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Abstract: By building on the stochastic search approach (George and McCulloch

(1993)) we propose a strategy for performing constrained variable selection. We

discuss hierarchical and grouping constraints, and introduce anti-hierarchical con-

straints in which the inclusion of a variable forces another to be excluded from

the model. We prove consistency results about models receiving maximal posterior

probability, and about the median model (Barbieri and Berger (2004)), and discuss

extensions to generalized linear models.
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1. Introduction

Consider the task of predicting a dependent variable Y from the values of
p predictors X1, . . . , Xp through some linear model. In this paper we refer to
the predictor Xj as a “variable”, irrespective of it being a function of any other
predictors or not. There are many cases in which one would select variables in
groups or in hierarchy, thus satisfying constraints on the final composition of
a regression model. Classical constraints include the use of an interaction or a
transformation only if the main effects are also included (hierarchical variable
selection), or the use of all of the dummies in a corner point parameterization of
a categorical variable (grouped variable selection). This setting includes multi-
factor ANOVA and additive models with polynomial or nonparametric input
variables in which each component is a linear combination of basis functions
obtained from the original predictor. There are specific applications in genet-
ics (inclusion of genes in pathways, epistasis (Cordell (2002))), spatial statistics
(inclusion of all or no direction, see Zhao, Rocha and Yu (2009)), and others.
Another situation in which a large number of hierarchical constraints appear is
hereditary wavelet thresholding (Autin, Picard and Rivoirard (2004)), in which
detail coefficients are forced to enter the model whenever higher level coefficients
are not thresholded to zero. We note that in multi-factor ANOVA it may not
always be sensible to force a hierarchical structure for the model, there may
be factors that have an interaction but no main effect (see for instance Scheffè
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(1963)). Further, in certain cases only partial inclusion of a categorical variable
may be of interest (Meyer and Laud (2002)).

In this paper, besides the use of hierarchical and grouping constraints, we
introduce a third class of anti-hierarchical constraints. We refer to an anti-
hierarchical constraint between a variable Xi and Xj when Xj cannot be included
in any model in which Xi is included. Anti-hierarchical constraints may be use-
ful in the following situations: (i) cost/availability reasons (when the selected
model is used for prediction, it may be the case that not all covariates can be si-
multaneously measured in future observations, for instance in medical diagnoses,
industrial quality control, etc.); (ii) drug design and similar settings in which
certain ingredients cannot be mixed; (iii) collinearity problems associated with
the need of avoiding simultaneous use of strongly correlated variables; (iv) for
interpretability reasons when some variables are a function of some of the others,
for instance in medical research when the MELD score (Cholongitas et al. (2006))
together with its ingredients (patient’s creatinine, bilirubin, etc.) are included in
the data matrix, but not in the same model; (v) when different transformations
are considered, such as allowing for powers of Xj larger or smaller than 1.

While the simplest grouping constraints are easily embedded into stepwise
methods, only recently have there been attempts to develop methods for auto-
matic grouped and hierarchical variable selection. Yuan and Lin (2006), Kim,
Kim and Kim (2006) and Zhao, Rocha and Yu (2009) use generalizations of the
LASSO (Tibshirani (1996)), that is they rely on the maximization of a penalized
likelihood. The method of Yuan and Lin (2006) has been extended to logistic
regression by Meier, van de Geer and Bühlmann (2008). These approaches are
devised for grouped variable selection, and they accomodate hierarchical con-
straints by means of the definition of nested groups. The methods perform si-
multaneous shrinkage and selection, but can be hard to implement. Additionally,
they rely on the maximization of a (penalized) likelihood over parameter spaces
that may be non-convex. Another problem with LASSO-related methods is that
they may not be consistent in model choice in certain situations (Meinshausen
and Bühlmann (2006), Zou (2006)): the oracle penalty for optimal prediction is
inconsistent for estimation of the true model unless an adaptive penalty is used,
for example. Further, consistency is achieved only under conditions on the corre-
lations between predictors inside and outside the true model. This kind of issue
does not arise in the Bayesian framework, and the only condition we impose on
the limiting correlation matrix is that it be positive definite.

The goal of this paper is to show that constrained model selection can be
performed with a simple strategy in a Bayesian framework. Such a framework
naturally embeds shrinkage of the estimates, and we prove it yields consistent
model choice under weak conditions. By building on the stochastic search variable
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selection (SSVS) approach of George and McCulloch (1993, 1997) we propose
a Bayesian method for performing grouped, hierarchical, and anti-hierarchical
variable selection. The aim of the stochastic search is to find “good models”,
rather than to determine the posterior distribution on the model space. The
general agreement is that promising models may be sampled often (George and
McCulloch (1993)) even when p is moderate. To the best of our knowledge, this is
the first attempt to put constrained variable selection in an automatic Bayesian
framework. It is worth noting, however, that this possibility is considered in
different works (Lahiri (2001),Barbieri and Berger (2004)), even if the common
approach consists in the enumeration of the model space. Further, King and
Brooks (2001) propose an automatic reversible jump approach for hierarchical
loglinear models, and Zhao, Rocha and Yu (2009) provide an interesting Bayesian
interpretation of their Composite Absolute Penalties.

The rest of the paper is as follows: in Section 2 we illustrate our strategy for
constrained selection. Frequentist consistency in model choice, also in the general
unconstrained framework, is shown in Section 3. We illustrate the method using
simulations in Section 4 and, in the context of two data examples, in Section 5.
Additional material, examples, and appendices can be found in the supplement
at http://www.stat.sinica.edu.tw/statistica.

2. A Bayesian Model for Constrained Variable Selection

Bayesian model selection dates back at least to Atkinson (1978). There has
been a huge amount of work on the subject since then, that we do not attempt
to review; we just point the reader to Lahiri (2001), Chipman, George and Mc-
Culloch (2001), and the references therein. We focus in this paper on SSVS
(George and McCulloch (1993)), where each component of the regression param-
eter vector β is modelled as a mixture of two centered normal distributions, with
different variances. We assume an observed response variable, Y , p predictors
X1, . . . , Xp, some of which may be functions of the others, made on a sample of n

subjects from a certain population. The key feature for performing SSVS is the
introduction of a binary latent variable γj identifying whether the corresponding
manifest variable should be included in the final model or not:

βj | γj ∼ (1 − γj)N(0, τ2
0j) + γjN(0, τ2

1j); (2.1)

with τ2
1j larger than τ2

0j . Each model is then identified by a binary vector γ =
(γ1, . . . , γp), with prior probability π(γ), in which the variables corresponding to
non-zero components of γ are included and the other are excluded. The posterior
probability of γj = 1 represents the posterior inclusion probability of variable Xj .

We introduce the problem of constrained variable selection with a very simple
example.

http://www.stat.sinica.edu.tw/statistica
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Figure 1. Illustration on a simple model

Example 1. Suppose we measure two covariates and a continuous response,
and consider the possibility of including the square of each measurement and an
interaction. The full model is Y = β0 +β1x1 +β2x

2
1 +β3x2 +β4x

2
2 +β5x1x2. The

set of constraints that preserves a hierarchical structure for a chosen submodel
can be visualized in Figure 1, where a pointing arrow implies that corresponding
variable cannot be included in the model without its parents.

More formally, in the constrained variable selection framework there is a
proper subset A ⊆ {0, 1}p such that, a priori, P (γ ∈ A) = 1. Since the appli-
cability of SSVS does not depend on the functional form of the prior on γ, the
solution reduces to building a distribution which reflects this prior knowledge
about the structure of the model space. We propose to do this through the use
of constraint indicator functions and a reparameterization.

We assume that the covariates are divided into g disjoint groups G1, . . . , Gg,
and define indicators φk(j)=1 if Xj is member of the kth group, φk(j)=0 other-
wise. In order to have a meaningful specification of disjoint groups,

∑
k φk(j)=1

and
∑

j φk(j) ≥ 1. Variables that are not constrained to enter in groups go into
a singleton. Hierarchical constraints are specified through indicators δj(i) = 1 if
the jth variable must be included in every model in which the ith is included,
and zero otherwise. Define also indicators ξj(i) = 1, if the jth variable must be
excluded from every model in which the ith is included, and zero otherwise. Note
that φ, δ and ξ are fixed and pre-specified by the user.

After specification of φ, δ and ξ, we introduce new latent indicators ηk to
identify whether the kth group is to be included in the final model or not. In our
approach, all variables in a group are included simultaneously in the model when
the corresponding indicator is equal to one. A convenient way of describing a
prior on γ with the correct support is given by computing γ conditionally on η.

For instance, if there are only grouping constraints, the following equations
must hold: γj =

∏g
k=1 η

φk(j)
k . Since all but one φk(j) = 0, k = 1, . . . , g, γj will

be set equal to the latent indicator ηk for which φk(j) = 1.
If there is a hierarchical constraint between a father variable j1 in group k1

and variable j2 in group k2, the following equation must hold: γj2 = ηk2ηk1 . In
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fact, variable j2 can be included only if both groups k1 and k2 are included in the
model. A more general equation is given by γj2 =

∏g
k=1 η

φk(j2)
k

∏
j 6=j2

γ
δj(j2)
j . A

similar approach can be taken in order to impose anti-hierarchical constraints.
Hence, in the most general case, the following equation must hold:

γj =
( ∏

j 6=i

(1 − γi)ξi(j)γ
δi(j)
i

) g∏
k=1

η
φk(j)
k ; (2.2)

where for ease of notation we suppress the dependence of γj on η. A vector
γ satisfying the constraints specified by the indicators ξ, δ and φ is obtained
through equation (2.2), given η. For instance, γj = 1 only if

∏g
k=1 η

φk(j)
k = 1,∏

j 6=i γ
δi(j)
i = 1 and

∏
j 6=i(1 − γi)ξi(j) = 1.

2.1. Constraint specification and solution of (2.2)

In this section we give some general guidelines on the specification of ξ, δ ,and
φ, together with conditions for existence and uniqueness of a solution to (2.2).
When it exists, a solution to (2.2) can be obtained through a simple iterative
algorithm that is described at the end of the section.

When specifying the indicators the user should make sure that no hierarchial
constraints could be replaced by grouping constraints: if we specify that Xi is
a father of Xj (δi(j) = 1) and that Xj is father of Xi (δj(i) = 1), then Xi and
Xj belong to the same group, because they can be included in a model only
together. This would lead to loss of uniqueness in the solution of (2.2). Further,
the specification of the indicator functions δj(i) should be itself hierarchical: for
instance, for a third order interaction only the second order interactions should
be marked as “parents”. Marking of the original variables is redundant. Finally,
the constraints should not be contradictory. For instance, if ξi(j)δi(j) = 1, there
is a contradiction and both Xi and Xj will never be selected.

In simple cases the parameterization (2.2) could be simply “exploded” and
each element of the γ vector separately defined explicitly. This is important when
sampling with WinBUGS (Lunn et al. (2000)) in order to provide a parameter-
isation with improved orthogonality. As an example, WinBUGS code for the
model in Example 1 is given in Appendix B in the Supplementary material.

More formally, we put forward the following definitions.

Definition 1. A set of constraints given by a choice of φ, δ and ξ is called
minimal if (i) there can be no switching between hierarchical and grouping
constraints, and (ii) for all i and j any removal of constraints (i.e., changing
ξi(j), δi(j) or φk(j) from 1 to 0) leads to a different subclass of possible models.

In order to formalize the idea of avoiding almost sure exclusion of certain groups,
we introduce the concept of compatibility:
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Definition 2. A set of constraints is called compatible if for each j = 1, . . . , p
there exist a model in the subclass that includes Xj .

We expect the users to specify a minimal and compatible sets of constraints.

Examples 1(continued). In the model of Example 1, there are no grouping or
anti-hierarchical constraints, while there are hierarchical constraints. This leads
to φk(j) = 1k=j , where 1C is the indicator function of condition C, ξi(j) = 0 for
all i, j; δ2(1) = δ4(3) = δ5(1) = δ5(3) = 1 and δi(j) = 0 in all other cases. Each
hierarchical constraint is put between variables belonging to different groups, and
any removal would lead to the possibility of including at least one more model
in the subclass of possible models. Hence the set is minimal. The full model is
included in the collection, hence the set is compatible.

We can now show how to compute γ by solving (2.2) with an iterative
method. Note that in general there can be more than one vector η leading
to the same γ. We argue below that under minimality for given η there is only
one vector γ which satisfies (2.2).

First, note that for each j, (2.2) is made of two factors that can be either
zero or one. The second factor does not depend on the unknown γ, and can be
computed directly. A starting solution can be given by setting γj =

∏g
k=1 η

φk(j)
k .

The elements which are set to zero coincide with those of the solution of (2.2) by
construction. For the other elements, we can iterate the following step until no
more changes are made to the vector γ:

For j ∈ {j :
∏g

k=1 η
φk(j)
k = 1} set γj :=

(∏
j 6=i

∏
j 6=i(1 − γi)ξi(j)γ

δi(j)
i

)
.

If there are no anti-hierarchical constraints, the number of iterations is finite since
changes to the starting solution involve only transitions from 1 to 0. If there are
anti-hierarchical constraints it is straightforward to check that the number of
iterations is finite as long as the set of constraints is compatible. If the set of
constraints is compatible, anti-hierarchical and hierarchical constraints need not
cycle, so that it cannot happen that setting some γj1 = 0 allows γj2 = 1, and
the other way around. The resulting vector satisfies (2.2) by construction, which
proves existence of the solution.

Uniqueness of the solution is guaranteed by minimality of the set of con-
straints. In fact, if there is no overlap between grouping and hierarchical con-
straints, the expression

∏
j 6=i γ

δi(j)
i = 1, is inactive as long as the ηk corresponding

to the father variables in the hierarchy are equal to one. As soon as a group in the
hierarchy is excluded from the model, all the following are excluded by construc-
tion, so there can be only one solution. Anti-hierarchical constraints cannot lead
to multiple solutions to (2.2) since a variable involved cannot be simultaneously
in and out of a model for a given η.
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There can be more than one solution to (2.2) if for instance some hierarchical
constraints cycle (i.e., for some j1, j2 and j3, δj1(j2) = δj2(j3) = δj3(j1) = 1),
leading to a spurious definition of a group. Such set of constraints would not
be minimal by definition. If the set of constraints is not minimal and there is
more than one solution to (2.2), the proposed strategy still works and leads to
the solution corresponding to the model with the highest number of variables.

2.2. The model

We propose to fit the following hierarchical model:
Y | β, σ2 ∼ N(β0 +

∑
βkXk, σ

2I)
σ2 | η ∼ IG(νγ/2, νγλγ/2)
ηk ∼ Bernoulli(wk)
β | η ∼ N(0, ΓRΓ),

(2.3)

where Γ = diag(
√

γjτ2
1j + (1 − γj)τ2

0j), IG denotes the inverse gamma distribu-
tion, and R is a prior correlation matrix. The prior for β leads to a marginal
prior as in (2.1) for each βj . The only difference with the model proposed in
George and McCulloch (1993) is that the latent variables γj enter into the model
as the implicit solutions of (2.2). In the unconstrained case in which Gj = {j},
j = 1, . . . , p and δj = ξj = 0 for any j, model (2.3) reduces to the model suggested
in George and McCulloch (1993).

Our setting follows the approach of Bayesian variable selection in which the
prior distribution of each βj has a spike at zero. When γj = 0 and τ2

0j is small
enough, the prior is very concentrated around 0 and values of βj far from zero
receive negligible support. On the other hand, when γj = 1 and τ2

1j is big
enough, a non-zero (posterior) estimate of βj will probably be included in the
final model. The parameter wk may be interpreted as the statistician’s prior
probability that variables belonging to group Gk should be included in the final
model. The number of groups expected a priori to be included depends on the
structure of the contraints; in the absence of hierarchical and anti-hierarchical
contraints it is easily seen to be equal to

∑
k wk. Larger models are easily pe-

nalized by small values of wk. The parameter γj is equal almost surely (condi-
tionally on η) to a function of η. Marginally, its prior is Bernoulli with param-
eter

∏
k w

φk(j)
k

∏
i 6=j

∏
k w

φk(i)δj(i)
k (1 − wk)φk(i)ξj(i); which can be interpreted as

the statistician’s prior probability that the predictor Xj is included in the final
model, given the constraints. The parameterization and augmentation through
the vector η allows one to give zero prior probability to models that do not satisfy
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the constrains in a simple and natural way. Choice of parameters for the priors
is discussed in the supplementary material.

2.3. MCMC Sampling

SSVS can be performed with the use of classical MCMC methods (Robert
and Casella (1999)), namely by the implementation of a simple Gibbs sampler. In
our experience, in the constrained framework no additional issues with respect
to the unconstrained SSVS seem to emerge. In many cases the Gibbs sam-
pling scheme described in this section will be enough to obtain reliable posterior
summaries for model selection. When this is not the case, sampling strategies
as described in Madigan and York (1995), Geweke (1996), George and McCul-
loch (1997) and Hans, Dobra and West (2007) may be used. A particularly
advantageous possibility is given by the use of adaptive rejection sampling (Gilks
and Wild (1992)), which is known to perform well when there is possible multi-
modality of the posterior (as in our case for the marginal posteriors of the β

parameters). In Section 3.2 of the supplementary material we describe a sam-
pling strategy especially devised for large model spaces.

It is straightforward to check that the full conditional for the coefficient
vector is

β | Y,X, σ2, η ∼ N((X ′X + D−1R−1D−1)−1X ′Y, σ2(X ′X + D−1R−1D−1)−1),
(2.4)

where D = diag(
√

γjτ2
1j + (1 − γj)τ2

0j/σ). When considering a large number of
transformations and interactions, the number of prospective predictors p can get
much larger than n. This is not a problem since (X ′X +D−1R−1D−1) is positive
definite, hence invertible, for any p. The full conditional for the variance is:

σ2 | Y,X, β, η ∼ IG
(n + νγ

2
,
νγλγ + |Y − Xβ|2

2

)
, (2.5)

while for the latent variables η we have

ηk | β, σ2 ∼ Bernoulli
( wka

wka + (1 − wk)b

)
, (2.6)

where a = f(β | η−k, ηk = 1)f(σ2 | η−k, ηk = 1), b = f(β | η−k, ηk = 0)f(σ2 |
η−k, ηk = 0) and where η−k stands for the vector η in which the kth component
has been removed. It is interesting to note that the full conditional of ηk does
not depend on Y , since Y depends on η only through the vector β (George and
McCulloch (1993)). If we do not let νγ and λγ depend on γ, the parameter of
the Bernoulli in (2.6) further simplyfies to f(β | η−k, ηk = 1)wk/(f(β | η−k, ηk =
1)wk + f(β | η−k, ηk = 0)(1−wk)). The components of the vector η are sampled
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sequentially; in our experience, randomly changing the order at each sweep of
the chain mildly improves the mixing properties of the Gibbs sampler. Finally,
γj is computed from η according to (2.2).

2.4. Alternative approaches to model choice

In order to perform model choice we exploit the posterior for the γ parame-
ters, π(γ | Y ). In this section we assume the posterior has already been approx-
imated through MCMC sampling. In this case, π(γ | Y ) is simply estimated as
the relative frequency each model is sampled, and equivalently π(γj | Y ) is the
relative frequency each variable is sampled. Inference on ηk can be performed
similarly, but it is not usually of interest.

Common approaches to model choice select the one receiving highest pos-
terior probability. It has recently been shown by Barbieri and Berger (2004)
that the median model, that is, the model in which only variables with posterior
probabilities above 0.5 are included, provides often better predictions than the
model with highest posterior probability.

Barbieri and Berger (2004) show this result either in an orthogonal setting
or under conditions that are not very general, but note that the median model
is always promising from a predictive point of view and the only one satisfying
optimality results in this sense. They also show that grouped and hierarchical
variable selection satisfies the graphical model structure, and thus the median
model will always be in the class of possible models. On the other hand, for
certain choices of anti-hierarchical constraints, the collection of possible models
may violate their condition, and the median model may be outside the collection.
In that case the model receiving highest posterior probability is to be selected.

Use of the median model is advantageous also from a computational point
of view since it only involves evaluation of the marginal probabilities π(γj | Y ),
and not of the joint π(γ | Y ). Evaluation of the latter in principle requires
enumerating all sampled configurations of the entire vector, which may be large
even when p is moderate.

Even if we focus here on model choice, we also give some consideration to
model averaging (Clyde (1999), Hoeting et al. (1999)). If prediction rather than
model choice is the primary goal, it may be more appropriate to use a weighted
average of the predictions obtained by conditioning on each possible model, with
weight given by the posterior probability of the model. Constraints may still
be useful since a model that is known a priori not to hold should receive zero
posterior probability.
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2.5. Extension to generalized linear models

We now discuss an extension to Generalized Linear Models (GLM), see Mc-
Cullagh and Nelder (1989). In a GLM the response is Y ∼ exp{yθ− b(θ)/a(φ)+
c(y, φ)}, with parameters θ and φ, known functions a(·), b(·) and c(·, ·), and an
assumed linear relation g(E[Y | X]) = β0 +

∑
βkXk, where g(·) is a specified

“link function”.
It is straightforward to extend our framework to this setting by putting the

usual prior structure on the β parameters, and specifying additional priors on
nuisance parameters as needed. As before, a Gibbs sampler can be set up to
simulate from the posteriors. As pointed out by Dellaportas and Smith (1993),
the adaptive rejection method can be used to approximate the posterior when
g(·) is a canonical link function (i.e., for g(·) = b

′−1(·)) and in certain other
situations. In cases in which the likelihood function may not be log-concave,
the adaptive rejection Metropolis sampling of Gilks, Best and Tan (1995) can be
used.

3. Frequentist Properties

In this section we prove certain consistency results for Bayesian variable
selection. We point out that these results hold for SSVS both in the constrained
and unconstrained cases. We use the shorthand notation of M0 for the γ vector
corresponding to the true model and write Mme | Y for the vector corresponding
to the posterior median model.

Theorem 1. Assume (X ′X)/n → C, where C is positive definite, and assume
the true and median models are included in the collection of possible models. Fix
wk > 0, τ2

0j < τ2
1j, and

(1 − wk)τ2
1j > wkτ

2
0j (3.1)

for all k = 1, . . . , g and j = 1, . . . , p. Let νγ and λγ not depend on γ. Assume
also the prior correlation R is such that β∗

j r−1
ij β∗

i ≥ 0 for any i and j, where
r−1
ij is the ijth element of R−1 and β∗ is the vector of true parameters. Then

limn→∞ Pr(Mme = M0 | Y ) = 1, and if maxj τ0j
n→ 0, limn→∞ Pr(M0 | Y ) = 1.

Proof. Proof in Appendix A in the supplementary material.

Theorem 1 has it that, with minor restrictions on the prior parameters,
the posterior median model will eventually coincide with the right model, and
that the true model will receive posterior probability approaching 1 if τ0 is
infinitesimal (or exacly equal to zero). An equivalent expression of (3.1) is
0 < wk < minj τ2

1j/(τ2
1j + τ2

0j), which shows that when τ2
0j << τ2

1j there is very
little restriction on the available choices for wk. Common choices of wk ≤ 0.5
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satisfy condition (3.1) for any τ1j > τ0j . On the other hand, the condition on R

cannot be practically checked, since it depends on the true parameters. It is a suf-
ficient condition requiring coherency between prior beliefs and truth that could
be removed with some restrictions on the magnitude of the prior correlations.
Nevertheless, it is straightforward to check that if R is the identity matrix the
condition is satisfied for any finite n, while R ∝ (X ′X)−1 asymptotically suffices
for Theorem 1. For consistency of the model with highest posterior probability,
we need to let τ0j decrease to zero. As pointed out above, there are no problems
in setting τ0j = 0 for all n if the appropriate sampling algorithm is used.

It is particularly surprising that the results hold without further conditions
on X. For prediction for instance, orthogonality or other restrictions are needed
to prove that the median model is optimal. The theorem provides weaker results
in many senses. Consistency of the model receiving highest posterior probability
has been long known in the literature. For instance, results dating back at
least to Berk (1966), together with Dmochowski (1996), show that, under mild
conditions, common Bayesian methods choose the right model if it is in the
collection, or the closest to the right one in terms of Kullback-Leibler divergence.
To our knowledge, however, consistency results for the median model are new
also for the case of unconstrained variable selection.

4. Simulations

We did a small simulation study in order to check on the ability of the
constrained setting to pick the right model, and on prior sensitivity. First, we
generated six covariates X1, . . . , X6 from standard normals, with response from

Y = 1.5X1 + 2X2 + X3 − 1.5X2X3 + ε, (4.1)

where ε ∼ N(0, 9). The sample size was n = 250. We allowed inclusion of any
of the 6 available covariates, and any of the 15 possible bivariate interactions.
We imposed constraints so as to sample only models respecting a hierarchical
structure. We set wk = 0.5, R to be an identity matrix, τ2

0 = 0.0625, and
τ2
1 = 1, 000. We generated the data, used a burn-in of 5,000 sweeps, and let the

sampler run for another 3,000 iterations which we used for model choice. We
selected the median model. We repeated the operation for B = 300 iterations,
and report the proportion of times the strategy led to the correct model choice.
Proportions of correct model choice are reported in the Scenario 1 row in Table
1, together with the Monte Carlo standard error. In Scenario 2 we still simulated
from model (4.1), but also imposed an anti-hierarchical constraint between X4

and X6. In Scenario 3 we imposed two anti-hierarchical constraints, one between
X5 and X2, and another between X4 and the interaction X2X3; note that this
implies also an anti-hierarchical constraint between X5 and the interaction. The
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third setting is different from the second in that we impose anti-hierarchical
constraints between a variable in the true model and one outside. As can be
seen from Table 1, this raised the rate of correct decision, while anti-hierarchical
constraints between variables not included in the true model did not seem to have
a significant effect. In Scenario 4 we used the same constraints as in Scenario
1, but took X4 = X5 + ε2, where ε2 ∼ N(0, 0.01). This introduced a strong
collinearity in the design matrix, but did not seem to alter the ability of the
algorithm to choose the right model. In Scenario 5 we used the same constraints
as Scenario 1, and also imposed grouping constraints between X2 and X3, and
between X5 and X6. In Scenario 6 we simulated from model (4.1), but considered
25 possible covariates and all their bivariate interactions, ending up with p =
325 > n = 250. Since the model space was now larger, while we still used a burn-
in of 5,000 iterations, we let the sampler run for 15,000 more iterations. Having
a much larger model space decreased the probability of correct model selection.
Nevertheless, with τ1 = 100 and τ0 = 0.05 (Scenario 7), the probability of correct
model selection increased (See also Table 2 below).

If the constraints are misspecified and the correct model is almost surely
excluded from the collection of possible models, constrained SSVS fails to select
the true model. On the other hand, it is well-known that a model “close” to the
correct one is chosen (Berk (1966), Dmochowski (1996)). To illustrate this, we
simulated as in Scenario 1 with an anti-hierarchical constraint between X2 and
X1. The correct model was now obviously never sampled. On the other hand,
the median model was β0 + β2X2 + β3X3 − β23X2X3 in 280 out of 300 simulated
data sets.

For a comparison we used unconstrained SSVS on the same data, with the
same priors and MCMC tuning. The proportion of correct model selection is seen
to decrease considerably, as reported in the right panel of Table 1. In particular
when p > n, classical SSVS is led to almost always include too many variables. In
summary, putting (the right) constraints narrows the search for the true model
and increases the probability of correct model selection.

Finally, in order to evaluate the effect of the choice of prior parameters, we
simulated from Scenario 1 but tried different values for τ1, τ0 and wk. For each
combination of τ1 and τ0 with wk = 0.5 we generated B = 100 data sets, and
we report in Table 2 the proportion of times constrained SSVS with use of the
median model was led to choose the correct model. The last line of Table 2
shows the results for τ0 and τ1 as in Scenario 1, but with different values for wk

(remember that setting wk > 0.5 violates the conditions of Theorem 1). A certain
degree of dependence on prior inputs is well known in Bayesian variable selection,
and confirmed by the simulation; but a reasonable range of choices led to choose
the correct model with high probability. A general guideline is not possible since



BAYESIAN CONSTRAINED VARIABLE SELECTION 1055

Table 1. Proportion of correct model selection under different scenarios for SSVS

Constrained SSVS Unconstrained SSVS

Scenario Correct Monte Carlo Standard Error Correct Monte Carlo Standard Error

Scenario 1 0.93 0.014 0.57 0.028

Scenario 2 0.92 0.015 0.57 0.028

Scenario 3 0.96 0.011 0.57 0.028

Scenario 4 0.93 0.015 0.56 0.028

Scenario 5 0.94 0.013 0.57 0.028

Scenario 6 0.66 0.027 0.03 0.010

Scenario 7 0.91 0.016 0.05 0.012

Table 2. Proportion of correct model selection under Scenario 1 with different priors.

τ2
1 = 5 τ2

1 = 10 τ2
1 = 100 τ2

1 = 200 τ2
1 = 500 τ2

1 = 1, 000
τ2
0 = 0.1 1.00 1.00 0.90 0.83 0.75 0.59

τ2
0 = 0.05 0.99 1.00 1.00 1.00 1.00 0.98

τ2
0 = 0.02 0.98 0.98 1.00 1.00 1.00 0.99

τ2
0 = 0.005 0.97 0.99 0.99 0.99 1.00 1.00

τ2
0 = 0.001 0.96 0.97 0.98 0.98 0.99 1.00

wk 0.1 0.25 0.4 0.6 0.75 0.85
0.78 0.85 0.96 0.94 0.93 0.90

this “reasonable range” depends heavily on the data at hand. It has been noted
in the literature that it is better to have a dense model space, with constituent
models close together (Gustafson and Lefebvre (2008)). If the prior variances
are too separated, the different models are too far apart and a correct mixing of
the chain is difficult, at least with simple sampling schemes. We suggest tuning
prior inputs by exploring the parameters for the full conditionals of ηk as given
in (2.6), and making sure they move slowly as a function of β. With bad values it
may happen that parameters in (2.6) jump between the extremes of the interval
[0, 1]. Further discussion of the choice of prior parameters can be found in the
supplementary material.

5. Data Examples

In this section we provide an example with a continuous response and another
with a large and complex model space and a binary response. An extended
version of the latter, together with a brief discussion of two additional examples,
can be found in the supplementary material.

5.1. Birthweight data

Consider the birthweight data set from Hosmer and Lemeshow (1989). We
have n = 189 observations collected by the Baystate Medical Center, Springfield,
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Massachusetts, during 1986. Response is weight at birth, and there is information
on mother’s age, weight at last menstrual period, race (white, black, other),
smoking status during pregnancy, and number of previous premature labours,
hypertension in the past, uterine irritability, number of physician visits during
the first trimester. We considered transformations of numerical variables up to
the fourth power, and all possible bivariate interactions; imposing the natural
hierarchical constraints. We also have grouping constraints, since we adopted a
corner point parameterization for race.

To fix the ideas, we describe how the constraints were specified for the
variables race and weight. For race, we used white as baseline. First we
specified grouping constraints by setting φ1(black) = φ1(other) = 1. All the
other variables belong to a different group, so for instance we set φ2(weight) =
φ3(smoke) = φ4(weight2) = 1, and so on. We then specified separate hierarchical
constraints by setting δweight(weight2) = δweight2(weight3) = 1, δblack(weight∗
black) = δweight(weight ∗ black) = 1, and so on. After a burn-in of 50,000
iterations we let the Gibbs sampler run for another 50,000.

One question of interest is whether the constrained framework significantly
modifies the correlation structure among the parameters with respect to the un-
constrained framework. In particular, if parameters are highly correlated the
Gibbs sampler may not be the most efficient choice for sampling from the poste-
rior. With these data we provide mild evidence that this is not the case. After
sampling, we computed the correlation matrix for the regression parameters. We
repeated the operation after sampling in an unconstrained SSVS framework. In
the first case the largest eigenvalue of the correlation matrix was 3.671, and the
smallest 0.0002. In the second case the largest eigenvalue was 3.634, and the
smallest 0.0003. Since there usually are many more samples from the posterior
than parameters, this simple check can always be done. Should the parameters
in the constrained framework be much more correlated than the parameters in
the unconstrained framework, we suggest better tuning of the prior correlations,
of τ0 and τ1, or the use of another sampling strategy.

The median model and the model with highest posterior probability coincide:

E[Y |X] = weight + weight2 + race + uterine irritability +

+hypertens + smoke + hypertens ∗ race.

We can also record the posterior probability of each sampled model, and plot
it in decreasing order. Results are reported in Figure 2, and lead us to conclude
that there is a moderate uncertainty in model selection for these data: there does
not appear to be a sharp elbow between promising and less promising models,
and the number of models sampled at least once was high (872). In this example
Bayesian model averaging may be a better choice if the goal is prediction. In
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Figure 2. Posterior probability of sampled models (decreasing order) for the
Birthweight data set.

Figure 3. Posterior probability of original variables for the Birthweight data
set. ui: uterine irritability, ptl: number of premature labours.

Figure 3 we show the posterior inclusion probability of each variable, excluding
transformations and interactions for reasons of space. This latter plot gives more
convincing evidence in favour of the chosen model.

The same data were analyzed by Yuan and Lin (2006). The selected model
substantially coincide with the one suggested by them, and we also agree in
identifying the number of visits as the least important covariate (posterior inclu-
sion probability: 0.25), and uterine irritability as the most important (posterior
inclusion probability: 0.92). On the other hand, we include hypertension and
weight. Yuan and Lin (2006) considered weight, its square and its cube as a
group, concluding it was not important. By imposing hierarchical constraints on
the transformation we find that the cube should very likely be excluded, having
marginal posterior inclusion probability of 0.003. Finally, we speculate that the
Bayesian hierarchical model selects hypertension because of the presence of an
interaction with race. The model that would be chosen by stepwise methods
is rather different and would not respect the hierarchical structure, for instance
including the squared weight without the original variable.
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Table 3. Average MSE on the test set with its Monte Carlo standard error
and average number of variables selected by different methods for the Birth-
weight data. The results are based on 1,000 random partitions of the data
in a training set of 151 observations and a test set of 38 observations.

Method MSE Monte Carlo Standard Error # Variables
constrained SSVS 444116.6 3019.99 8.08
grouped LASSO 459114.8 3309.98 10.72

unconstrained SSVS 459719.0 2898.14 6.77
forward stepwise 468421.5 3300.72 9.36

In order to evaluate the predictive performance of our method, we split the
data set into a training sample of n = 151 observations and a test sample of
the remaining 38. We used the same constraints as in Yuan and Lin (2006),
with grouping constraints among the polynomial transformations up to the third
order for the numerical variables, and among the coefficients for the corner point
reparameterization of race. We used our method and competitors for model
selection and we predicted the responses on the test set with the chosen model.
We repeated the operation B = 1, 000 times and report in Table 3 the average
MSE, together with Monte Carlo standard error, and the average number of
selected variables. Constrained SSVS stands for our method, unconstrained SSVS
for the classical stochastic search variable selection. In both cases the final choice
was based on the median model. We compared the Bayesian methods with two
frequentist approaches, the classical forward stepwise selection and the grouped
LASSO. For the grouped LASSO of Yuan and Lin (2006) we used a grid of
50 values for the penalization parameter, and chose the result optimizing their
approximate Cp criterion. Despite not being optimized for prediction SSVS, both
in the constrained and unconstrained version, seemed competitive with respect
to the frequentist criteria.

5.2. Spam data

In order to illustrate the potential of our method with many variables and
many constraints, we show the application to Spam identification with the the
Spambase data set. We have n = 4601 emails, 39% of which are spam, and p = 57
variables. Data and a full description are available from the UCI Machine Learn-
ing Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). The
binary response records whether an email is spam or not, and the explanatory
variables record frequency of occurrence of certain flag words and of special char-
acters. A complete list is in Table 1 in the supplementary material.

It is natural to expect high-order interactions between the occurrence of cer-
tain words in this data set. We proceeded by randomly splitting the data set into

http://www.ics.uci.edu/~mlearn/MLRepository.html
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a training set of 3,221 observations and a test set of the remaining 1,380. We
considered the possibility of including any of the 54 standardized explanatory
variables, transformations up to the power of four, all two-way interactions, all
two-way interactions between the squared variables, and all two-way interactions
between the squared and the original variables. The resulting number of vari-
ables was 5,940. As usual we did not include a power of any order without all
the preceeding, nor an interaction without the original variables. There was a
very large number of complex constraints, which could not be easily exploded.
Nevertheless, the hierarchical constraints were easily specified by forming a 5,940
by 5,940 binary matrix δ containg the δi(j) parameters. For i = 55, . . . , 108 we
set δi(i−54) = 1 in order to impose the constraints between the original and the
squared variables, for i = 109, . . . , 162 we set δi(i − 54) = 1 in order to impose
the constraints between the cubes and the squares (and, automatically, between
the cubes and the untransformed); and so on. In order to penalize more complex
models, we set wk = 0.05. The prior variances were τ1 = 5 and τ0 = 0.3. Due
to the large number of variables, the Gibbs sampler could not be expected to
converge without a very large number of iterations, so we used instead a special
sampling scheme, whose description can be found in the supplementary material.

The resulting median model is made of 360 variables, 43 of which are the
original untransformed, together with 36 squares, 2 cubes and no fourth pow-
ers. All the remaining selected covariates are interactions. There is very little
uncertainty about the chosen model (see supplementary material for a deeper dis-
cussion about this point), which is also interpretable. For instance, the semicolon
was discarded, while name of the owner of the mailbox was included with very
high probability. Of course, emails addressing the receiver by name are much
less likely to be spam. Other words with markedly negative log-odds were “hp”
and “meeting”. With very high probability we also included the words “order”,
“technology”, and “000”, that are common words in spam emails. Many words
interact with the name of the owner and the word “hp”. Other interactions
formed part of a sentence, like: “our” and “meeting”. When the two words are
used together, it is less likely the mail is spam and the negative coefficient for
the interaction catches this feature. Another interesting interaction is between
“hp” and “technology”. The word technology may indicate a spam, but if the
word is used in conjuction with “hp”, the company of the owner of the mailbox,
it is much less likely to be spam, reflected on the negative coefficient of the in-
teraction. Not surprisingly, even if “000” is very important in the model, there
are only six interactions with this variable.

Finally, we used the selected model for prediction on the test set. The results
are shown in Table 4, where 1-nn and 3-nn stand for the k-nearest neighbours
method of Cover and Hart (1967) with, respectively, k = 1 and k = 3. Note
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Table 4. Prediction on the test set, SPAM data

Correct Spam Correct NonSpam Correct
Logistic model, with constraints 91.6% 94.9% 86.6%
Logistic model, only original variables 90.4% 95.8% 82.2%
Logistic model, without constraints 87.4% 91.5% 84.8%
1-nn 85.4% 88.7% 80.3%
3-nn 85.1% 90.2% 77.3%
1-nn, only original variables 90.0% 91.5% 87.7%
3-nn, only original variables 89.6% 91.8% 86.0%

that no variable selection is available for the k-nn methods. For all the other
methods, a (constrained or unconstrained) SSVS is used. The predictive perfor-
mance of the constrained model is good, even if not markedly better than the
other classification methods. There is a small advantage of using transformed
variables and interactions (the proportion of correctly classified emails increased
from 90.4% to 91.6%). If the transformations are used without constraints, the
prediction performance was not as good, likely due to over-adaptation to the
training set. Moreover, the resulting model was not easily interpretable and not
as parsimonious, since it used 711 variables. The logistic model with hierarchical
contraints can be used not only for prediction, but also for explaining why an
email is spam.
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