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Abstract Perception, memory, learning, and decision making are processes carried
out in the brain. The performance of such intelligent tasks is made possible by the
communication of neurons through sequences of voltage pulses called spike trains.
It is of great interest to have methods of extracting information from spike trains in
order to learn about their relationship to behavior. In this article, we review a Bayesian
approach to this problem based on state-space representations of point processes. We
discuss some of the theory and we describe the way these methods are used in decoding
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motor cortical activity, in which the hand motion is reconstructed from neural spike
trains.

Keywords Point process · State-space model · Recursive Bayesian filter · Sequential
Gaussian approximation · Neural decoding

1 Introduction

The brain receives, processes, and transmits information about the outside world
through stereotyped electrical discharges, called action potentials or spikes. Exter-
nal sensory signals are transformed into intricate sequences of these spike events at an
early stage of processing within the central nervous system, and all subsequent brain
area interactions and computations are carried out using these spike trains. Spike trains
are the starting point for virtually all of the processing performed by the brain (Kandel
2000; Dayan and Abbot 2001). It is therefore very important to have good statistical
models for spike trains, and methods for examining their relationship to particular
stimuli or behavior.

A basic property of action potentials is that they are “all or nothing” events: each
time a neuron fires, its voltage wave form is nearly the same, regardless of context.
This allows us to reduce spike trains to sequences of event times. On the other hand,
while all action potentials remain essentially the same across repeated firing events,
the spike sequences generated in response to identical stimuli applied on separate
occasions will not be identical; although they may share common statistical features,
they exhibit substantial variation. These two fundamental facts suggest that spike train
data might be effectively analyzed with the theory of point processes (Snyder 1972;
Snyder and Miller 1991; Daley and Vere-Jones 2003). Point processes are used to
model physical systems that produce a stochastic set of localized events in time or
space. In this case, we use temporal point processes to represent the times of the spik-
ing events and to express the probability distribution of specific sequences of spike
times.

While neurons have as immediate inputs the spiking activity of other neurons,
these inputs are generally not recorded. Instead, the relationship of spiking activity
to a stimulus or behavior becomes the focus of neurophysiological investigation. The
prototypical neuron we consider here has inputs from multiple sources and produces
a spike train in response. Describing the way a neuron represents information about
a stimulus or behavior is the encoding problem. The dual problem of reproducing the
stimulus or behavior from neural spike trains is the decoding problem. The ability to
reconstruct a signal from observed neural activity provides a way of verifying that
explicit information about the external world is represented in particular neural spike
trains (Rieke et al. 1997; Dayan and Abbot 2001). Its engineering importance comes
from efforts to design brain-machine interface devices, especially neural motor pros-
theses such as computer cursors, robotic arms, etc (Schwartz 2004). A natural starting
point is to take the behavior, such as a hand movement, to follow a dynamic state
model and to infer the evolution of states using Bayes’ theorem.
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Bayesian decoding of neural spike trains 39

An additional consideration is that neural systems are dynamic, in that individual
neurons constantly change their response properties to relevant stimuli (Brown et al.
2001; Frank et al. 2002, 2004). Furthermore, groups of neurons maintain dynamic rep-
resentations of relevant stimuli in their ensemble firing patterns (Brown et al. 1998;
Barbieri et al. 2004). For these reasons, the development of state-space algorithms to
characterize the dynamic properties of neural systems from point process observations
has been a productive research area in computational neuroscience.

In this article, we review the state-space approach for solving the neural decoding
problem. We proceed to construct a state space estimation and inference framework by
writing state models that describe the evolution of the stochastic signals to estimate,
and intensity models for neurons that define the probability density of observing a
particular sequence of spike times. Posterior densities can then be computed using a
recursive Bayesian filter for discrete-time analyses. In Sect. 2, we discuss the con-
struction of point process models to describe spiking activity of individual neurons
within an ensemble. In Sect. 3, we develop our point process estimation framework
for discrete time analyses. We begin by constructing state transition equations and
probability densities for discrete time observations and using these to derive an exact
recursive expression for the posterior density of the state given the spiking data. By
using a Gaussian approximation to the posterior density, we construct a computation-
ally efficient recursive estimation algorithm for neural spiking data. We then show
that this algorithm does not lead to accumulation of approximation error. In Sect. 4,
we illustrate applications of the point process estimation to neural decoding problems.
Section 5 summarizes our results and discusses areas for future study.

2 Stochastic neural spiking model

2.1 Conditional intensity function

Given an observation interval (0, T ], let N (t) be a counting process, which is the total
number of spikes fired by a given neuron in the interval (0, t], for t ∈ (0, T ]. The
conditional intensity function for a stochastic neural point process is defined by

λ(t |H(t)) = lim
�t→0

P(N (t + �t) − N (t) = 1|H(t))

�t
,

where H(t) includes the neuron’s spiking history up to time t and other relevant covari-
ates. According to this definition, we can write the probability of a neuron firing a single
spike in the interval [t, t +�t] by Pr(N (t +�t)− N (t)|Ht ) = λ(t |H(t))�t +o(�t).
When the spiking distribution is independent of its past history, this becomes a Poisson
process, and λ(t |H(t)) = λ(t) is simply a rate function of the Poisson process. Thus,
the conditional intensity function is a generalization of the intensity function of the
Poisson process including the dependency of the spike history.

Let 0 < u1 < u2 < · · · < un−1 < un ≤ T be a set of spike times from a
point process. Using the conditional intensity function λ(t |H(t)), the joint probability
distribution of a spike train {ui }n

i=1 in an interval (0, T ] is expressed as
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p({ti })n
i=1) =

[
n∏

i=1

λ(ui |H(ui ))

]
exp

(
−

∫ T

0
λ(u|H(u))du

)
, (1)

Intuitively, we can think of the first term on the right-hand side of (1) as the
probability density associated with observing action potentials at the actual spike times
and the second term as the probability of not observing any other spikes anywhere
in the interval. The conditional intensity function provides a succinct representation
of the joint probability density of a sequence of spike times, and fully characterizes
the stochastic structure of the modeled neuron’s spiking activity. In the following, we
provide several classes of point processes by specifying the form of the conditional
intensity function for modeling neural spike trains.

2.2 Neural point process models

We can categorize many of the different types of signals that covary with spiking
activity of a neuron into three distinct groups. First, neural activity is often associated
with extrinsic biological and behavioral signals, such as sensory stimuli and behav-
ioral or specific motor outputs. In neural decoding problems, these external signals
are the ones about which we typically want to make inferences from the observed
spiking activity. Second, the probability of firing a spike at a particular moment in
time will generally depend on the neuron’s past spiking history. Third, recent techno-
logical advancements that allow for the simultaneous recording of a large number of
neurons have shown that the spiking activity of a particular neuron can be related to
the concurrent and past activity of a population of other neurons (Pillow et al. 2008;
Smith and Kohn 2008).

The class of conditional intensity models with which we work must be able to
incorporate the simultaneous effects of extrinsic covariates, internal spiking history,
and ensemble activity. In other words, the conditional intensity processes that we use
can be written generally as

λ(t |H(t)) = f (t, x[0,t], N[0,t), {N c
[0,t)}C

c=1),

where x[0,t] represents the values of a set of external covariates up to and including the
present time, N[0,t) represents the neuron’s spiking history, and {N c

[0,t)}C
c=1 represents

the firing histories of other C neurons.

2.2.1 Generalized additive models

A simple class of models is built so that the logarithm of the conditional intensity
function has a linear combination of general functions of the covariates,

log λ(t |H(t)) =
m∑

i=1

θi gi ({x j (t)}), (2)
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where gi is a general function of covariates {xi (t)}, and θi is a parameter representing
the degree of modulation of the conditional intensity to the specified function of the
covariates. Equation (2) has the same form as a generalized additive model (GAM)
under a Poisson probability model and a log link function (Hastie and Tibshirani 1990).
When gi is linear, it corresponds to the generalized linear model (GLM) (McCullagh
and Nelder 1989). The GAM framework is advantageous because it is integrated
into several standard mathematical and statistical packages and a model is easy to
construct. These properties make the GAM framework ideal for rapidly assessing
the possible relevance of a large number of covariates on the spiking properties of
neurons.

For example, the model that incorporates both the spike history and an extrinsic
covariate I (t) may have the form,

log λ(t |H(t)) = θ0 + θ1g(I (t)) + θ2�Nt−1,

where exp(θ0) is the baseline firing rate, and �Nt−1 is an indicator function that is 1
if the neuron has just fired a spike in the preceding millisecond. Therefore, this model
is able to capture both the neuron’s dependence on the input stimulus and the spike
history dependence with a simple functional form. Truccolo et al. (2005) provides a
complete discussion of the construction and evaluation of GAM models for neural
systems.

2.2.2 Inhomogeneous Markov interval model

An inhomogeneous Markov interval (IMI) model simply incorporates into the
conditional intensity the dependency of the last spike time preceding t :

λ(t |H(t)) = r(t, t − s∗(t)),

where s∗(t) is the preceding spike time. Regarding the interaction between the spike
history dependence and the effect of extrinsic covariates, two special classes of IMI
models have been considered in the following literature: multiplicative IMI models
(Kass and Ventura 2001, and references therein) and time-rescaled renewal-process
models (Barbieri et al. 2001; Koyama and Shinomoto 2005; Reich et al. 1998).

The conditional intensity function of the multiplicative IMI model has the form

λ(t |H(t)) = λ1(t)g1(t − s∗(t)),

where λ1(t) modulates the firing rate only as a function of the experimental clock,
while g1(t − s∗(t)) represents the dependence on the last spike time preceding t .

The time-rescaled renewal-process model has the form

λ(t |H(t)) = λ0(t)g0(�0(t) − �0(s∗(t))),
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where g0 is the hazard function of a renewal process and �0(t) is defined as

�0(t) =
∫ t

0
λ0(u)du.

In both models, λ0 and λ1 are often called excitability functions to indicate that
they modulate the amplitude of the firing rate, while g0 and g1 are called recovery
functions to indicate that they affect the way the neuron recovers its ability to fire after
generating a spike. The fundamental difference between the two models is the way
the excitability interacts with the recovery function (Koyama and Kass 2008). In the
multiplicative IMI model, the refractory period (in which a spike cannot be evoked
after the last spike) represented in the recovery function is not affected by excitabil-
ity or firing rate variations. In the time-rescaled renewal-process model, however, the
refractory period is no longer fixed but is scaled by the firing rate.

2.3 Goodness-of-fit tools

We have introduced several classes of neural point process models above. Any such
models are, however, only approximations of the true physiological mechanisms
underlying spike generation. Goodness-of-fit measures are used to assess the extent
to which the models can capture the statistical structure presented in data, and allow
us to compare models.

2.3.1 AIC and BIC

The probability distribution a sequence of spikes (1) serves as the point process
likelihood of a model with a specified set of parameters. The likelihood can there-
fore be used to infer static parameters for a given model class via maximum likelihood
(Paninski 2004), or to compare among different model classes. In order to select among
different model classes with potentially different number of parameters, Akaike (1974)
developed an information criterion (AIC) that uses a penalized log likelihood function,

AIC(model) = −2 log P({N (t)}|{x(t)}) + 2m,

where {N (t)} and {x(t)} are an observed counting process and covariate, respectively,
m is the number of parameters for the model class, and the likelihood function is
computed at the maximum likelihood estimate of the model parameters. AIC was
originally developed as an approximate estimate the Kullback–Leibler divergence
between the true stochastic process generating observations and a proposed model for
the process. Thus, under this criterion, the model class that has the smallest AIC most
parsimoniously describes the statistical structure of the process.

The Bayesian information criterion (BIC) is an alternative to AIC for model
selection (Schwartz 1978; Kass and Raftery 1995). The generic form of BIC for the
point process model is

BIC(model) = −2 log P({N (t)}|{x(t)}) + log n · m,
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where n is the number of spikes observed in the interval, and the likelihood function
is computed at the maximum likelihood estimate of the parameters as with AIC. The
difference from AIC is that the factor 2 of the penalty term in AIC is replaced by log n.
In spite of its similarity with AIC, BIC arises in quite a different way; BIC estimates
the posterior probability of the model given data under the assumption that the prior
over models is uniform. BIC tends to penalize complex models more strongly than
does the AIC, giving preference to simpler models in selection.

2.3.2 Time-rescaling transformation and Kolmogorov–Smirnov test

While AIC and BIC are useful for comparing among competing models, the scale of
them is, by itself, somewhat difficult to interpret. Thus, it is useful to develop diagnostic
tools to assess the goodness-of-fit of proposed models to data. The
Kolmogorov–Smirnov (K–S) test and corresponding K–S test can be used for this
purpose (Berman 1983; Ogata 1988; Brown et al. 2002).

For constructing the K–S plot, consider the time-rescaling transformation obtained
from the estimated conditional intensity,

�(t) =
∫ t

0
λ(u|H(u))du,

which is a monotonically increasing function because λ(u|H(u)) is nonnegative. If the
conditional intensity were correct, then according to the time-rescaling theorem rescal-
ing spike times, τi = �(ti ), have the distribution of a stationary Poisson process of unit
rate (Papangelou 1972). Thus, the rescaled inter-spike intervals, yi = �(ti )−�(ti−1),
would be independent exponential random variables with mean 1. Using the further
transformation, zi = 1 − exp(−yi ), {zi } would then be independent uniform random
variables on the interval (0, 1). In the K–S plot we order the zi s from smallest to largest
and, denoting the ordered values as z(i), plot the values of the cumulative distribution

function of the uniform density, i.e., bi = i− 1
2

n for i = 1, . . . , n, against the z(i)s. If
the model were correct, then the points would lie close to a 45◦ line. For moderate to
large sample sizes the 95% probability bands are well approximated as bi ±1.36/n1/2

(Johnson and Kotz 1970). The Kolmogorov–Smirnov test rejects the null-hypothetical
model if any of the plotted points lie outside these bands.

If the conditional intensity were correct, the rescaled intervals should also be
independent of each other. To test for independence of the transformed intervals,
we can plot each transformed interval zi against the next zi+1; if there were no serial
correlation, the resulting plot is distributed uniformly in a unit square.

2.3.3 Point process residual analysis

A stochastic process model divides each observation into a predictable component
and a random component. One approach to examine if a model describes a statistical
structure of the observation data is to search for structure in the residuals between the
data and the predictive component of the model. For a univariate point process, the
residual error process can be defined as
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R(t) = N (t) −
∫ t

0
λ(u|H(u))du.

If the conditional intensity model is correct, then this residual process is a martingale
and has zero expectation over any finite interval, independent of the state process. For
a neural system, this residual process should be uncorrelated with any potential biolog-
ical input signal. If there is a statistically significant correlation between the residual
process and an input signal, then we should refine the neural model that captures the
predictable residual component resulting from this correlation.

3 Neural decoding

The previous section focused on the construction of neural spiking models, which
use relevant covariates, x(t) related to sensory stimuli, physiological states or motor
behavior, to describe the statistical structure of neural spike trains, {ui }. Neural decod-
ing is the reverse problem of inferring a set of dynamic extrinsic covariates, x(t),
from the observed spiking activity, {ui }. To construct the decoding algorithm, we
switch from a continuous-time to a discrete-time framework so that we can make
use of recursive algorithms, to be introduced below. In a discrete time setting, it
is first necessary to partition the observation interval into a discrete set of times,
{ti : t0 < t1 < · · · < tK < T }. All pertinent model components, such as the sys-
tem state and observation values, are then only defined at these specified times. For
convenience, we write xk for x(tk). Likewise, we write λk for λ(tk |H(tk)), the his-
tory-dependent conditional intensity of a single neuron at these times, or write λi

k for
that of the i th neuron in an ensemble. The difference �tk = tk − tk−1 is the duration
of the interval of the partition. The difference in the counting process for a spiking
neuron between two adjacent points in the partition, �Nk = N (tk)− N (tk−1), defines
a random variable giving the number of spikes fired during this interval. We write �N i

k
when we specify the spike counts of the i th neuron in an ensemble in the duration
of �tk . If the values of �tk are small enough, then there will never be more than a
single event in an interval, and the collection, {�Nk}K

k=1, is just the typical sequence
of zeros and ones used to express spike train data in a discrete time series. We use
�N1:k ≡ {�Ni }k

i=1 to represent the collection of all observed spikes up to time tk .

3.1 Recursive Bayesian estimation

The estimate of the state signal, xk , is based on its posterior density conditioned on the
set of all past observations, p(xk |�N1:k), which is recursively computed by combining
the state and observation models.

Consider a vector random state signal, {xk}K
k=0, that correlates with the observed

spiking activity of a population of neurons. Assume that this signal can be modeled as
a dynamic system whose evolution is given by a linear stochastic difference equation:

xk+1 = Fk xk + εk, (3)
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Bayesian decoding of neural spike trains 45

where εk is zero mean white noise process with Var(ε) = Qk , and the distribution of
εk is independent of that of ε j for all j �= k. This state equation defines the proba-
bility of the state at each discrete time point given its previous value, p(xk+1|xk) =
N (Fk xk, Qk).

The observation model, p(�Nk |xk, Hk), is obtained by approximating the
conditional intensity function, which has been defined in Sect. 2, in the discrete-time
for the probability of observing a spike in the interval (tk−1, tk] as

p(yk |xk, Hk) = exp(yk log(λk�tk) − λk�tk) + o(�tk). (4)

(Brown et al. 2003). Notice that up to order o(�tk), this spiking distribution is equiv-
alent to a Poisson distribution with parameter λk�tk even though the spiking process
is not a Poisson process.

By applying Bayes’ rule, we obtain the posterior density of the state given the
observations up to the current time,

p(xk |�N1:k) = p(�N1:k, xk)

Pr(�N1:k)

= p(�Nk,�N1:k−1, xk)

Pr(�N1:k)

= Pr(�Nk |�N1:k−1, xk)p(�N1:k−1, xk)

Pr(�N1:k)

= Pr(�Nk |�N1:k−1, xk)p(xk |�N1:k−1)

Pr(�Nk |�N1:k−1)
. (5)

The first term in the numerator of (5) is the observation model. The second term is the
one-step prediction density defined by the Chapman–Kolmogorov equation as

p(xk |�N1:k−1) =
∫

p(xk |xk−1)p(xk−1|�N1:k−1)dxk−1. (6)

Equation (6) has two components: the state model, p(xk |xk−1), and the posterior
density from the last iteration step, p(xk−1|�N1:k−1). Thus, Eqs. (5) and (6) give a
complete, recursive solution to the filtering problem for state-space models. When
both the state and observation models are linear Gaussian, the solution of (5) to (6)
reduces exactly the Kalman filter. (For historical remarks on the Kalman filter see
Akaike (1994)). Equation (4), however, is in general nonlinear and non-Gaussian,
ruling out any hope of a finite-dimensional exact filter. We develop the approximate
filters based on Gaussian approximations in the following.

3.2 Approximate filters

Let xk|k−1 and Vk|k−1 be the (approximate) mean and variance for the one-step
prediction density, p(xk |�N1:k−1), and xk|k and Vk|k be the mean and variance for
the posterior density, p(xk |�N1:k), at time k. The goal in this derivation is to obtain
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a recursive expression for the posterior mean, xk|k , and the posterior variance, Vk|k ,
in terms of observed and previously estimated quantities. There are a number of
ways to approximating the posterior distribution depending on the desired balance
between accuracy and computational efficiency (Tanner 1996; Julier and Uhlmann
1997; Doucet et al. 2001). Here, we introduce Gaussian approximations in the pos-
terior distribution at each point in time, which provides a simple algorithm that is
computationally tractable.

Under a Gaussian approximation in the posterior density, the one-step prediction
density (6) at time k is also Gaussian with the mean and variance are, respectively,
computed from those of posterior density at the previous time-step as

xk|k−1 = Fk xk−1|k−1, (7)

Vk|k−1 = Fk Vk−1|k−1 FT
k + Qk . (8)

The posterior density (5) at time k is then approximated to a Gaussian with the
parameters xk|k and Vk|k which are to be determined. Depending on the choice of
these parameters, we can construct different approximate filters as follows (Brown
et al. 1998; Eden et al. 2004; Koyama et al. 2008).

3.2.1 Stochastic state point process filter

One way to make a Gaussian approximation is to expand the log posterior distribution
in a Taylor series about some point x̄ up to the second-order term, and complete a square
to obtain an expression of the form of the Gaussian. Let l(xk) = log Pr(�Nk |xk, Hk)

p(xk |�N1:k−1) be the log posterior distribution (in which we omit the normalization
constant) at time k. Expanding the log posterior distribution about a point x̄ up to the
second order yields

l(xk) ≈ l(x̄) + l ′(x̄)(xk − x̄) + 1

2
(xk − x̄)T l ′′(x̄)(xk − x̄)

= 1

2

[
xk − {x̄ − l ′′(x̄)−1l ′(x̄)}

]T
l ′′(x̄)

[
xk − {x̄ − l ′′(x̄)−1l ′(x̄)}

]
+ const.

Thus the posterior distribution is approximated to a Gaussian whose mean xk|k and
the variance Vk|k are, respectively, given by

xk|k = x̄ − l ′′(x̄)−1l ′(x̄), (9)

Vk|k = [−l ′′(x̄)]−1. (10)

We may choose to make this approximation precise at any single point by evaluating
this expression for x̄ at that point. Evaluating at x̄ = xk|k−1 gives a simple posterior
state equation,
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V −1
k|k = V −1

k|k−1 +
C∑

j=1

⎡
⎣

(
∂ log λ

j
k

∂xk

)T

[λ j
k�tk]

(
∂ log λ

j
k

∂xk

)

− (�N j
k − λ

j
k�tk)

∂2 log λ
j
k

∂xk∂xT
k

]
xk|k−1

, (11)

and

xk|k = xk|k−1 + Vk|k
C∑

j=1

⎡
⎣(

∂ log λ
j
k

∂xk

)T

(�N j
k − λ

j
k�tk)

⎤
⎦

xk|k−1

. (12)

Equations (7), (8), (11) and (12) comprise a recursive estimation of the states. This
approximate filter, introduced by Eden et al. (2004), is called stochastic state point
process filter (SSPPF). An important feature of this filter is the fact that the poster-
ior mean equation (12) is linear in xk|k , eliminating the need for iterative solving
procedures at each time step.

3.2.2 A maximum a posterior (MAP) point process filter

Alternatively, if we choose to set x̄ in (9) and (10) to the maximum of the posterior
distribution, x̂ ≡ arg maxxk l(xk), so that x̄ = xk|k , we obtain a modified approximate
filter:

xk|k = xk|k−1 + Vk|k
C∑

j=1

⎡
⎣(

∂ log λ
j
k

∂xk

)T

(�N j
k − λ

j
k�tk)

⎤
⎦

xk|k

, (13)

and

V −1
k|k = V −1

k|k−1 +
C∑

j=1

⎡
⎣

(
∂ log λ

j
k

∂xk

)T

[λ j
k�tk]

(
∂ log λ

j
k

∂xk

)

− (�N j
k − λ

j
k�tk)

∂2 log λ
j
k

∂xk∂xT
k

⎤
⎦

xk|k

. (14)

Equations (7), (8), (13) and (14) are identical to the MAP point process filter derived
in Brown et al. (1998). Unlike the expression for the posterior mean estimator in the
SSPPF, (13) is a nonlinear expression in xk|k . In general, the posterior mean estimator
can be solved at each time step using an iterative procedure such as Newton’s method,
with the one-step prediction estimate as the starting point.

Note that Eq. (9) corresponds to the Newton step to maximize the log posterior
distribution. Thus the approximated posterior mean (12) in the SSPPF can be inter-
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preted as one step modification of the prediction mean, xk|k−1, toward the MAP
estimate.

3.2.3 Laplace–Gaussian filter

It turns out in view of Laplace approximation [an asymptotic expansion of a Laplace-
type integral Erdelyi (1956)] that the MAP estimate, xk|k = x̂ , gives the first-order
approximation for the posterior mean with respect to an expansion parameter, γ , with
error of order O(γ −1). Here γ measures the concentration of the posterior distribution,
(that is, l(xk)/γ is a constant-order function of γ as γ → ∞) depending on sample
size, variability in the state model, and details of the observation and state models.
This insight motivates us to utilize the second-order Laplace approximation for the
posterior mean, xk|k , in order to improve the accuracy of the approximation. In the
ordinary static context, Tierney et al. (1989) analyzed a refined procedure, the “fully
exponential” Laplace approximation, which gives a second-order approximation for
posterior mean, having an error of order O(γ −2).

The second-order (fully exponential) Laplace approximation for the posterior
expectation in the one-dimensional case is calculated as follows. [The multi-
dimensional extension is straightforward; see Koyama et al. (2008).] For a given
function g of the state, let

q(xk) = log g(xk)Pr(�Nk |xk, Hk)p(xk |�N1:k−1)

and x̃ maximize m. The posterior expectation of g for the second-order approximation
is then

Ê[g(xk)|�Nk, Hk] = | − q ′′(x̃)|− 1
2 exp[q(x̃)]

| − l ′′(x̂)|− 1
2 exp[l(x̂)]

. (15)

When the g we care about is not necessarily positive, a simple and practical trick is to
add a large constant c to g so that g(x) + c > 0, apply (15), and then subtract c. The
posterior mean is thus calculated as xk|k = Ê[xk + c] − c. See Tierney et al. (1989)
for details of the method. The posterior variance is set to be Vk|k = [−l ′′(xk|k)]−1, as
this suffices for obtaining the second-order accuracy.

We should notice that the second-order Laplace’s method is not a Taylor series
expansion of the log posterior distribution around xk|k ; the approximated mean and
variance are computed by Laplace’s method, and the posterior distribution is replaced
by the Gaussian with same mean and variance at each time-step. Combining with
(7)–(8) we call this Laplace-Gaussian filter (LGF). Since the MAP point process filter
provides the first-order approximation, we also call it the first-order LGF, distinguish-
ing from the second-order LGF. Koyama et al. (2008) gives the complete description
of these methods including theoretical analysis of them.
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3.3 Smoothing

The smoothing problem refers to evaluating the distribution for the state vector at
a given time, given past, and future observations. In particular, we are interested in
the problem of fixed-interval smoothing, where spiking activity is recorded over an
observation interval, [0, tk], and we wish to compute p(xt |�N1:k) at all times t for
0 ≤ t ≤ tk . Using a Bayes’ rule and the Chapman-Kolmogorov equation, we obtain
the following expression for the smoothing distribution (Kitagawa and Gersh 1996):

p(xk |�N1:K ) =
∫

p(xk, xk+1|�N1:K )dxk+1

=
∫

p(xk+1|�N1:K )p(xk |xk+1,�N1:k)dxk+1

= p(xk |�N1:k)
∫

p(xk+1|�N1:K )p(xk+1|xk)

p(xk+1|�N1:k)
dxk+1. (16)

p(xk |�N1:k) and p(xk+1|�N1:k) in (16) corresponds to the posterior density (5) and
the one-step prediction density expressed in (6), respectively. Thus in this framework,
the first step to point process smoothing involves running a point process filter. In this
case, the approximate Gaussian filters developed above have the additional advan-
tage that the Gaussian approximations to the posterior filtering distributions lead to
Gaussian densities for the smoothing distribution as well. Let xk|K and Vk|K be the
estimates of the mean and covariance of this Gaussian approximation to the smoothing
distribution at time tk . We then obtain the recursive smoothing equation corresponding
to (16),

xk|K = xk|k + Hk(xk+1|K − xk+1|k), (17)

Vk|K = Vk|k + Hk(Vk+1|K − Vk+1|k)H T
k , (18)

where

Ht = Vk|k Fk V −1
k+1|k . (19)

The recursion for the smoothing mean and variance is backward, starting with xK |K
and VK |K , which are obtained as the last step of the point process filter, and stepping
back one time step at each iteration until it reaches x1|K and V1|K .

3.4 Stability of LGF

We have introduced the recursive Gaussian approximations for the posterior density
above. By using the Laplace’s method, we can achieve the second-order approximation
for the posterior estimate with respect to the expansion parameter γ at each filtering
step (the first-order approximation if we employ the MAP estimate). The accuracy
of posterior approximation at one-step, however, does not guarantee the accuracy
in whole simulation time-steps. Since the posterior density is approximated to the
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Gaussian repeatedly, we must worry whether the approximation errors add up across
time, leading to an explosive amplification of error; if the discrepancy between the
actual filter and its Gaussian approximation after K time-steps is O(K ), for instance,
this scheme will not be of much use. Here, we provide the theorems giving sufficient
conditions to forbid such amplification of error over time, thereby allowing us to use
the sequential Gaussian approximation with confidence. We state the simplified theo-
rems for the state-space models with the Gaussian state evolution equation; those for
more general cases and their complete proofs will be given elsewhere (Koyama et al.
2008). Let h(xk) be

h(xk) = − 1

γ
log p(�Nk |xk, Hk)p(xk |�N1:k−1), (20)

where γ is the expansion parameter which is taken so that h(xk) is a constant-order
function of γ as γ → ∞. In general, in state-space models γ would be interpreted in
terms of sample size, the concentration of the observation density, and the inverse of the
noise in the state dynamics. We assume suitable regularity conditions for the validity
of posterior expansions based on Laplacefs method, and an inhomogeneity condition
which prohibits ill-behaved, “explosive” trajectories in state space. The details of these
conditions are given in Koyama et al. (2008).

Theorem 1 Under suitable conditions, the accuracy of the approximated posterior
mean computed by the α(= 1, 2)-order LGF is

xk|k = E(xk |�Nk, Hk) + O(γ −α), (21)

for k ∈ N, and the error terms are bounded uniformly across time.

This theorem is proved by calculating the asymptotic expansions of both the true
and approximated posterior mean, and matching terms. The intuitive meaning of error
non-amplification is that the Gaussian approximation introduces an O(γ −α) error into
the posterior mean at each time step, while the errors propagated from the previous
time-step shrink exponentially. The result is that the error in the posterior mean is dom-
inated by the error due to the Gaussian approximation, but there is no accumulation
of propagated errors.

Theorem 2 Under suitable conditions, the accuracy of the approximated mean of the
smoothing distribution computed by the α(= 1, 2)-order LGF with (17)–(19) is

xk|K = E(xk |�N1:K ) + O(γ −α) (22)

for k = 1, 2, . . . , K , K ∈ N, and the error terms are bounded uniformly across time.
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4 Illustration of applications

4.1 Motor cortical decoding

4.1.1 Model setup

To illustrate how the state-space framework we introduced so far is applied to solve
the neural decoding problem, we use an example of motor cortical decoding. Many
neurons in the motor cortex fire preferentially in response to the velocity xk ∈ R

3

of the hand during an arm movement task (Georgopoulos et al. 1986; Paninski et al.
2004). This observation suggests that the hand motion can be reconstructed from neu-
ral activity in the motor cortex, and many studies have applied this finding to the
problem of building neuro-prosthetic devices (Chapin et.al 1999; Serruya et al. 2002;
Taylor et al. 2002; Lebedev and Nicolelis 2006; Brockwell et al. 2007; Velliste et al.
2008). We consider N such neurons and take the conditional intensity function of the
i th neuron to be

λi (xk) = exp(αi + βi · xk), (23)

where αi ∈ R
1 sets the baseline firing rate, and βi ∈ R

3 is the preferred direction of
the i th neuron. This model is made under the assumption that each neuron has firing
properties that do not depend on its own spike history or that of any other neuron in the
ensemble, and therefore this activity comprises an inhomogeneous Poisson process.
The observation interval is partitioned into uniform bins with size of �t . The state
evolution equation is taken to be

xk = xk−1 + σεk, (24)

where εk a zero mean 3-D Gaussian random variable whose covariance matrix is given
by the identity matrix.

The point process filters (the SSPPF, the first- and second-order LGF) are then
constructed following Sect. 3.2. Note that for constructing the LGFs, we identify the
expansion parameter γ for this model as

γ = 1

σ 2 + �t
N∑

i=1

eαi ‖βi‖2.

We see that γ combines the number and the firing rate of neurons, the sharpness of
neuronal tuning curves, and the noise in the state dynamics. The convergence criterion
for the Newton–Raphson iterations for maximizing the log-posterior distribution at
each time step is, then, set to be ‖x (l+1) − x (l)‖ < γ −α , α = 1 for the first-order
approximation and α = 2 for the second-order approximation.

4.1.2 Simulation study

We first applied the filters to synthesized data. In the simulation of the model, we con-
sidered K = 50 time-steps, each of size �t = 0.05. For each time point k = 1, . . . , K ,
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Fig. 1 MISE for approximating
the actual posterior mean as a
function of the number of
neurons simulated. LGF-1, -2
first- and second-order LGF,
SSPPF stochastic state point
process filter. The mean and
standard error in these figures
were computed with ten
repetitions
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the hand velocity was taken to be xk = (sin 2π
K k, sin 2π

K k, cos 2π
K k), K is the simula-

tion time-interval. The spike trains were then drawn from the Poisson processes with
the intensity function (23). We considered neurons with αi = 2.5 + N (0, 1), and βi

uniformly distributed on the unit sphere in R
3. The value of σ 2 in (24) was determined

by maximizing the likelihood function of the state model,

L(σ 2) =
K∏

k=1

(2πσ 2)−3/2 exp

[
− 1

2σ 2 ‖(xk − xk−1)‖2
]

. (25)

In the simulation study, we used training data {xk}K
k=1 which consisted of K = 100

time-steps for estimation.
Figure 1 shows the filters’ mean integrated squared error (MISE) in approximating

the actual posterior mean as a function of the number of neurons. (Here, we obtained
the actual posterior mean by using a particle filter (Kitagawa 1996; Doucet et al. 2001)
with 106 particles and averaging over ten independent realizations.) The second-order
LGF gives the best approximation, followed by the first-order LGF (the MAP point
process filter) and SSPPF, as is expected from the construction of these filters. We note
that the MISE between the true state and the actual posterior mean is 0.0957±0.0044
for decoding 100 neurons, which is order of magnitude larger than the approximation
errors. Most of the filtering error in estimating the true state is inherent statistical error
of the posterior itself, and not due to the approximations. Thus, the SSPPF is sufficient
for decoding the state process under this model setup.

4.1.3 Real data analysis

We applied the point process filters to data recorded from the motor cortex of a monkey
executing a 3D reaching task. We first summarize the experimental design and data
collection (Taylor et al. 2002; Velliste et al. 2008). A monkey was presented with a
virtual 3-D space, containing eight possible targets located on the corners of a cube,
and a cursor which was controlled by the subject’s hand position. A multi-electrode
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Table 1 The MISE in estimating the actual velocity.

LGF2 LGF1 SSPPF KF PVA

MISE (×10−2) 1.07 ± 0.06 1.08 ± 0.06 1.08 ± 0.06 1.11 ± 0.06 3.89 ± 0.16

LGF-1, -2 first- and second-order LGF, SSPPF stochastic state point process filter. KF Kalman filter, PVA
population vector algorithm. The mean and standard error were computed with 104 trials

array was implanted to record neural activity; raw voltage waveforms were threshol-
ded and spikes were sorted to isolate the activity of individual cells. In all, 78 distinct
neurons were recorded simultaneously. Our data set consisted of 104 trials. Each trial
consist of time series of spike-counts from these neurons, along with the recorded
hand positions, and hand velocities found by taking differences in hand position at
successive �t = 0.03 s intervals.

For decoding, we used the same observation model (23) and the AR(1) as the
velocity model,

xk = Fxk−1 + εk, (26)

where F ∈ R
3×3 and εk is a zero mean 3-D Gaussian random variable with

Var(εk) = Q. The parameters in the intensity function of the neurons, αi and βi ,
were estimated by Poisson regression of spike counts on hand velocity. The AR coef-
ficients in the state model were estimated by the Yule–Walker method. The time-lag
between the hand movement and each neural activity was also estimated from the same
training data. This was done by fitting a model over different values of time-lag rang-
ing from 0 to 3�t . The estimated optimal time-lag was the value at which the model
had the highest R2. After the parameters were estimated, hand motions were recon-
structed from spike trains. For comparison, we also reconstructed hand motions with a
Kalman filter (KF) (Wu et al. 2005) and a population vector algorithm (PVA) (Dayan
and Abbot 2001).

Table 1 gives the MISEs between filtered estimates and the actual cursor veloc-
ity; the point process filters (LGFs and SSPPF) and the KF are more accurate than
the PVA. There is no substantial difference between the point process filters and
the KF. Figure 2 illustrates a sample trajectory along with the decoded estimates. In
Fig. 2b, we show the result obtained by applying the smoothing algorithm (17)–(19).
As seen in this figure, the smoothed trajectory is less variable than that obtained by
filtering.

Finally, we decoded the cursor velocity with the AR(2) process as the state model
instead of (26) to examine if it improves the accuracy of estimation. The AR parame-
ters were determined in the same way as before. The resulting MISE between the true
velocity and filtered one by the LGF2 across 104 trials is 1.59 ± 0.01(×10−2), which
is worse than that with the AR(1).

5 Discussion

We have described here a statistical framework for modeling and studying neural
spike trains and their relation to behavior. At the center is the conditional intensity
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Fig. 2 An estimation on the velocity. a Filtering result. True true trajectory, LGF2 second-order LGF,
KF Kalman filter, PVA population vector algorithm. The decoded trajectories with the LGF1 and SSPPF
are not shown in this figure (they are very similar to those decoded with LGF2). b Smoothing result. The
LGF2 was used for filtering

function, which is the starting point for point process modeling. To reconstruct behav-
ior from spike trains we have used state-space models. We have emphasized the use
of approximate filters based on asymptotic approximations because we have found
them to be effective. The stochastic state point process filter was obtained from the
quadratic terms of the Taylor series expansion of the posterior distribution about the
one-step prediction estimate of the state. The Laplace–Gaussian filters were obtained
from first-order and second-order Laplace approximation to the posterior mean. The
results in Sect. 4 demonstrated the accuracy of these methods. Other work by Eden
et al. (2004) had also shown how decoding methods based on observed spike times can
outperform rate-based approaches. We also note that although only the simple linear
Gaussian state model was used in our data analysis, we can use more sophisticated
models to improve the estimation in the same framework; such an attempt was made
in Yu et al. (2007).

It is worth emphasizing the distinction between the point process filters and other
approximate filters. Particle filtering approximates the integrals (5)–(6) stochastically.
Just as the error of Laplace’s method shrinks as γ → ∞, so too does the error of
particle filtering vanish as the number of particles grows. In fact, while γ for the LGF
is set by the system, the number of particles can be made as large as desired. Schnatter
(1992); Fruhwirth-Schnatter (1994) performed a sequential approximation of the pos-
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terior distribution by using numerical integration during the filtering process. At each
time point the prior of the state was approximated by a Gaussian and carried out a
Gauss-Hermite procedure. Durbin and Koopman (1997) used a Monte Carlo simu-
lation taking a Gaussian centered by the posterior mode as the importance density.
These methods can be regarded as an improvement of the approximate posterior mode
estimator, and may provide a better estimation than the point process filters when the
posterior density is far from Gaussian. The computational burden of these methods
may, however, become a drawback in application to real-time neural decoding. For
controlling neuroprosthetic devices such as a computer cursor or a robotic arm from
neural activity on-line, computing time must be less than allowable control signal
delay, which is roughly 30 ms (Velliste et al. 2008; Koyama et al. 2009). The compu-
tational cost of effective particle filtering or the numerical integration could quickly
become prohibitive, and thus the Gaussian approximations could be preferable for
such applications (Koyama et al. 2008).

An important application of point process filtering relates to the problem of tracking
changes in the firing properties of neurons. This is of interest partly because electro-
physiology experiments, and therefore the neural recordings that they generate, are
inherently nonstationary. In addition, a neuron’s response to a stimulus can change over
time as a result of experience (Merzenich et al. 1983; Weinberger 1993; Edeline 1999;
Kaas et al. 1999). Experience-dependent change (plasticity) within the adult brain has
been well documented in a number of brain regions in both animals and humans. Place
cells in the CA1 region of the hippocampus in the rat change their receptive field loca-
tion, scale, and temporal firing characteristics as the animal explores its environment
(Mehta et al. 2000). Neurons in the cercal system of the cricket may alter their firing in
response to changes in wind velocity (Rieke et al. 1997). The firing properties of neu-
rons in the primary motor cortex of primates changes with the load against which the
animal must exert force (Li et al. 2001). Investigation of these receptive field dynamics
is fundamental to our understanding of how these systems reflect information about
the outside world. State-space models are well suited for describing these changes in
neural firing properties. In order to apply these methods, conditional intensity models
are constructed with parameters that are given by a dynamic state process characterized
by an evolution equation as in (3). The output of the point process filters then provides
a dynamic conditional intensity model descriptions that at each instant combines the
estimates from the previous time step with the new spiking data. These methods can
produce accurate instantaneous estimates even when only a few spikes are observed
(Brown et al. 2001; Frank et al. 2002).

In this article, we reviewed a collection of discrete-time state space filters based
on stochastic models for the evolution of the state variable and for the probability
distribution of observing neural spiking outputs as a function of the value of the
state variable. For the general state-space estimation problem, the models describing
the state dynamics and observation processes can be cast in either a discrete-time or
continuous-time setting (Snyder and Miller 1991; Solo 2000; Eden and Brown 2008a),
leading to discrete or continuous time representations for state estimators, respectively.
These two frameworks provide equivalent descriptions of the process being modeled,
in that for any time point in the discrete time partition, the probability densities pro-
duced by the discrete and continuous time processes are identical. Both discrete and
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continuous time frameworks, respectively, have distinct advantages. For example,
continuous valued expressions are generally more amenable to symbolic analyses,
or common engineering methods such as frequency domain analysis. There are also
direct physical or physiological interpretations for variables in continuous time set-
ting. Nevertheless, continuous time descriptions for many dynamical systems require
computations that can only be implemented in discrete time. Clearly, it is important
to appreciate both points of view and to be able to exploit the particular advantages of
each.

An important extension of the state-space methods is including multiple observa-
tions and state variables (Srinivasan et al. 2007; Eden and Brown 2008b). Although
only the single point process observation was considered in this paper, we can poten-
tially combine many sources of observations to improve the performance of neural
decoding: spike trains, local field potentials (LFPs), electrocorticography (ECoG),
electroencephalography (EEG) or electromyography (EMG). Whereas spiking activity
at millisecond resolution is better described by point process observation, continuous
field potentials are typically described by continuous valued (Gaussian) observation
models. Likewise, the covariates which are related to neural activity would be not
only a continuous variable such as hand kinematics, but also a discrete variable which
may describe a subject’s intension. These multiple states and observations could be
combined in hybrid state-space models or in dynamic Bayesian networks. It is a chal-
lenging goal in neuroscience to read out higher cognitive states from many sources
of brain activity (Haynes et al. 2007; Kay et al. 2008). We believe that the extension
of the state-space framework presented in this article will provide a key methodology
for these applications.
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