the nonparametric
nature of ABC, as already suggested in the earlier literature:
for instance, Blum (2010), who links ABC with standard
kernel density non-parametric estimation and find a toler-
ance (re-expressed as a bandwidth) of order n

−1/q+4 and an
rmse of order 2/q+4 as well, while Fearnhead and Prangle
(2012) obtain similar rates, with a tolerance of order n

−1/q+2

for noisy ABC. See also Calvet and Czellar (2014). Simi-
larly, Biau et al. (2014) obtain precise convergence rates for
ABC interpreted as a k-nearest-neighbour estimator.

Lee and Łatuszyński (2014) have also produced precise
characterisations of the geometric ergodicity or lack thereof
of four ABC–MCMC algorithms:

(1) the standard ABC–MCMC (with N replicates of the sim-
ulated pseudo-data to each simulated parameter value),

(2) versions involving simulations of the replicates repeated
at the subsequent step,

(3) use of a stopping rule in the generation of the pseudo
data, and

(4) a “gold-standard algorithm” based on the (unavailable)
measure of an ǫ ball around the data.

Based a result by Roberts and Tweedie (1996b), also used
in Mengersen and Tweedie (1996), namely that an MCMC
chain cannot be geometrically ergodic when there exist
almost-absorbing states, they derive that (under some tech-
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Fig. 1 Comparison of the
posterior distributions on μ (left)
and σ (right) when using an
ABC Algorithm 3 with distance
ρ1 (top) and ρ2 (central), and
when using a standard Gibbs
sampler (bottom). All three
samples are based on the same
number of subsampled
parameters. The dataset is a
N (3, 22) sample and the
tolerance value ǫ corresponds to
α = 0.5 % of the reference table
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nical assumptions) the first two versions above cannot be
variance-bounding (i.e., that the spectral gap is zero), while
the last two versions can be both variance-bounding and geo-
metrically ergodic under some appropriate conditions on the
prior and the above ball measure. This result is thus rather
striking in simulating a random number of auxiliary vari-
ables is sufficient to produce geometric ergodicity. We note
that this result does not contradict the parallel result of Bornn
et al. (2014), who establish that there is no efficiency gain in
simulating N > 1 replicates of the pseudo-data, since there
is no randomness involved in that approach. However, the
latter result only applies to functions with finite variances.

When testing hypotheses and selecting models, the
Bayesian approach relies on modelling hypotheses and
model indices as part of the parameter and hence ABC
naturally operates as this level as well, as demonstrated
in Algorithm 4 following Cornuet et al. (2008), Grelaud
et al. (2009) and Toni et al. (2009). In fields like popu-
lation genetics, model choice and hypotheses validation is
presumably the primary motivation for using ABC methods
as exemplified in Belle et al. (2008), Cornuet et al. (2010),
Excoffier et al. (2009), Ghirotto et al. (2010), Guillemaud

et al. (2009), Leuenberger and Wegmann (2010), Patin et al.
(2009), Ramakrishnan and Hadly (2009), Verdu et al. (2009)
and Wegmann and Excoffier (2010). It is also the area that
attracts most of the criticisms addressed against ABC: while
some are easily dismissed (see, e.g., Templeton 2008, 2010;
Beaumont et al. 2010; Berger et al. 2010), the impact of the
choice of the summary statistics on the value of the poste-
rior probability remains a delicate issue that prompted Pudlo
et al. (2014) to advocate the alternative use of a posterior
predictive error.

Algorithm 4 ABC (model choice)
for i = 1 to N do

Generate M from the prior π(M = m)

Generate θM from the prior πM (θM )

Generate y from the model fM (y|θM )

Compute the distance ρ{S(y), S(y0)}
Set M

(i) = M and θ (i) = θM

end for

return the values M
(i) associated with the k smallest distances

Indeed, Robert et al. (2011) pointed out the potential
irrelevance of ABC-based posterior probabilities, due to the
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Fig. 2 Comparison of the
posterior distributions on μ

(left) and σ (right) when using
an ABC algorithm 3 with
distance ρ1 (top), a
post-processed version by
Beaumont et al.’s (2002) local
regression (central), and when
using a standard Gibbs sampler
(bottom). The simulation setting
is the same as in Fig. 1
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possible ancilarity (for model choice) of summary statistics,
as also explained in Didelot et al. (2011). Marin et al. (2014)
consider for instance the comparison of normal and Laplace
fits on both normal and Laplace samples and show that using
sample mean and sample variance as summary statistics pro-
duces Bayes factors converging to values near 1, instead of
the consistent 0 and +∞.

Marin et al. (2014) analyses this phenomenon with the
aim of producing a necessary and sufficient consistency con-
dition on summary statistics. Quite naturally, the summaries
that are acceptable must display different behaviour under
both models, in the guise of ranges of means Eθ [S(y0)] that
do not intersect for the two models. (In the counter-example
of the normal–Laplace test, the expectations of the sample
mean and variance can be recovered under both models.)
This characterisation then leads to a practical asymptotic
test validating summary statistics and to the realisation that
a larger number of summaries helps in achieving this goal
(while degrading the estimated tolerance). More importantly,
it shows that the reduction of information represented by an
ABC approach may prevent discriminating between models,
at least when trying to recover the Bayes factor. In the end,

this is a natural consequence of simplifying the description
of both the data and the model, and can be found in most
limited information settings.

3.2 More fish in the alphabet soup

Besides ABC, approximation techniques have spread wide
and far towards analysing more complex or less completely
defined models. Rather than a confusion, this multiplicity
of available approximations is beneficial both to the under-
standing of the underlying model and to the calibration of
those different methods.

Variational Bayes methods have been proposed for at least
two decades to substitute exponential families q(θ |λ) for
complex posterior distributions π(θ) (Jordan et al. 1999;
MacKay 2002). The central notion in those methods is that
the exponential family structure and a so-called mean-field
representation of the approximation

q(θ |λ) =
k

∏

i=1

qi (θi |λi ) ,
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allows for a sometimes closed-form minimisation of the
Kullback–Leibler distance KL(q(θ |λ), π(θ)) between the
true target and its approximation. If not, the setting is quite
congenial to the use of EM algorithms (Paisley et al. 2012).
See Salimans and Knowles (2013) for a contemporary view
on this approach, which offers considerable gains in terms
of computing time, while being difficult to assess in terms
of discrepancy with the “truth”, i.e., the outcome that would
result from using the genuine posterior.

Another approach that has met with considerable interest
in the past 5 years is INLA (Rue et al. 2009). The method
operates on latent Gaussian random fields, with likelihoods
of the form

n
∏

i=1

f (xi |ηi , θ) ,

where the xi ’s are the observables and the ηi ’s are latent
variables. Using Laplace approximations to the marginal dis-
tributions π(θ |x0) and to f (η|x0), INLA produces fast and
accurate approximations of the true posterior distribution as
well as of the marginal likelihood value. Thanks to the avail-
ability of a well-constructed package called R-INLA, this
approach has gathered a large group of followers.

A somewhat exotic example of variational approximation
is expectation-propagation (EP) (Minka 2001), which starts
from an arbitrary decomposition of the target distribution

π(θ) =
k

∏

j=1

π j (θ),

(often inspired by a likelihood decomposition into groups of
observations) and iteratively approximate each term π j in
the product by a density member of an exponential family,
ν(·|λ)m using the other approximations as a marginal. Given
the current approximation of π(θ) at iteration t,

ν (θ |λt ) =
k

∏

j=1

ν j (θ |λt ) ,

where λt is the current value of the hyperparameter, the tth
step in the EP algorithm goes as follows:

(1) Select 1 ≤ j ≤ k at random
(2) Define the marginal

ν− j (θ |λt ) ∝ ν(θ |λt )

ν j (θ |λt )
;

(3) Update the hyperparameter λt by solving

λt+1 = argmin
λ

KL
{

π j (θ)ν− j (θ |λt ) , ν(θ |λ)
}

(4) Update ν j (θ |λt ) as

ν j (θ |λt+1) ∝ ν(θ |λt+1)

ν− j (θ |λt )
.

(In the above, KL denotes the Kullback–Leibler divergence.)
The algorithm stops at stationarity. The convergence of this
approach is not yet fully understood, but Barthelmé and
Chopin (2014) consider EP as a practical substitute for ABC,
avoiding the selection of summary statistics by using a local
constraint

∥

∥

∥
xi − xobs

∥

∥

∥
≤ ǫ,

on each element of the simulated pseudo-data vector, xobs

being the actual data. In addition, EP provides an approx-
imation of the evidence. In the ABC setting, when using a
Normal distribution as the exponential family default, imple-
menting EP means computing empirical mean and empirical
variance, one observation at a time, under the above tolerance
constraint. Obviously, using a Normal candidate means that
the final approximation will also look much like a Normal
distribution, which both links with other Normal approxi-
mations like INLA and variational methods, and signals a
difficulty with EP in less smooth cases, such as ridge-like or
multimodal posteriors.

While different approximations keep being developed and
tested, with arguments ranging from efficient programming,
to avoiding simulations, to having an ability to deal with more
complex structures, their drawback is the overall incapacity
to assess the amount of approximation involved. Bootstrap
evaluations can be attempted in the simplest cases but cannot
be extended to more realistic situations.

4 Optimisation in modern Bayesian computation

Optimisation methodology for high-dimensional maximum-
a-posteriori (MAP) estimation is another area of Bayesian
computation that has received a lot of attention over the last
years, particularly for problems related to machine learn-
ing, signal processing and computer vision. One reason for
this is that for many Bayesian models optimisation is sig-
nificantly more computationally tractable than integration.
This has generated a lot of interest in MAP estimators,
especially for applications involving very high-dimensional
parameter spaces or tight computing time constraints, for
which calculating other summaries of the posterior distri-
bution is not feasible. Here we review some of the major
breakthroughs in this topic, which originated mainly outside
the statistics community. We focus on developments related
to high-dimensional convex optimisation, though many of
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the techniques discussed below are also useful for non-
convex optimisation. In particular, in Sect. 4.1 we concentrate
on proximal optimisation algorithms, a powerful class of
iterative methods that exploit tools from convex analysis,
monotone operator theory and theory of non-expansive map-
pings to construct carefully designed fixed-point schemes.
We refer the reader to the excellent book by Bauschke and
Combettes (2011) for the mathematics underpinning proxi-
mal optimisation algorithms, and to the recent tutorial papers
by Combettes and Pesquet (2011), Cevher et al. (2014) and
Parikh and Boyd (2014) for an overview of the field and
applications to signal processing and machine learning.

However, we do think it is vital to insist that, at the same
time as asserting that modern optimisation methodology rep-
resents a much-underused opportunity in Bayesian inference,
in its raw form it inevitably fails to deliver essential elements
of the Bayesian paradigm. The vision is not to deliver a point
estimate of an unknown structure, but the full richness of
Bayesian inference in its coherence, its proper treatment of
uncertainty, its intrinsic treatment of model uncertainty, and
so on. Bayesian statistics does not boil down to optimisation
with penalisation (Lange et al. 2014). We need to express the
uncertainty associated with decisions and estimation, stem-
ming from the stochastic nature of the data, and our lack of
knowledge about relevant mechanisms.

The challenge is to use the awesome capacity of fast opti-
misation in a high-dimensional parameter space to focus on
local regions of that space where a combination of analytic
and numerical investigation can deliver at least approxima-
tions to full posterior distributions and derived quantities.
The community has barely risen to this challenge, with only
isolated examples such as the discussion in Green (2015)
of a problem in unlabelled shape analysis. However, the
growing community of INLA (Rue et al. 2009) users may
bring an heightened awareness of such possibilities, along
with its efficient code (Schrödle and Held 2011; Muff et al.
2013). Another promising research area is to use mathemati-
cal and algorithmic tools from convex optimisation to design
more efficient high-dimensional MCMC algorithms (Pereyra
2015).

4.1 Proximal algorithms

Similarly to many other computational methodologies that
are widely used nowadays, proximal algorithms were first
proposed several decades ago by Moreau (1962), Mar-
tinet (1970) and Rockafellar (1976), and regained attention
recently in the context of large-scale inverse problems and
“big data”.

We consider the computation of maximisers of posterior
densities π(θ) = exp {−g(θ)}/κ that are high-dimensional
and log-concave, which we formulate as

θ̂ M AP = argmin
θ∈Rn

g(θ), (8)

where g belongs to the class Γ0(R
n) of lower semicontinu-

ous convex functions from R
n → (−∞, +∞]. Notice that

g may be non-differentiable and take value g(θ) = +∞,

reflecting constraints in the parameter space. In order to
introduce proximal algorithms we first recall the following
standard definitions and results from convex analysis: we
say that ϕ ∈ R

n is a subgradient of g at θ ∈ R
n if it satisfies

(u−θ)T ϕ +g(θ) ≤ g(u), ∀u ∈ R
n . The set of all such sub-

gradients defines the subdifferential set ∂g(θ), and θ̂ M AP is
a minimiser of g if and only if 0 ∈ ∂g(θ̂ M AP ). The (con-
vex) conjugate of g ∈ Γ0(R

n) is the function g∗ ∈ Γ0(R
n)

defined as g∗(ϕ) = supu∈Rn uT ϕ − g(u). The subgradients
of g and g∗ satisfy the property ϕ ∈ ∂g(θ) ⇔ θ ∈ ∂g∗(ϕ).

Proximal algorithms take their name from the proximity
mapping, defined for g ∈ Γ0(R

n) and λ > 0 as (Moreau
1962)

proxλ
g(θ) = argmin

u∈Rn

g(u) + ‖u − θ‖2/2λ. (9)

In order to gain intuition about this mapping it is useful to
analyse its behaviour when λ ∈ R

+ is either very small or
very large. In the limit λ → ∞, the quadratic penalty term
vanishes and (9) maps all points to θ̂ M AP . In the opposite
limit λ → 0, (9) becomes the identity operator and maps θ to
itself. For finite values of λ, proxλ

g(θ) behaves similarly to a

gradient mapping and moves points in the direction of θ̂ M AP .

Like gradients, proximity mappings have several properties
that are useful for devising fixed-point methods (Bauschke
and Combettes 2011).

Property 1 The proximity mapping of g is related to its subd-

ifferential by the inclusion {θ−proxλ
g(θ)}/λ ∈ ∂g{proxλ

g(θ)},
which collapses to ∇g{proxλ

g(θ)} when g ∈ C1. As a result,
for any λ > 0, the minimiser of g verifies the fixed-point

equation θ = proxλ
g(θ).

Property 2 Proximity mappings are firmly non-expansive;

that is, ‖ proxλ
g(θ) − proxλ

g(u)‖2 ≤ (θ − u)T {proxλ
g(θ) −

proxλ
g(u)}, ∀θ , u ∈ R

n .

Property 3 The proximity mappings of g and its conjugate

g∗ are related by Moreau’s decomposition formula: θ =
proxλ

g(θ) + λ prox1/λ
g∗ (θ/λ).

The simplest proximal method to solve (8) is the proximal

point algorithm given by the iteration

θk+1 = proxλ
g

(

θk
)

. (10)

Every sequence {θk}k∈N produced by this algorithm con-
verges to θ̂ M AP , even if proximity mappings are evaluated
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inexactly, as long as the errors are of certain types (e.g., sum-
mable). A more general proximal point algorithm includes
relaxation, i.e.,

θk+1 = (1 − αk) θk + αk proxλ
g

(

θk
)

, αk ∈ (0, 2),

and with over-relaxation (i.e., αk ∈ (1, 2)) often converges
faster than (10). Notice from Property 1 that (10) can be
interpreted as an implicit (backward) subgradient steep-
est descent to minimise g, i.e., θk+1 = θk − λϕ, with
ϕ ∈ ∂g(θk+1). Alternatively, proximal point algorithms can
also be interpreted as explicit (forward) gradient steepest
descent to minimise the Moreau envelope of g, eλ(θ) =
infu∈Rn g(u) + ‖u − θ‖2/2λ, a convex lower bound on g

that by construction is continuously differentiable and has
the same minimiser as g.

Proximal point algorithms may appear of little relevance
because evaluating proxλ

g can be as difficult as solving (8)
in the first place (notice that (9) is a convex minimisation
problem similar to (8)). Surprisingly, many advanced proxi-
mal optimisation methods can in fact be shown to be either
applications of this simple algorithm, or closely related to it.

Most proximal methods operate by splitting g, e.g.,

θ̂ M AP = argmin
θ∈Rn

{g1(θ) + g2(θ)} , (11)

such that g1 ∈ Γ0(R
n) and g2 ∈ Γ0(R

n) have gradients or
proximity mappings that are easy to compute or approxi-
mate. For example, for many Bayesian models it is possible
to find a decomposition g(θ) = g1(θ) + g2(θ) such that
g1 is β-Lipschitz2 differentiable and g2 ∈ Γ0(R

n), pos-
sibly non-differentiable, has a proximity mapping that can
be computed efficiently with a specialised algorithm. This
decomposition is useful for instance in linear inverse prob-
lems, where g1 is often related to a Gaussian observation
model involving linear operators and g2 to a log-prior pro-
moting a parsimonious representation (e.g., sparsity on some
appropriate dictionary, low-rankness) or enforcing convex
constraints (e.g., positivity, positive definiteness). For mod-
els that admit this decomposition, it is possible to compute
θ̂ M AP efficiently with a forward–backward algorithm, also
known as the proximal gradient algorithm

θk+1 = proxλn
g2

(

θk − λn∇g1

(

θk
))

. (12)

For λn = λ ∈ (0, 1/β) the objective function g(θk) con-
verges to g(θ̂ M AP ) with rate O(1/k). If the value of the
Lipschitz constant β is unknown λn can be found by line-
search.

2 g1 ∈ C1 has β-Lipschitz continuous gradient if ‖∇g1(θ)−∇g1(u)‖ ≤
β‖θ − u‖, ∀(θ , u) ∈ R

N × R
N

A remarkable property of (12) is that it can be accelerated
to converge with rate O(1/k2), which is optimal for this
class of problems (Nesterov 2004). This can be achieved for
instance by introducing an extrapolation step

θ+ = θk + ωk

(

θk − θk−1
)

,

θk+1 = proxβ−1

g2

(

θ+ − β−1∇g1
(

θ+)

)

, (13)

where {ωk}k∈N is an appropriate sequence of extrapolation
parameters. It was noticed by Combettes and Pesquet (2011)
that several important convex optimisation algorithms can be
derived as applications of the forward–backward algorithm,
for example the projected gradient algorithm for minimis-
ing a Lipschitz differentiable function subject to a convex
constraint (in this case the proximity mapping reduces to a
projection onto the convex set). Notice that (12) can be inter-
preted as an implementation of the proximal point iteration
(10) where proxλ

g(θ
k) is approximated by replacing g1 with

its first order Taylor series approximation around the point
θk .

Moreover, in some cases it may be more efficient to com-
pute θ̂ M AP by solving the dual of (11), for instance if g

admits a decomposition g(θ) = g1(θ) + g2(Lθ) for some
linear operator L ∈ R

n×p, g1 ∈ Γ0(R
n) strongly convex

and g2 ∈ Γ0(R
p) with efficient proximity mapping. In this

case, the Fenchel–Rockafellar theorem states that θ̂ M AP can
be computed by solving the dual problem (Bauschke and
Combettes 2011, Chap. 19)

ψ∗ = argmin
ψ∈Rp

g∗
1

(

−LT ψ
)

+ g∗
2(ψ), (14)

and setting θ̂ M AP = ∇g∗
1(−LT ψ∗). This p-dimensional

problem can be solved iteratively with a forward–backward
algorithm ψk+1 = proxλn

g∗
2
(ψk − λn∇g∗

1(−LT ψk)) that can

also be accelerated to converge with rate O(1/k2), and where
we note that the proximity mapping of g∗

2 is typically evalu-
ated by using Property 3, and that the strong convexity of g1

implies Lipschitz differentiability of g∗
1 . Computing θ̂ M AP

via (14) can lead to important computational savings, in par-
ticular if p ≪ n or if g2 is separable and has a proximity
mapping that can be computed in parallel for each element
of θ (this is generally not possible for g2 ◦ L). We refer the
reader to Komodakis and Pesquet (2014) for an overview of
recent dual and primal–dual algorithms and guidelines for
parallel implementations.

Another important proximal optimisation method is the
Douglas–Rachford splitting algorithm given by

θk+ 1
2 = proxλ

g1

(

θk
)

,

θk+1 = θk − θk+ 1
2 + proxλ

g2

(

2θk+ 1
2 − θk

)

. (15)
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From a theoretical viewpoint this algorithm is more general
than the forward–backward algorithm because it does not
require g1 or g2 to be continuously differentiable. However,
its practical application is limited to problems for which both
g1 and g2 have efficient proximity mappings. Similarly to the
forward–backward algorithm, (15) includes many proximal
algorithms that been proposed in the literature for specific
models, and can also be interpreted as an application of the
proximal point algorithm.

The proximal method that is arguably most widely used
in Bayesian inference is the alternating direction method of

multipliers (ADMM), which operates by formulating (11) as
a constrained optimisation problem

argmin
θ∈Rn , z∈Rn

g1(θ) + g2(z)

subject to θ = z,

(16)

and then using augmented Lagrangian techniques to express
(16) as an unconstrained saddle point problem with saddle
function g1(θ) + g2(z) + λϕT (θ − z) + ‖θ − z‖2/2λ (Boyd
et al. 2011). ADMM solves this problem with the iteration

θk+1 = proxλ
g1

(

zk − ϕk
)

,

zk+1 = proxλ
g2

(

θk+1 + ϕk
)

, (17)

ϕk+1 = ϕk + θk+1 − zk+1,

that also involves the proximity mappings of g1 and g2. This
basic ADMM iteration can be tailored to specific models
in many ways (e.g., to exploit decompositions of the form
g1 = g̃1 ◦ L1 and g2 = g̃2 ◦ L2 so that proximal updates can
be performed in parallel for all components of θ , z and ϕ).
Interestingly, ADMM can be interpreted as an application of
the Douglas–Rachford algorithm to the dual of (16), and is
therefore also a special case of the proximal point algorithm.
For more details about the ADMM algorithm, see the recent
tutorial by Boyd et al. (2011).

Furthermore, an important characteristic of proximal opti-
misation algorithms is that they can be massively parallelised
to take advantage of parallel computer architectures. Sup-
pose for instance that g admits the decomposition g(θ) =
∑M

m=1 gm(Lmθ) with gm ∈ Γ (Rpm ) and Lm ∈ R
n×pm

such that the mappings of gm are easy to compute and
Q =

∑M
m=1 LT

m Lm is invertible. Then, in a manner akin
to (16), we express (8) as

argmin
z1∈Rn ,...,zM ∈Rn

M
∑

m=1

gm (zm)

subject to zm = Lmθ , ∀m = 1, . . . , M,

(18)

and compute θ̂ M AP with the following iteration

θk+1 = Q−1
M

∑

m=1

LT
m

(

zk
m − ϕk

m

)

,

zk+1
m = proxλ

gm

(

Lmθk+1 − ϕk
m

)

, ∀m = 1, . . . , M,

ϕk+1
m = ϕk

m + Lmθk+1 − zk+1
m , ∀m = 1, . . . , M, (19)

that can be parallelised with factor M at a coarse level (e.g.,
on a multi-processor system). Further parallelisation may be
possible at a finer scale (e.g., on a vectorial processor such
as GPU or FPGA) by taking advantage of the structure of
proxλ

gm
or by using specialised algorithms. This algorithm,

known as the simultaneous direction method of multipliers,
is also closely related to the ADMM, Douglas–Rachford and
proximal point algorithms. Notice that splitting g not only
allows the exploitation of parallel computer architectures, but
may also significantly simplify the computation of proximity
mappings; often proxλ

gm
has a closed-form expression. Lastly,

it is worth mentioning that there are other modern proximal
optimisation algorithms that can be massively parallelised,
for example the generalised forward backward algorithm
(Raguet et al. 2013), the parallel proximal algorithms (Com-
bettes and Pesquet 2008; Pesquet and Pustelnik 2012), and
the parallel primal–dual algorithm (Combettes and Pesquet
2012).

Finally, main current topics of research in proximal
optimisation include theory and methodology for: (1) ran-
domised and stochastic algorithms that operate with esti-
mators of gradients and proximity mappings to reduce
computational complexity and allow for errors in the update
rules, (2) adaptive and variable metric algorithms (e.g., Rie-
mannian and Newton-type) that exploit the model’s geometry
to improve convergence speed, and (3) proximal meth-
ods for non-convex problems. We anticipate that in the
future new and stronger connections will emerge between
proximal optimisation and stochastic simulation, in partic-
ular through developments in stochastic optimisation and
high-dimensional MCMC sampling. For example, one con-
nection is through the integration of modern stochastic
convex optimisation and Markovian stochastic approxima-
tion (Combettes and Pesquet 2014; Andrieu et al. 2015), and
of proximal optimisation and high-dimensional MCMC sam-
pling (Pereyra 2015).

4.2 Convex relaxations

Modern proximal optimisation was greatly motivated by
important theoretical results on the recovery of partially-
observed sparse vectors and low-rank matrices through
convex minimisation (Candès et al. 2006; Candès and Tao
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2009) and on compressive sensing (Candès and Wakin 2008).
A key idea underlying these works is that of approximat-
ing a combinatorial optimisation problem, whose solution
is NP-hard, with a “relaxed” convex problem that is com-
putationally tractable, and whose solution is in some sense
close to the solution of the original problem. Reciprocally,
the development of modern convex optimisation has in turn
generated much interest in log-concave models, convex reg-
ularisers, and “convexifications” (i.e., convex relaxations for
intractable or poorly tractable models) for statistical infer-
ence problems involving high-dimensionality, large datasets
and computing time constraints (Chandrasekaran et al. 2012;
Chandrasekaran and Jordan 2013).

4.3 Illustrative example

For illustration, we show an application of proximal optimi-
sation to Bayesian image resolution enhancement. The goal is
to recover a high-resolution image θ ∈ R

n from a blurred and
noisy observed image y ∼ N (Hθ , σ 2

In), where H ∈ R
n×n

is a linear operator representing the blur point spread func-
tion of the low resolution acquisition system and σ 2 is the
system’s noise power. This inverse problem is ill-posed, a
difficulty that Bayesian image processing methods address
by exploiting prior knowledge about θ . Here we use the fol-
lowing hierarchical Bayesian model (Oliveira et al. 2009)

f (y|θ) =
(

2πσ 2
)−n/2

exp
{

−‖y − Hθ‖2
2/2σ 2

}

,

π(θ |α) ∝ α−n exp
(

−α ‖∇dθ‖1−2
)

,

π(α) = e−α1R+(α), (20)

where π(θ |α) is the (improper) total-variation Markov ran-
dom field, ‖ · ‖1−2 denotes the composite ℓ1 − ℓ2 norm and
∇d is the discrete gradient operator that computes the vertical
and horizontal differences between neighbour image pixels.
This prior is log-concave and models the fact that differences
between neighbouring image pixels are usually very small but
occasionally take large values; it is arguably the most widely
used prior in modern statistical image processing. The val-
ues of H and σ 2 are typically determined during the system’s
calibration process and are here assumed known.

We compute the MAP estimator of θ associated with the
marginal posterior π(θ |y) =

∫ ∞
0 π(θ , α|y)dα, which is uni-

modal but not log-concave,

θ̂ M AP = argmin
θ∈Rn

‖y − Hθ‖2
2/2σ 2

+ (n + 1) log
(

‖∇dθ‖1−2 + 1
)

. (21)

Problem (21) is not convex, but can nevertheless be solved
efficiently with proximal algorithms by using a majorisation–
minimisation strategy. To be precise, starting from some

Fig. 3 Observed blurred noisy image y

initial condition θ (0), e.g., θ (0) = y, we iteratively minimise
the following sequence of strictly convex majorants (Oliveira
et al. 2009)

θ (t+1) = argmin
θ∈Rn

‖y − Hθ‖2
2/2σ 2 + α

(t)
eff ‖∇dθ‖1−2 ,

with α
(t)
eff = (n + 1)

(

∥

∥

∥
∇dθ (t)

∥

∥

∥

1−2
+ 1

)

. (22)

Iteration (22) involves a convex subproblem that can easily
be solved using most modern proximal optimisation tech-
niques. For example, here we use the state-of-the-art ADMM
algorithm SALSA (Afonso et al. 2011) implemented with
g1(θ) = ‖y − Hθ‖2

2/2σ 2, g2(u) = α
(t)
e f f ‖∇du‖1−2, and

the constraint θ = u (though we could have also used other
modern algorithms Pesquet and Pustelnik 2012; Combettes
and Pesquet 2012; Raguet et al. 2013). To compute the prox-
imity mapping of g1 we use the fact that H is block-circulant
to compute matrix products and pseudo-inverses with the
FFT algorithm. We compute the proximity mapping of g2

with a highly parallelised implementation of the specialised
algorithm of Chambolle (2004).

Figure 3 presents a blurred and noisy observation y of
the popular “boats” image3 of size 512 × 512 pixels,
generated with a uniform 9 × 9 blur and a noise power
of σ 2 = 0.52 (blurred-signal-to-noise ratio B RSN =
10 log10{‖Hθ0‖2

2/σ
2} = 40 dB). Figure 4 below shows

the MAP estimate θ̂ M AP obtained by solving (21) using
four iterations of (22) and a total of 51 ADMM iterations.
We observe that this resolution enhancement process has
produced a remarkably sharp image with very noticeable
fine detail. Moreover, Fig. 5 shows the magnitude of the

3 The boat image is available for download from the SIPI
image database at http://sipi.usc.edu/database/database.php?volume=
misc\&image=38#top
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Fig. 4 Resolution enhanced image θ̂ M AP obtained by solving (21)
with the majorisation–minimisation strategy (22)

Fig. 5 Widths of pixel-wise 90 % marginal credibility intervals esti-
mated with the proximal MCMC algorithm of Pereyra (2015)

marginal 90 % credibility regions for each pixel, as mea-
sured by the distance between the 5 and 95 % quantile
estimates. These estimates were computed using the proxi-
mal Metropolis-adjusted Langevin algorithm (Pereyra 2015),
which is appropriate for high-dimensional densities that are
not continuously differentiable. We observe in Fig. 5 that
the uncertainty is mainly concentrated at the contours and
object boundaries, revealing that model is able to accurately
detect the presence of sharp edges in the image but with some
uncertainty about their exact location. Finally, Fig. 6 shows
the convergence of the estimates θ (t,k) produced by each
ADMM iteration to θ̂ M AP (as measured by the mean squared
error ‖θ (t,k) − θ̂ M AP‖2

2). Notice that computing θ̂ M AP only
required 10 s (experiment conducted on an Apple Macbook
Pro computer running Matlab 2013, a C++ implementa-
tion would certainly produce even faster results). This is
remarkably fast given the high dimensionality of the problem

Fig. 6 Convergence of the estimate θ–θ̂ M AP versus computing time
(s)

(n = 262, 144). The computation of the credibility regions
by MCMC sampling (20,000 samples with a thinning fac-
tor of 1000 to reduce the algorithm’s memory foot-print)
required 75 h.

5 Discussion

5.1 Bayesian computation in the era of data science

Is there a revolution taking place right now and have we
missed the train, standing on the platform, only concerned
with small-print on the train schedules—apart, that is, from
the obvious but not-so-new requirement to handle massive
datasets (and the mistakes that come with them)?!

As with other areas of statistical science, the Bayesian
computation community has to decide whether data science
is an opportunity or a threat. Inevitably if we do not treat
it as an opportunity, it will become a threat. Thanks to the
ubiquity of “big data” (as an over-hyped phrase mostly use-
ful for attracting research funding, but also to at least some
extent in reality), a new potentially multi-disciplinary field
of data science is rapidly opening up. This field is attracting
huge material resources, and will absorb much human talent.
Statistical science has to be a part of this, for its own survival,
but also for the sake of society. As Tim Harford has cogently
argued (Harford 2014):

Recall big data’s four articles of faith. Uncanny accu-
racy is easy to overrate if we simply ignore false
positives […]. The claim that causation has been
“knocked off its pedestal” is fine if we are making pre-
dictions in a stable environment but not if the world
is changing […] or if we ourselves hope to change it.
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The promise that “N = All”, and therefore that sam-
pling bias does not matter, is simply not true in most
cases that count. As for the idea that “with enough data,
the numbers speak for themselves” – that seems hope-
lessly naïve in data sets where spurious patterns vastly
outnumber genuine discoveries.
“Big data” has arrived, but big insights have not. The
challenge now is to solve new problems and gain new
answers – without making the same old statistical mis-
takes on a grander scale than ever.

It is a mistake to think that Bayes has no part to play in
these developments, but more of us need to get more involved,
and learn new tools, as in the way the Consensus Monte Carlo
algorithm (Scott et al. 2013) exploits the Hadoop environ-
ment (White 2012) and the MapReduce programming model
(Dean and Ghemawat 2008). Another direction that can pre-
vent a potential schism between Bayesian modelling and
highly complex models is to aim for modularity and local
learning, that it, to abandon the goal of modelling big uni-
verses for analysing a series of small worlds, in spite of the
loss of coherence, amd hence compromise to the Bayesian
paradigm, that this entails. The curious case of the cut models
presented in Plummer (2015) is an illustration of the potential
for developing partial-information Bayesian inference tools
where “small is beautiful” because this is the only viable
solution.

5.2 Do we care enough about applications?

Bayesian computation began in order to answer rather prac-
tical problems—how can we perform a Bayesian analysis
of these data using this model?—or the corresponding
meta-problems—how can Bayesian analysis be performed
generally and reliably for this class of models? The focus was
applied methodology (although since the methods were new,
they tended to be published in premier theory/methodology
journals). Because the research community wanted to under-
stand (the advantages, performance and limitations of) the
methods they were advocating, more theoretical work started
to be conducted, and, for example, many probabilists were
attracted to study the Markov chains that MCMC methodol-
ogists created. The centre of mass of research activity drifted
away from the original motivations, just as has happened in
other areas of mathematically-rigorous computation.

At the same time, those working with data became more
ambitious with regard to the scale of data, the complexity
of modelling and the sophistication of analysis, all factors
that have in principle (and often in fact) stimulated new
developments in Bayesian computation. But to a large extent
this is a rich, self-stimulating and self-supporting area of
research; new applications may or may not need new com-
putational techniques, but new techniques don’t seem to

need applications to justify themselves. It is apposite to ask
to what extent is cutting-edge computational methodology
research really delivering answers to questions that applica-
tion domains are posing. And to what extent is cutting-edge
computational methodology research successfully answering
real questions?

We may not be unanimous about answers to these ques-
tions, except we can probably all agree they are “not entirely”.
We will also disagree about how much this matters, but again
there may be something to agree about, that we have failed
if methodological innovations disconnect completely from
applications. Legitimate differences in research goals par-
tially explain the trend in this direction, but it is fair to say
that there is a big communication problem between the com-
putational statistics community and many of the communities
where Bayesian computational methods are applied. Unfor-
tunately people in these communities do not always keep
up with the state of the art in computational statistics. At
the same time, statisticians are often not aware of important
developments arising in other fields. (ABC is a good illus-
tration: it took more than 5 years of development within the
population genetics community before statisticians became
aware the technique existed and a few more years before
they realised this was proper Bayesian inference applied on
approximate models.) We can perhaps blame the fact that
there are not enough people working at the interface of the
different communities, but life at the interface is not easy
because multidisciplinary and interdisciplinary research is
often seen as “marginal” by both communities and is thus dif-
ficult to publish, communicate, etc. Then there are of course
problems in dissemination, related to the different writing
styles, journals, computing languages, software, etc. of each
community.

We strongly encourage those developing new techniques
always to find a way to disseminate them in such a way
that at least somebody else could use them, preferably some-
one without the ability to have invented the technique for
themselves!—and advocate, of course, that successful dis-
semination be properly rewarded in our career structures.

In a somewhat parallel path, we have seen over the past
decades the emergence of new languages and meta-languages
intended to handle complexity both of problems and of solu-
tions towards a wider audience of users. BUGS (Lunn et al.
2010) is the archetypal example of such languages and it
has been successful to the extent that a large proportion
of the users has a fairly limited statistical background and
often even less of a computational background. However,
the population of BUGS users and sympathisers is tiny com-
pared to that of SAS or other corporate statistical systems.
In this respect, we have failed to disseminate concepts like
Bayesian analysis and wonderful tools like MCMC algo-
rithms, because most people are unable to turn them into
codes by themselves. (Perusing one of the numerous statistics
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and machine-learning on-line forums like Cross Validated
quickly exposes the methodological gap between academics
and the masses!) It is unclear how novel programming devel-
opments like STAN (Stan Development Team 2014) are
going to modify this picture, in that they still assume a decent
understanding of both modelling and simulation issues. In
that respect, network-based approaches as those covered by
BUGS sound more promising towards “modelling locally to
learn globally”. Similarly, ABC software is either too spe-
cific, like DIYABC (Cornuet et al. 2008) which addresses
only population genetic questions, or too dependent on the
ability of the modeller to program simulated outcomes from
the model under study.

5.3 Anticipating the future

In which of the areas we discuss do we expect a particu-
lar emphasis of effort, or significant progress, or do we see
particular needs for new efforts or new directions?

One expectation is that in the future computational
methodologies will be more flexible and malleable. Over the
past 25 years Bayesian modelling and inference techniques
have been applied successfully to thousands of problems
across a wide range application domains. Each application
brings its own constraints in terms of model dimensionality
and complexity, data, inferences, accuracy and computing
times. These constraints also vary significantly within spe-
cific applications. For example, in hyperspectral remote
sensing, when a new Bayesian model is introduced it is
often first explored and validated by MCMC sampling, then
approximated with a variational Bayes method, and then
approximated again so that it can be applied to gigabyte-
large datasets by using optimisation techniques. Similarly, an
interesting result revealed by a fast inference technique can be
analysed more deeply with more reliable and accurate meth-
ods might. Therefore we expect that in the future the different
main computational methodologies will become more adapt-
able and that the boundaries between them will be less well
defined, with many algorithms developed that combine sim-
ulation, variational approximations and optimisation. These
will be able to handle a wide spectrum of models, degrees of
accuracy and computing times, as well as models that have
some parts that are simple but high-dimensional and others
that are more complex but that only involve low-dimensional
components. This can be achieved by using approximations
and optimisation to improve stochastic sampling, by using
simulation within deterministic algorithms to handle specific
parts of the model that are difficult to compute analytically,
or in completely new and original ways.

We also anticipate that computational methodologies will
continue to be challenged by larger and larger datasets. There
is of course a threat that the whole field turns into a library
of machine-learning techniques, with limited validation on

reference learning sets and a quick turnover of methods,
which would both impoverish the field and fail to reach a
general audience of practitioners. We must retain a sense of
the stochastic elements in data collection, data analysis, and
inference, recognising uncertainty in data and models, to pre-
serve the inductive strength of data science—seeing beyond
the data we have to what it might have been, what it be next
time, and where it came from.
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holds a Royal Society University Research Fellowship, and Marcelo
Pereyra a Marie Curie Intra-European Fellowship for Career Develop-
ment. Peter Green also holds a Distinguished Professorship at UTS,
Sydney, and Christian Robert an Institut Universitaire de France chair
at CEREMADE, Université Paris-Dauphine.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented
Lagrangian approach to the constrained optimization formulation
of imaging inverse problems. IEEE. Trans. Image Process. 20,
681–695 (2011)

Albert, J.: Computational methods using a Bayesian hierarchical gen-
eralized linear model. J. Am. Stat. Assoc. 83, 1037–1044 (1988)

Aldous, D., Krikun, M., Popovic, L.: Stochastic models for phylogenetic
trees on higher-order taxa. J. Math. Biol. 56, 525–557 (2008)

Alquier, P., Friel, N., Everitt, R., Boland, A.: Noisy Monte Carlo: con-
vergence of Markov chains with approximate transition kernels.
Stat. Comput. 1–19 (2014)

Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte
Carlo (with discussion). J. R. Stat. Soc. B 72(2), 269–342 (2011)

Andrieu, C., Moulines, É: On the ergodicity properties of some adaptive
MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505 (2006)

Andrieu, C., Robert, C.: Controlled MCMC for optimal sampling. Tech-
nical report, Cahiers du Ceremade (2001)

Andrieu, C., Roberts, G.: The pseudo-marginal approach for efficient
Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)
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