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Bayesian Conditionalisation and the
Principle of Minimum Information

by P. M. WILLIAMS

The use of the principle of minimum information, or equivalently the
principle of maximum entropy, has been advocated by a number of authors
over recent years both in statistical physics as well as more generally in
statistical inference.i It has perhaps not been suffciently appreciated by
philosophers, however, that this principle, when properly understood,
affords a rule of inductive inference of the widest generality. 2 The purpose
of this paper is to draw attention to the generality of the principle. Thus
the Bayesian rule of conditionalisation, as well as its extension by R. C.
Jeffrey, will be exhibited as special cases. General conditions under which
it yields a unique prescription will also be studied. Detailed treatment wil
be restricted to the finite-dimensional case but an outline of the general

case is given in the Appendix.
The underlying idea of maximum entropy inference is this. Suppose P to

be a probability distribution assigning probabilities Pi, . . . , Pn to n mutually
exclusive and jointly exhaustive events. Then the information-theoretic
entropy of the distribution is defined by

..
S(P) = - 2: Pi log Pi.

j= 1

where it is to be understood that any term in the summation for which

Pi = 0 vanishes. S(P) can be thought of as measuring the 'missing
information' or 'uncertainty' associated with the distribution. In particular,
S(P) assumes its maximum value for the uniform distribution and its
minimum value for any distribution concentrated on a single event. The
principle of maximum entropy states that the probability distribution
appropriate to a given state of information is one that maximises entropy
subject to the constraints imposed by the information given.

Suppose it to be a question of assigning probabilities to the outcomes
of the throw of a loaded die where, specifically, the information available

1 See, for example, Jaynes (1957) and Kullback (1959). An extensive bibliography may
be found in Guiasu (1977).

~ By a rule of inductive inference is meant a rule for passing from a prior probability
distrilmtion to a posterior distribution in the light of new information. The choice of
an initial prior is a separate question. On this see, for example, Jaynes (1968).
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makes it appropriate to require the expected score to be 4'5 on the throw
in question. Then, if no other constraint is specified, the principle of
maximum entropy prescribes the distribution

Pi = AeJ (j = I, .. . ,6)
where the normalising factor A and the parameter e are to be determined
by the conditions

6

2: A ei = 1
;=1

6

2: Ajei = 4.5
;=1

This may be regarded as the most 'spread out' of all distributions consistent
with the constraint.

In the absence of any constraint other than that the sure event should

have unit expectation, the principle of maximum entropy yields the
uniform distribution for a finite sample space. It would therefore appear
to be open to whatever objections can be raised against the classical
principle of indifference as a principle for establishing prior distributions.
According to the present viewpoint, however, this is not the correct way
of viewing the matter. It is more accurate to regard the uniform distribution
as emerging from the principle of maximum entropy, in the absence of
any irredundant constraint, as a result of an implicit prior decision that the
uniform distribution would best express the state of information in that
situation. Indeed, many derivations of the entropy function assume this
explicitly at the outset by requiring that any adequate measure must
assume its maximum value for the uniform distribution. i This requirement
is no longer appropriate in the presence of another prior distribution. In that
case, whatever distribution has been chosen as prior should be the one to
emerge from an application of the principle of maximum entropy in the
absence of any further constraint. If the principle is to have this con-
sequence, it is necessary to generalise the entropy concept so as to be
applicable relative to any prior distribution. A generalisation of this type
is well known in the case of continuous distributions. Its need in the
finite case, however, has been obscured by the fact that a sample space
can generally be chosen over which the uniform distribution is an adequate
expression of prior opinion.2

Suppose that a prior distribution po is given. Then the required

1 Khinchin (1957), pp. 9-13.
2 Even so, ambiguities can arise. Suppose that probabilities are to be assigned to the

11 + 1 possible proportions of successes in a sequence of n binary trials, subject to a

constraint on the expected proportion. Clearly the principle, as stated, will give a
different result depending on whether it is applied to the space of n + i proportions or
the space of zn sequences.



Bayesian Conditionalisation and the Principle of Minimum Information 133

generalis at ion is given by the expression
n

- 2: Pi 10g(Pi/PJ)j=l
where pJ is the prior probability of the jth event. This reduces to the
previous expression, to within an additive constant, in the case of a

uniform prior. But since the new expression is never positive, it is more
meaningful to define instead the information in P relative to po as

..

I(P, PO) = 2: Pi 10g(Pi/P?),
j=l

Every term for which Pi = 0 is understood to vanish whereas it is con-
venient to set I(P, PO) = + 00 if pr¡ = 0 in any remaining term for which

Pi is non-zero.!
The following property is fundamental:

I(P, PO) ~ 0 with equality if P = po.

Proof. The result does not depend on the base of the logarithms which

may therefore be assumed to be natural for simplicity. If any pr¡ vanishes
whilst the corresponding Pi does not, the expression diverges and is cer-
tainly strictly positive. Suppose, therefore, that pr¡ = 0 implies Pi = 0 for all
= i, . . . , n. Since, for any positive real number x,

x log x - x+ 1 ~ 0 with equality if x = I,
we obtain

I(P PO) = "C p9 iPi log 
Pi - Pi + I; ;: 0, L. J P9 P9 Po ri J J J

where the summation need extend only over those j for which Pi #- 0 and
for which, consequently, pJ #- o.It follows that, for these j, I(P, PO) = 0

implies Pi = pr¡ For the remaining j for which pr¡ = 0, we have already

i Expressions of this type, or their extensions to the continuous case, are already studied
in Good (1950), Kullback and Leibler (1951), Savage (1954) and Lindley (1956). For
more such references see Kullback (1959), ch. i. Mention of earlier work by A. M.
Turing is made in Good (1950). A derivation of the expression I(P, PO) as the unique
measure of relative information satisfying suitably modified forms of the Shannon-
Khinchin conditions may be found in Hobson (1971), Appendix A. It is possible, how-
ever, to have reservations concerning such derivations on the grounds that they require
that entropy, or information, should be, in a certain sense, additive. From the point
of view of maximum entropy inference, however, this goes beyond the intuitions which
the adequacy conditions are intended to express. For these concern themselves only

with the ordering of distributions-with the idea, for example, of one distribution deviating

more or less than another from the prior distribution. Additivity is, no doubt, a
convenient property but it is not required for maximum entropy inference. Any strictly
monotonic function of the usual expression would serve equally welL. It would seem
preferable, therefore, if an argument for the unique entropic ordering of distributions
could be found which restricted itself to adequacy conditions formulated in terms of
order alone.



-
134 P. M. Williams

seen that necessarily Pi = pp, otherwise I(P, PO) would diverge. This com-
pletes the proof.

It follows from this that, in the absence of any constraint other than

that of correct normalisation, the information in P relative to po is uniquely
minimised by the prior distribution as was to be required. Any other
distribution contains positive information. In the case of a constraint

specifying the expected Score on the throw of a die, for example, the new
minimum information distribution is given by

Pi = Apr¡ei (j = I, . . . , 6)
where A and e are to be determined as before, though now taking into
account the prior probabilities. As in the Bayesian case, the posterior

probability is found by multiplying the prior probability by a numerical
factor.

The generalised principle of maximum entropy or, better, the principle
of minimum information can now be formulated as follows:

Principle of Minimum Information: Given the prior distribution po,
the probability distribution P appropriate to a new state of information is one

that minimises I(P, PO) subject to whatever constraints the new information
imposes. i

I t is important to emphasise that the principle of minimum information,
in this form, is not a principle for setting up prior distributions. It is,
rather, a general principle of probability dynamics. It seeks to answer the
question how to modify a probability distribution, in the light of new
information, in the most conservative way. It is inapplicable in the absence
of a prior distribution. 2

As a special case, suppose that a prior distribution po is given and that
new evidence establishes some proposition E in the domain of po with

certainty. Then the new distribution incorporating this information must
attribute unit probability to this event. It follows from the principle of
minimum information that, provided PO(E) is non-zero, the new dis-

1

I

t

1 A formulation of this principle, taking explicit account of the prior distribution, already
occurs in Good (1963) as the 'Principle of Minimal Discriminability'. Good states
that, according to his interpretation, its purpose is to generate null hypotheses con-
cerning physical probability distributions which are to be tested by experiment. This
contrasts, in form of expression at least, with the present interpretation according to

which the purpose of the principle is to assist in the rational modification of beliefs.
2 According to the present interpretation, the probabilities emerging from the principle
of minimum information are not conditional probabilities associated with the prior
distribution but unconditional probabilities of a new and entirely different distribution,
unrelated to the prior distribution by the normal 'synchronic' probability calculus.
This is to be understood even in the case corresponding to Bayesian conditionalisation.
If this is accepted, objections of the type raised by Friedman and Shimony (1971) are
not applicable.
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tribution is given, for any F, by

P(F) = PO(EF) = PO(F)PO(E) E'
The most meaningful way of establishing this is to verify first that, for
any distribution for which peE) = I, the information in P relative to po is
given by

I(P, PO) = I(PE, P~) - log pO (E)
This is minimised when P E = Pß with the increase in information given
by the remaining constant term -log PO(E). The posterior distribution is
thus uniquely determined given that peE) = i. Thus the Bayesian rule of
conditionalisation is a special case of the principle of minimum information. i

It has been suggested by R. C. Jeffrey (1965), however, that the rule of
conditionalisation is, strictly speaking, limited in its applicability inasmuch
as it requires new information to establish some proposition with certainty.
In practice there is always room for doubt. Suppose therefore that new
evidence establishes some proposition E in the domain of the prior

distribution po only with probability q, where q may be supposed close
to unity, though this is not essential. Jeffrey has proposed that the

posterior distribution be given by
P(F) = qPO (FIE) + qPO(FIË) (q = i-q).

This is the solution to a special case of the general question raised by

Jeffrey as follows2: 'Given that a passage of experience has led the agent
to change his degrees of belief in certain propositions Ei, E2, . . ., Em from
their original values

PO(Ei), PO(E2), . . . , PO(Em)
to new values,

how should these
of his beliefs?'

This is the sort of question which the principle of minimum information
is designed to answer. In the special case just considered, where one takes

peEi), P(E2), . . . , P(Em)
changes be propagated over the rest of the structure

1 It must be admitted, however, that this has only been demonstrated in the case where
PO(E) is strictly positive whereas the Bayesian rule, to replace PO(F) by PO(FIE) when
E has become certain, is asserted even when PO(E) = 0, assuming the conditional
probabilities to be defined independently. When PO(E) vanishes, the information in any
distribution assigning positive probability to E necessarily diverges and no choice can
be made on this basis. This is as it should be. Relative information has been defined
only for unconditional distributions, which say nothing about the relative probabilities
of events of probability zero. To deal adequately with this case it would be necessary
to define the relative information of conditional distributions or, at least, the
corresponding ordering.

2 Jeffrey (1965), p. 157 adapted to the present notation
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account of only a single event or proposition at a time, the principle of
minimum information yields the solution advocated by Jeffrey. The same
is true in the case of several mutually exclusive events. To prove this

the case of a single event, it is routine to verify that provided 0 ,q , i

we have, for any distribution P for which peE) = q,

I(P, PO) = qI(PE, P~) + qI(P~, Pi) + constant

where again

P(EF)P¡;(F) = P(Ef etc.

Clearly this is minimised by separately minimising the functions on the
right. Thus we obtain Jeffrey's result P = qP~ + qP~. It is straightforward
to extend this to any number of events provided they are mutually ex-
clusive. This is in fact the most general case treated by Jeffrey. In the case
where the events are not necessarily mutually exclusive, the principle of
minimum information gives new results. Let Q = rwi, . . . , wn; be the
space of possibilities. SUppose the events Eii . . . , Em £: Q are constrained
to have new probabilities qi, . . . , qm and, for convenience, write Eo for the
sure event with probability qo = i. Assume, for simplicity, that po is
strictly positive and that there exists a strictly positive distribution satisfy-
ing the constraints. This means, in particular, that none of the new
probabilities is 0 or I. Then, defining the array £XU; by

fi if Wj E Ei (i = 0, . . . , m)
Xu = '.o otherwise (; = I, . . . , n)

the solution is given by

Pi = pJ exp Ii ÌÌiXijL
LL=o I

with the parameters ÌÌo, . . . , ÌÌm determined by the constraints
(j = I, . . . , n)

,
1

.~

rt
f'

n

qi = 2: XUpj
j= i (i = 0, . . . , m).

There is an interesting way in which the transformation of probability
distributions by the principle of minimum information appears to differ,
in general, from the special case of Bayesian conditionalisation. For, in
the latter case, it makes no difference whether one conditionalises

successively on Ei and E2, in either order, or directly on the joint event
EiE2. On the face of it, this is not true of the general case.i If two
constraints are applied successively, there is no reason, in general, why
the first should remain satisfied when information is minimised subject

)
,

t

tt..

1 Cf. Jeffrey (1965J, pp. 162-3.
,
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to the second. The reason why it is unnecessary to maintain the first
constraint explicitly in the Bayesian case is that no subsequent application
of the principle of minimum information can ever reverse the decision
to assign probability i to a given event (unless only one distribution

satisfies the later constraint when no further principle is needed anyway).
If then one regards the Bayesian case as one in which earlier constraints
are implicitly maintained, the position is not so different in the general

case. For suppose that, in the situation just treated, we define a sequence
of probability distributions tPi) by requiring that for each i = I, . . . , m

pi minimises I(P, pi-i) subject to peE,,) = q"for aU h = I, . . . , i.

At each stage all earlier constraints are explicitly maintained. Then it is
not diffcult to show that we arrive finally at the same distribution as we
found before by applying all. the constraints at once, which also means
that the order is unimportant. This is not trivial since finally we have
reached the same probability distribution by applying the same constraint
to two different priors, namely pm-l and po. In this 

respect the principle

of minimum information behaves as well as one could expect. We shall
return to this question, in greater generality, later.

It is time now to deal with the question of the effectiveness of the

principle, that is with the existence and uniqueness of information-

minimising distributions. The general situation is this. A prior distribution
is assumed but, for one reason or another, it may no longer be an adequate
expression of opinions. The new distribution should belong to a certain
subset cø of the set r! of possible distributions. In the finite-dimensional
case cø, like r!, is a subset of Rn. cø wil normally contain many members
and a choice must be made between them. The principle of minimum
information prescribes the distribution in cø that minimises I(P, PO).

In principle, cø could be an arbitrary subset of r! and there is no guarantee
that such a distribution exists. Let us see what can go wrong.

(i) cø is empty: the constraints are inconsistent.

(ii) cø is non-empty but I(P,PO) is infinite for all P in cø. This wil
occur, in the finite-dimensional case, if and only if cø requires that a

positive probability be assigned to an event of prior probability zero.

(iii) Now cø contains distributions with finite information relative to po

but no minimal element. For every distribution in cø there is another with
strictly smaller information. This will arise if it is required that peE) / q,
where 0 ,PO(E) ~ q , I, or that I(P, PO) / IX for suitable IX ~ o. (If
IX = 0, this only says that P should be different from po.)

(iv) cø contains minimal elements, with finite information relative to po,
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but more than one. Example: except in certain trivial cases, the constraint
that I(P,PO) = IX for some finite IX ? o.

We shall examine these possibilities in turn beginning with the last.
Case (iv) will never arise if C( is convex. For, with po fied, I(P, PO) is a

strictly convex function of P. Thus if pi and p2 are two distinct distribu-
tions with the same finite information relative to po, any proper convex
combination

Api + (i-A)P2 (0 , A ,i)

has strictly smaller information. The case of convex constraints appears
to be the rule rather than the exception. Certainly constraints on

expectation values are of this type, however many random quantities they
concern and whether they are expressed by linear equalities or weak or
strong inequalities.

Case (iii) will never arise if C( is a closed subset of ÇJ (usual topology). So
far as constraints on expectation values are concerned, this means that,
in general, strong (strict) inequalities are to be avoided. The fact that the
principle fails to make a definite recommendation in such cases is surely
a merit not a defect. Consider the simplest case wheré po = (l, l), the

uniform distribution over two possibilities, heads and tails say. If the
constraint demands only that P(R) ? l, it is hard to see how any principle
could reasonably be expected to yield a prescription.

As was already observed, case (ii) arises if subsequent evidence requires
that a strictly positive probability be assigned to an event of prior
probability zero. Then it will be impossible to distinguish between

dibti ibutions on. the basis of their relative information as it has been
defined. To obtain definite results here would require a more delicate
method of comparison. An extension of the definition in this direction
would certainly be of interest, though beyond the scope of this paper.i On
the other hand it is relevant to observe that the principle itself has no
inherent tendency to lead to more concentrated distributions. On the
contrary, the principle is intrinsically conservative. In the case of a convex
constraint, for instance, the supports of the prior and posterior dis-
tributions will coincide unless the constraint explicitly requires it to be
otherwise, that is unless there is no distribution with the same support
as the prior that satisfies the constraint. To this extent the principle itself
contributes nothing towards the diffculties arising under (ii).

Lastly, there is nothing to be done in case (i) except to re-examine the
constraints to see where one went wrong. This is the province of the
'synchronic' probability calculus.

1 Cj. p. 135, n. i.
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In summary, the principle of minimum information yields a unique
prescription for all closed convex constraints satisfied by at least one
distribution having finite information relative to the given prior.

It is worth returning briefly to the question of the significance of the

order in which constraints are applied. It was mentioned before that, in the
case of Bayesian conditionalisation, it makes no difference whether one
conditionalises successively on two events Ei and E2, in,either order, or

directly on the joint event EiE2. It was observed that a corresponding
result holds in the more general case contemplated by Jeffrey provided
that, at each stage, all earlier constraints are explicitly maintained. This
amounts to dealing with a sequence of successively stronger constraints.
The result claimed in that case was that the outcome of applying the

constraints one by one is the same as applying them all at once, namely
just the last. In fact it seems reasonable to expect the order to be un-
important only in such a situation. Suppose, therefore, that we have a
sequence of successively stronger constraints where, indeed, without loss
of generality we may suppose there to be just two: C( i 2 C( 2' Let po be
given and suppose that pi alone, amongst distributions in C( ¡, has minimal
information relative to po. Suppose again that p2 alone, amongst dis-
tributions in C( 2' has minimal information relative to pi. The question
at issue is whether p2 is the same distribution as would have been reached
by applying the constraint C( 2 directly to po. In fact a suffcient condition
for this to happen is that C( i should be an affne constraint. Then, provided
C( 2 is also affne, the result can be extended to a third constraint, and so on.

An affne constraint is one that contains every probability distribution
on a line through any two of its members. That is to say, along with any
Po and P i, it contains

p;. = (i-À)Po +À.i
for every real number À for which p;. remains non-negative. Constraints
on expectation values are of this type. Thus if xi, . . . , xm are any real
numbers and X i, . . . , Xm are any real-valued functions on Q =
rwi, . . . , wnJ, the set of probability distributions P = (Pi, . . . , Pn) such
that for each i = i, . . . , m

n

2: pjXi(Wj) = Xi
j= 1

forms a (possibly empty) affne constraint. Indeed, as is well known, this
is the most general example in finite dimensions. i

Suppose then that C( is an affne constraint containing at least one

1 Previously we were dealing with the special case of an affne constraint determined
by to, 1 ~ - valued random quantities.
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distribution having finite information relative to po. Then, necessarily,

there is a unique distribution, pi say, in ~ having minimal information
relative to po. Furthermore, for any distribution P in ~,

I(P, PO) = I(P, pi) + I(PI, PO).

Thus, the amounts of information in any distribution belonging to ~,
relative to po and PI, differ by the same constant amount, provided they
are finite. Otherwise they diverge simultaneously. This means that the
functions 1(-, PO) and 1(-, PI) induce the same orderings in ~ and,
a fortiori, in any stronger constraint that might be applied subsequently.

It is not possible to extend this result beyond the class of affne con-
straints in a straightforward way. Certainly it fails for convex constraints
in general. Whether or not this should be considered a defect of the
principle will depend on what alternatives exist. Nevertheless, it seems
reasonable to demand of any acceptable alternative that it should possess
the property in question for the restricted, but important, class of affne
constraints at least. It is not obvious, however, that any principle, other
than that of minimum information, meets even this limited demand.
Except in the triviaP case n :: 3, it is certainly not met by minimising (the
square of) the Euclidean distance from the prior:

n

2: (Pi-p9)2.
j= 1

On the other hand, that principle might already be excluded on the grounds
that it fails to yield the Bayesian rule of conditionalisation and has no
natural infinite-dimensional generalisation. An improvement, in the latter
respect at least, is afforded by the principle prescribing a distribution that
minimises the distance from the prior in the sense of the metric2:

D(P, PO) = sup tIP(E)-PO(E)I: E S Qjo

The Bayesian rule and Jeffrey's generalis at ion are at least optimal from
this point of view, though by no means uniquely so even in elementary
cases. In respect of its treatment of a sequence of successively stronger

affne constraints, on the other hand, this principle fares no better in
general (in cases where it succeeds in prescribing a unique posterior) than
the principle based on the Euclidean metric. It is perhaps premature to

1 If n .; 3, any principle whatever has the property in question for a decreasing sequence
of affne constraints, provided only that it preserves the prior whenever the prior already
satisfies the constraint.

. This is essentially the principle discussed in the paper of S. May and W. Harper (1976)
which was kindly brought to my attention by one of the referees. May and Harper
mention the principle of minimum information as a possible 'minimum change'
principle, but choose instead the principle based on a version of the supremum metric
for detailed study.
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~onjecture that the principle of minimum information is unique in
possessing the property in question. It is nonetheless possible that, by

,tudying such transformational characteristics of various principles, a more
,atisfactory explanation of the peculiar reasonableness of the principle of
minimum information will be found.

ApPENDIX

Suppose that the events to which probabilities are to be assigned can be
represented by a field fF of subsets of a non-empty set Q of arbitrary
cardinality. A probability distribution over fF is a non-negative, finitely
additivel real-valued function on fF such that P(Q) = i. Let f! be the

set of all probability distributions over fF and let P and po be two such
distributions. For any finite partition If = tEi, . . . , EnJ of Q into sets
belonging to fF, the information in P relative to po with respect to If can
be defined by

n

It(P,PO) = j~l P(Ei) log ~à7¿)

which is to be understood in the same way as before when any of the
terms in the summands vanish.

When confronted with a variety of finite schemes, as in the infinite
case, it is only reasonable, if the aim is to minimise information, to assume
no less than the worst case, though nothing positively worse. Thús it
is natural to define the information in P relative to po as the supremum
ovcr finite partitions:

I(P, PO) = sup tIt(P, p0)J.

It is worth remarking that It(P, PO) can only increase as the partition is
further refined.

In this way I(P, PO) is defined for every P in f! provided we admit the
value + 00. Clearly - 00 is not possible value. In fact it is clear that

I(P, PO) ~ 0 with equality if and only if P = po.

The distributions P for which I(P, PO) assumes a finite value wil be said

to belong to the effective domain of the function I( -, PO). A necessary,

though generally not suffcient, condition for I(P, PO) to be finite is that
P should be absolutely continuous with respect to po. That is to say, for

1 The present approach endorses the viewpoint of de Finetti (see (1974), ch. 6 for example)
that it is better not to assume at the outset that all probability distributions are countably
additive, but to assume only those properties that follow from the meaning of probability
itself-which do not include countaple additivity-and to introduce the latter as a
special assumption only when particular circumstances justify.
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any E ? 0 there should exist a (j ? 0 such that, for every E in /F,

PO(E) , (j implies peE) , E.
In this case, if P :md po are countably additive over a a-field, a Radon-
Nikodym derivative dPjdpO exists and the equivalent integral expression

I(P, PO) = f Q 10g(dPjdpO) dP

can be obtained (Guiasu (1977), ch. 2).
In general, without making the assumption of countable additivity, it

can be shown that

I( -, PO) is strictly convex over its effective domain
for any prior distribution po. Furthermore, if we endow fl with the
relativised product topology by considering f! as a subset of the product
R$", it follows that

I( -, PO) is lower semi-conttnuous

for any prior distribution po.

From the last result, together with the well-known compactness of f!, it
follows that 1(-, PO) assumes its minimum value on any closed subset
C( of f!. That is, there exists a distribution pi in C( such that

I(P\ PO) = inf tI(P, PO): P E C().

Furthermore, if C( is convex and includes a distribution having finite
information relative to po, strict coavexity of 1(-, PO) implies that pi is
unique. Thus, in general, the principle of minimum information yields
a unique prescription for all closed convex constraints satisfied by at least
one distribution having finite information relative to the given prior.

It was observed in the finite-dimensional case that the principle has
no inherent tendency to lead to either more or less concentrated dis-
tributions. In general this is expressed by the mutual absolute continuity
of prior and posterior distributions. Let us assume that pi has minimal
finite information over C( relative to po. Then certainly pi is absolutely
continuous with respect to po since I(PI, PO) is finite. Conversely, if C( is
convex, po is absolutely continuous with respect to pi unless there is

no distribution in C( having finite information relative to po and with
respect to which po is absolutely continuous. Recalling that no purely
finitely additive distribution is absolutely continuous with respect to a
countably additive distribution, it follows that from a countably additive
prior the principle can only lead to a countably additive posterior.i On the
other hand, the principle leads from a purely finitely additive prior to a

1 By a purely finitely additive distribution is meant one that is finitely but not countably
additive.
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countably additive posterior only if there is no purely finitely additive
distribution in ~ (assumed to be convex) having finite information relative
to po. So that although countably additive distributions are 'absorbing' in
this sense, the principle displays no inherent attraction towards them.

It is of interest to note that the extension of distributions by means of
countable additivity has no effect on their relative information. If P, po are
countably additive distributions over the field fF and P, po are their unique
countably additive extensions to the a-field generated by fF, then

i(P, PO) = I(P, PO)

where it is to be understood that the two amounts of information are

calculated by means of finite partitions of the extended and restricted
fields, respectively.

All that was said before in the finite case concerning Bayesian conditional-
isation as an example of the principle of minimum information holds gOQd
in general. The same is true of Jeffrey's rule when there are finitely many
events whose posterior probabilities are prescribed. In the general case,
however, Jeffrey's problem may be formulated with respect to the pre-
scription of infinitely many posterior probabilities. Provided some
distribution having finite information relative to the given prior satisfies
this prescription, the principle of minimum information again leads to
a unique solution.

The question of the significance of the order in which constraints are
applied requires more delicate and extended discussion in the general case.
This will be dealt with elsewhere.

The University of Sussex
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