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Summary. This article considers Bayesian methods for density regression, allowing a random

probability distribution to change flexibly with multiple predictors. The conditional response dis-

tribution is expressed as a nonparametric mixture of parametric densities, with the mixture distri-

bution changing according to location in the predictor space. A new class of priors for dependent

random measures is proposed for the collection of random mixing measures at each location. The

conditional prior for the random measure at a given location is expressed as a mixture of a Dirichlet

process (DP) distributed innovation measure and neighboring random measures. This specifica-

tion results in a coherent prior for the joint measure, with the marginal random measure at each

location being a finite mixture of DP basis measures. Integrating out the infinite-dimensional col-

lection of mixing measures, we obtain a simple expression for the conditional distribution of the

subject-specific random variables, which generalizes the Pólya urn scheme. Properties are consid-

ered and a simple Gibbs sampling algorithm is developed for posterior computation. The methods

are illustrated using simulated data examples and epidemiologic studies.
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1. Introduction

1.1. Problem Formulation & Background

This article addresses the problem of density regression, investigating changes in the distribution

of a random variable Y ∈ Y according to predictors x = (x1, . . . , xp)′ ∈ X using a Bayesian

semiparametric approach. The sample space Y can be either discrete or continuous and bounded

or unbounded. Although we focus on the case in which X = XC ⊂ <p is a continuous sample

space, the proposed framework can also be applied when there are both continuous and discrete

predictors so that X = XC ×XD, where XD is a discrete space. A challenge is that the distribution

function of Y given x is unknown, and there can be unanticipated changes in the shape of the

distribution according to the location of x ∈ X . Thus, it is not appropriate to assume that the

residual distribution in a mean or quantile regression model is constant over X .

A recent article by De Iorio et al. (2004) proposed a Bayesian nonparametric approach for

modeling of dependence across random distributions Gx indexed by a vector x ∈ XD of categorical

covariates. In particular, they defined a prior for the array of random measures GX = {Gx,x ∈

XD}, which maintains a marginal Dirichlet process (DP) (Ferguson, 1973; 1974) structure for the

distribution at each value of x. This is accomplished using the dependent Dirichlet process (DDP)

approach of MacEachern (1999; 2000; 2001), which relies on expressing the DP in stick-breaking

form (Sethuraman, 1994):

Gx =
∞∑

h=1

px,hδθx,h
, with px,h/

∏h−1
l=1 (1− px,l)

iid∼ beta(1, α),

where {px,h} are random weights, δθ is a degenerate distribution with all its mass at 0, and {θx,h} are

atoms generated from the base measure G0,x. Sethuraman (1994) showed that this characterization

is equivalent to assuming Gx ∼ DP (αG0,x), where DP (αG0) denotes the Dirichlet process centered

on base measure G0 with precision α.

Assuming a common set of weights, px,h = ph for all x ∈ XD, MacEachern (1999; 2001) allows

for dependency by defining a stochastic process for the atoms {θx,h}. De Iorio et al. (2004) used the

DDP to produce an ANOVA-type dependency structure, while Gelfand et al. (2005) applied the

DDP to spatial modeling applications by using a Gaussian process for the atoms. Recently, Griffin
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and Steel (2005) proposed an order-based DDP, which allows the weights to vary with covariates.

An alternative dynamic form of the DP was proposed by Dunson (2004) to model changes in a

random distribution across levels of an ordered categorical predictor. Cifarelli and Regazzini (1978)

instead introduce dependence across related measures by using DP priors linked through a common

regression component in the base measure. Related approaches have been considered by Muliere

and Petrone (1993), Mira and Petrone (1996), Giudici, Mezzetti, and Muliere (2003), and Griffin

and Steel (2004).

Müller, Erkanli and West (1996) instead used a DP mixture of normals for the joint distribution

of y and x, and then focused on the implied conditional density of y given x in estimating the mean

regression function. Another strategy for allowing dependence in random measures is to allow

the measures to depend on a shared set of latent factors, which are assigned Dirichlet process

priors. Gelfand and Kottas (2001) proposed such an approach to address the problem of modeling

of stochastically ordered distributions, expressing random variables as products of DP distributed

factors. Pennell and Dunson (2004) used a conceptually related idea to model dependence in

time-dependent frailty distributions within a multiple event time model. Such approaches are

not straightforward to extend to general regression settings. For a recent overview of Bayesian

nonparametric inference, refer to Müller and Quintana (2004).

1.2. Mixture Modeling Structure

This article proposes a different type of approach. For subject i (i = 1, . . . , n), express the con-

ditional density of the response yi given xi as a nonparametric mixture of parametric densities as

follows:

f(yi |xi) =
∫
f(yi |xi, φi) dGxi(φi), (1)

where f(y |x, φ) is a known kernel that depends on the finite-dimensional parameter φ, and Gxi is

a random mixing measure that can vary according to the location of xi ∈ X . It is well known that,

given sufficient numbers of components, mixtures of Gaussian or exponential family distributions

are extremely flexible.
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In the special case in which Gx ≡ δθ, expression (1) reduces to the parametric model f(yi |xi) =

f(yi |xi, φi = θ). Now suppose Gx ≡ G =
∑∞

h=1 phδθh
, with θh

iid∼ G0 and ph/
∏h−1

l=1 (1 − pl)
iid∼

beta(1, α), h = 1, . . . ,∞. Then, a single, unknown mixing measure, G ∼ DP (αG0), holds for all

x ∈ X , and expression (1) is a standard Dirichlet process mixture model (DPM). Unfortunately,

the assumption of a single mixing measure may be overly restrictive in certain applications. For

example, if φ consists of coefficients in a regression model, a few distinct values may be sufficient

within a particular local region of X . However, the distribution of the coefficients may need to

change across subregions of X to accommodate evolving deviations from the parametric model.

In regression problems involving a continuous response, with Y ≡ <, a simple default choice for

f(yi |xi, φi) would be N(yi;x′iβi, σ
2), with φi = (β′i, σ

2)′, possibly with σ2 also varying with i. In

this case, expression (1) is a mixture of normal linear regression models. By allowing the mixture

distribution for the slopes, βi, to vary according to the predictor values, xi, one can allow an

unknown nonlinear mean regression function and an unknown non-stationary residual distribution.

For different choices of Y, one can appropriately modify the default choice of f(yi |xi, φi). For

example, when the outcome is a count, we can choose a Poisson log-linear model, and when the

outcome is Bernoulli, we can choose a logistic regression model.

Section 2 provides details on the proposed prior specification. Section 3 outlines a Gibbs

sampling algorithm for posterior computation. Section 4 illustrates the approach through simulated

data examples. Section 5 contains an application to data from an epidemiologic study, and Section

6 discusses the results.

2. Priors for Density Regression

2.1 Proposed Formulation and Properties

There is an infinite collection of random probability measures GX = {Gx,∀x ∈ X}. Focusing

initially on the observed predictor values, we have GX = {Gxi , i = 1, . . . , n}. We assume that

φi
ind∼ Gxi conditionally on X and GX and that each Gxi can be expressed as:

Gxi =
∞∑

h=1

phiδθhi
, for i = 1, . . . , n, (2)
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with atoms Θi = {θhi, h = 1, 2, . . . ,∞}, random weights pi = {phi, h = 1, 2, . . . ,∞}, and
∑∞

h=1 phi =

1 a.s. Dependence in the random measures within the collection GX arises through common atoms

and dependent weights. Overall, the set of atoms is denoted Θ =
⋃n

i=1 Θi, with the elements of

Θ assumed to be generated independently from non-atomic base measure G0. Re-expressing (2) in

terms of the atoms in Θ, we have

Gxi =
∞∑

h=1

PhiδΘh
, for i = 1, . . . , n, (3)

where Pi = {Phi, h = 1, 2, . . . ,∞},
∑∞

h=1 Phi = 1 a.s., and the random weights P = {P1, . . . ,Pn} ∼

P are generated independently from the atoms Θ.

Let Y be a complete separable metric space with B the corresponding Borel σ−algebra on Y.

Then, let M(Y) denote the space of probability measures on (Y,B). For each collection of disjoint

Borel sets (B1, . . . , BL), the prior for Gxi in expression (3) prescribes that

(
Gxi(B1), Gxi(B2), . . . , Gxi(BL)

)
=( ∞∑

h=1

Phi1(Θh ∈ B1),
∞∑

h=1

Phi1(Θh ∈ B2), . . . ,
∞∑

h=1

Phi1(Θh ∈ BL)
)
, (4)

which places a probability measure Πxi
B1,...,BL

on the L-dimensional probability simplex SL. The

expectation of Πxi
B1,...,BL

integrating out the unknown atoms and weights is

E(Πxi
B1,...,BL

) =
∫ ( ∞∑

h=1

Phi1(Θh ∈ B1), . . . ,
∞∑

h=1

Phi1(Θh ∈ BL)
){ ∞∏

h=1

dG0(Θh)
}
dP(P)

=
( ∞∑

h=1

PhiG0(B1), . . . ,
∞∑

h=1

PhiG0(BL)
)

=
(
G0(B1), . . . , G0(BL)

)
,

which directly implies that E{Gxi} = G0, so that the prior for Gxi is centered on G0.

As a general approach for characterizing dependency in the random measures in the collection

GX, we propose the following conditional mixture structure:

Gxi = aiiG
∗
xi

+
∑
j∼i

aijGxj , (5)

which expresses Gxi as a mixture of an innovation random measure G∗xi
∼ DP (αG0), which is

assigned a Dirichlet process prior, and neighboring random measures {Gxj , j ∼ i}. Here, ai =

(ai1, . . . , ain)′ are mixture probabilities, with 0 ≤ aij ≤ 1, aii +
∑

j∼i aij = 1, and {aij = 0 ∀ j 6∼ i}.
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In addition, j ∼ i indexes subjects j ∈ Ni ⊂ {1, . . . , n}/i with Ni = {j : d(xi,xj) < ε, j 6= i},

where d(xi,xj) is a known measure of distance between xi and xj and ε is a positive constant. The

innovation measures within G∗X = {G∗x1
, . . . , G∗xn

} are assumed to be drawn independently.

The conditional prior distribution on Gxi given {Gxj , j 6= i} can be characterized by deriving

the conditional prior for Πxi
B1,...,BL

for each collection of disjoint Borel sets (B1, . . . , BL):

(
Πxi

B1,...,BL
|Gxj , j 6= i

)
∼ aiiDirichlet

(
αG0(B1), . . . , αG0(BL)

)
+
∑
j∼i

aijδ(Gxj (B1),...,Gxj (BL)),

so that the conditional expectation and variance of Gxi(B), for any Borel set B, are as follows:

E{Gxi(B) |Gxj , j ∼ i} = aiiG0(B) +
∑
j∼i

aijGxj (B)

Var{Gxi(B) |Gxj , j ∼ i} = aiiG0(B)
(

1 + αG0(B)
1 + α

)
+
∑
j∼i

aijGxj (B)2

−
(
aiiG0(B) +

∑
j∼i

aijGxj (B)
)2

.

Note that under expression (5), the support of Gxi with respect to the weak topology is at least as

large as the set of all distributions whose support is contained in the support of G0. This property

results directly from properties of the Dirichlet process prior for G∗xi
.

Because the random probability measures for Gxi , i = 1, . . . , n, in (5) are expressed condition-

ally on {Gxj : j 6= i}, it is necessary to prove the existence of an implied joint probability measure

for GX in order for the specification to be coherent. Theorem 1 establishes existence by demon-

strating that the joint measure can be expressed as a finite mixture of independent DPs introduced

at each location.

Theorem 1. Let A denote the n × n matrix with elements {aij}n
i,j=1 satisfying 0 ≤

aij < 1 and a′i1n = 1 for all row vectors a′i. Suppose we have

G1 = a11G
∗
1 + a12G2 + ...+ a1nGn

G2 = a21G1 + a22G
∗
2 + ...+ a2nGn

... =
...

. . .
...

Gn = an1G1 + an2G2 + ...+ annG
∗
n
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Then, for each A there exists a corresponding n× n matrix B, with elements {bij}n
i,j=1

satisfying 0 ≤ bij ≤ 1 and b′i1n = 1 for all row vectors b′i, such that

Gi =
n∑

j=1

bijG
∗
j .

The proof is in Appendix A. It follows from Theorem 1 and expression (5) that

(φi |xi) ∼ Gxi =
n∑

j=1

bijG
∗
xj
, G∗xj

ind∼ DP (αG0), for j = 1, . . . , n, (6)

where bi is an n × 1 vector of probabilities summing to 1, and the matrix B = (b1, . . . ,bn)′ =

h(A) = (In + C)−1D, with A = C + D, cij = aij for i 6= j, cii = 0 for i = 1, . . . , n, and

D = diag(a11, . . . , ann). Hence, for any model specified as in (5), there is a corresponding model

specified as in (6), with the probability weights B calculated from A using the simple deterministic

function h(·).

Theorem 1 and expression (6) describe the prior for GX. However, for purposes of estimation

and prediction at values of x not represented in the study sample, X, it is of interest to define

a prior for GX consistent with expressions (5) and (6). We establish existence of such a prior in

Theorem 2, and then explicitly derive its form.

Theorem 2. There exists an equivalence class of priors for GX = {Gx : x ∈ X}

corresponding to each prior for GX = {Gxi : i = 1, . . . , n} specified from expression (5).

To prove Theorem 2, first let Gx =
∑n

j=1 bj(x)G∗xj
for all x ∈ X , where b(x) = [b1(x), . . . , bn(x)]′

is chosen subject to bj(x) ≥ 0, j = 1, . . . , n, b(x)′1n = 1, for all x ∈ X , and b(xi) = bi =

(bi1, . . . , bin)′. These restrictions imply that Gx is a well defined random probability measure

satisfying expression (6) and hence expression (5). There are clearly infinitely many different

choices of b(x) satisfying these restrictions, and Theorem 2 follows directly. Thus, we have explicitly

described a class of priors for the infinite-dimensional collection of random probability measures

GX , which are consistent with expressions (5) and (6).

Dependency in the random measures contained in GX arises through shared dependency on the

DP-distributed basis distributions G∗X. To derive explicit properties of this formulation, it is useful
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to re-express (6) in the following hierarchical form:

(φi |Zi = j,xi = x) ∼ G∗xj
,

(Zi |xi = x) ∼ Multinomial({1, . . . , n};b(x)),

G∗xj
∼ DP (αG0), j = 1, . . . , n, (7)

where Zi = j denotes that φi was drawn from the jth basis distribution, G∗xj
, for j = 1, . . . , n.

Hence, the marginal distribution of φi is represented as a finite mixture of DPs, with Zi ∈ {1, . . . , n}

indexing the mixture component. Note that this expression holds not only for subjects i ∈ {1, . . . , n}

in the sample, but also for future subjects i = n+ 1 having xn+1 /∈ X.

This formulation is useful in deriving properties. It is immediately apparent that

E{Gxi(B)} =
n∑

j=1

Pr(Zi = j)E{G∗xj
(B)} =

n∑
j=1

bj(xi)G0(B) = G0(B), (8)

V{Gxi(B)} =
n∑

j=1

(
bj(xi)2

1 + α

)
G0(B){1−G0(B)} =

b(xi)′b(xi)G0(B){1−G0(B)}
1 + α

, (9)

In addition, the dependency between Gxi and Gxi′ can be characterized using Theorem 3.

Theorem 3. For any xi,xi′ ∈ X , including values not represented in X, Gxi and

Gxi′ are dependent random probability measures, with Cor{Gxi(B), Gxi′ (B)} = ρi,i′ =

ρ(xi,xi′) = b(xi)′b(xi′) for any Borel set B ⊂ <.

The proof of Theorem 3 is in Appendix B. Due to the lack of dependency on B, this expression

is particularly useful. In the limiting case as bi(xi) → 1, for i ∈ {1, . . . , n}, Zi = i, φi ∼ G∗xi
,

A = B = In, and ρij = ρ(xi,xj) = 0 for all i, j ∈ {1, . . . , n}, with i 6= j. This special case

corresponds to introducing independent DPs at each location.

Note that ρ(xi,xi′) is a bounded kernel function, and it may prove useful to consider specifi-

cations that rely on choosing a particular kernel instead of explicitly specifying the functions b(x).

Such an approach is conceptually related to the use of reproducing kernel Hilbert spaces (RKHS),

which are function spaces defined through choice of a kernel, which implicitly implies a particular

set of orthogonal basis functions (Cristianini and Shawer-Taylor, 2000). This avoids the need to

specify the basis functions directly, simplifying implementation.
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It is useful to derive the prior distribution for φi given φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φn)′ and

X marginalizing across the prior for GX . In the special case in which φi ∼ Gxi ≡ G ∼ DP (αG0),

the Pólya urn scheme of Blackwell and MacQueen (1973) prescribes that

(φi |φ(i),X, α) ∼
(

α

α+ n− 1

)
G0 +

(
1

α+ n− 1

)∑
j 6=i

δφj
, (10)

which generates new values from φi ∼ G0 with probability α/(α + n − 1) and otherwise sets φi

equal to an element of φ(i) chosen by sampling from a discrete uniform. Derivation of (10) relies

on exchangeability of the elements of φ, which no longer holds in the general case.

Relying on the formulation in expression (7), let Ij = {i : Zi = j} ⊂ {1, . . . , n} denote an

index set for the subjects drawn from the jth mixture component, for j = 1, . . . , n. Then, we

have φi
iid∼ G∗xj

for i ∈ Ij . Conditioning on the allocation of subjects to mixture components

Z = (Z1, . . . , Zn)′, we can use the Pólya urn result to obtain the following conditional prior:

(φi |Z,φ(i),X, α) ∼
(

α

α+
∑

j 6=i 1(Zj = Zi)

)
G0

+
(

1
α+

∑
j 6=i 1(Zj = Zi)

)∑
j 6=i

1(Zj = Zi)δφj
. (11)

Hence, only the subvector of elements of φ(i) belonging to IZi are informative. LetMij = 1(Zi = Zj)

be a 0/1 indicator that subjects i and j belong to the same mixture component. Then, the

probability of Mi = {Mij , j 6= i} = mi = {mij , j 6= i}, for mi ∈ {0, 1}n−1, is

Pr(Mi = mi) =
n∑

j=1

Pr(Zi = j)
∏
h 6=i

Pr(Zh = j)mih{1− Pr(Zh = j)}1−mih

=
n∑

j=1

bj(xi)
∏
h 6=i

bj(xh)mih{1− bj(xh)}1−mih =
n∑

j=1

bij
∏
h 6=i

bmih
hj (1− bhj)1−mih .(12)

Marginalizing across the distribution for Mi, we obtain the following generalization of the Blackwell

and MacQueen (1973) Pólya urn scheme of expression (10):

(φi |φ(i),X, α,B) ∼
∑
h 6=i

1∑
mih=0

{ n∑
j=1

bij
∏
l 6=i

bmil
lj (1− blj)1−mil

}

×
{(

α

α+
∑

l 6=imil

)
G0 +

(
1

α+
∑

l 6=imil

)∑
l 6=i

milδφl

}
. (13)

To illustrate this expression, consider the special case in which n = 4 and interest is in the condi-

tional distribution of φi given φ(i). In this case, we have
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mi1 mi2 mi3 Pr{Mi = (mi1,mi2,mi3)} (φ4|φ(i),mi)
0 0 0

∑
j bij(1− b1j)(1− b2j)(1− b3j) G0

1 0 0
∑

j bijb1j(1− b2j)(1− b3j)
(

α
α+1

)
G0 +

(
1

α+1

)
δφ1

0 1 0
∑

j bij(1− b1j)b2j(1− b3j)
(

α
α+1

)
G0 +

(
1

α+1

)
δφ2

0 0 1
∑

j bij(1− b1j)(1− b2j)b3j

(
α

α+1

)
G0 +

(
1

α+1

)
δφ3

1 1 0
∑

j bijb1jb2j(1− b3j)
(

α
α+2

)
G0 +

(
1

α+2

)
(δφ1 + δφ2)

1 0 1
∑

j bijb1j(1− b2j)b3j

(
α

α+2

)
G0 +

(
1

α+2

)
(δφ1 + δφ3)

0 1 1
∑

j bij(1− b1j)b2jb3j

(
α

α+2

)
G0 +

(
1

α+2

)
(δφ2 + δφ3)

1 1 1
∑

j bijb1jb2jb3j

(
α

α+3

)
G0 +

(
1

α+3

)
(δφ1 + δφ2 + δφ3)

The expression for (φi |φ(i),X, α,B) is obtained by summing over the distributions in the last

column using the probability weights in the fourth column. Let

Γ0 =
(

1,
α

α+ 1
,

α

α+ 2
, . . . ,

α

α+ n− 1

)′
, Γ1 =

(
1

α+ 1
,

1
α+ 2

, . . . ,
1

α+ n− 1

)′
,

let pi0 = p0(xi) denote the n × 1 vector of probabilities corresponding to Pr(Mi+ = m |xi), for

m = 0, . . . , n − 1 with Mi+ =
∑

j 6=iMij , and let pij = pj(xi) denote the (n − 1) × 1 vector of

probabilities corresponding to Pr(Mij = 1,Mi+ = m |xi), for m = 1, . . . , n−1. For example, in the

special case considered in the above table, letting p000, p100, p010, p001, p110, p101, p011, p111 denote

the probabilities in column 4, we have pi0 = (p000, p100 + p010 + p001, p110 + p011 + p101, p111)′,

pi1 = (p100, p110 + p101, p111)′, pi2 = (p010, p110 + p011, p111)′, and pi3 = (p001, p011 + p101, p111)′. In

general, using this notation, we can express (13) as

(φi |φ(i),X, α,B) = p′i0Γ0G0 +
∑
j 6=i

p′ijΓ1δφj
= p0(xi)′Γ0G0 +

∑
j 6=i

pj(xi)′Γ1δφj
, (14)

where p′i01n = 1 and p′ij1n−1 ≤ 1. This expression is in the form of a weighted average of

Blackwell and MacQueen (1973) Pólya urn distributions. To further simplify this expression, we

rely on Theorem 4 (proof in Appendix C).

Theorem 4. For every n×n matrix B, with elements {bij}n
i,j=1 satisfying 0 ≤ bij ≤ 1

and b′i1n = 1, there exists a unique n× (n− 1) matrix W = (w1, . . . ,wn)′ having row

vectors w′
i = (wi,1, . . . , wi,i−1, wi,i+1, . . . , wi,n), with 0 ≤ wij ≤ 1 ∀ i, j, satisfying the

following system of equations:

p′i0Γ0 =
(

α

α+ w′
i1n−1

)
and p′ijΓ1 =

(
wij

α+ w′
i1n−1

)
, ∀ j 6= i,
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for i = 1, . . . , n, where pi0,pij , j 6= i, are calculated from B as described above. In

particular, we have wij = αp′ijΓ1/p′i0Γ0, for all i, j.

Hence, from Theorem 4, expression (14) is equivalent to

(φi |φ(i),X, α,B) =
(

α

α+ wi+

)
G0 +

∑
j 6=i

(
wij

α+ wi+

)
δφj

, (15)

where 0 ≤ wij ≤ 1 and wi+ =
∑

j 6=iwij ≤ n. This simple form is both intuitively appealing and

computationally-convenient. The Pólya urn conditional distribution in expression (10) is obtained

as a special case by letting wij = 1 for all i, j. In general, viewing the wij ’s as weights and

examining expression (35), the weight for the jth subject (j 6= i) in the conditional distribution for

φi will depend on the relative values of pij and pi0. In the limit as pijm = Pr(Mi+ = m,Mij =

1) → pi0,m+1 = Pr(Mi+ = m), for m = 1, . . . , n − 1, which implies Pr(Mij = 1) → 1, we have

wij → 1, while in the limit as pijm → 0, for m = 1, . . . , n− 1, wij → 0. Subjects that have a high

probability of being assigned to the same mixture component as subject i will be given high weight.

In this manner, expression (15) relaxes the exchangeability assumption implicit in expression (10)

to incorporate information on the distance between subjects.

In order to derive the conditional distribution of φi for a new subject i = n+1 having a predictor

value xn+1 that may or may not be represented in the sample X, we rely on the Theorem:

Theorem 5. For every set of functions b(x) = [b1(x), . . . , bn(x)] satisfying bj(x) ≥ 0

and b(x)′1n = 1, for all x ∈ X , there exists a bounded kernel function w(x,xj) ≤ 1, for

all x ∈ X and xj ∈ X, such that w(x,xj) = αpj(x)′Γ1/p0(x)′Γ0.

The proof is straightforward following the same approach as in Theorem 4. Following the approach

used in deriving expression (15), we obtain the prior predictive distribution

(φn+1 |xn+1,φ,X, α) =
(

α

α+
∑n

j=1w(xn+1,xj)

)
G0 +

n∑
j=1

(
w(xn+1,xj)

α+
∑n

j=1w(xn+1,xj)

)
δφj

,

=
(

α

α+ wn+1

)
G0 +

n∑
j=1

(
wn+1,j

α+ wn+1,j

)
δφj

, (16)

where wij = w(xi,xj) and wi =
∑

j 6=iwij , for i = 1, . . . , n+ 1, is used as shorthand.
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As discussed above, because good choices of b(x) are not immediately apparent, it may be more

convenient to choose the kernel function ρ(xi,xi′). An alternative, which from the above results

implies a prior for GX , is to specify the bounded kernel function w(x,xj). Because expressions

(15) and (16) form the starting points for posterior computation and predictions, this approach

greatly simplifies implementation, resulting in a procedure which is essentially no more difficult to

implement than a standard DP mixture model. Note that wij = w(xi,xj) (0 ≤ wij ≤ 1) provides

a standardized measure of similarity between xi and xj , with wij = wji, limxj→xi wij = 1, and

wij → 0 monotonically as d(xi,xj) increases, with d(xi,xj) a distance measure specific to w(·).

Some possibilities for w(·) are described in subsection 2.3.

2.2 Clustering Properties and Prediction

Due to the Pólya urn property, the Ferguson Dirichlet process has been widely used not only for

density and function estimation but also for clustering. Hence, it is very interesting to consider

clustering properties of the class of priors proposed in subsection 2.1, which we refer to as density

regression priors (DRPs). First, note that the conditional distribution (15) implies

1. The prior probability of setting φi = φj decreases in proportion to the distance between the

predictor values xi and xj .

2. The prior probability of φi ∈ φ(i) increases as more neighbors are added that have predictor

values xj close to xi.

3. The expected prior probability of φi /∈ φ(i) (i.e., the ith subject belongs to its own cluster)

increases in proportion to the hyperparameter α.

Hence, allocation of the n subjects to k < n clusters is controlled both by the hyperparameter α

and by how close the subject’s predictor values are to one another.

The n subjects will be allocated into k ≤ n clusters, with k << n when α is small and

w(xi,xj) → 0 slowly as d(xi,xj) increases. Because the DP Pólya urn scheme places more weight

on φ(i), the prior for k under (15) will be stochastically larger (given the same α, n) than the prior

described by Antoniak (1974) for the DP. More formally, as w(xi,xj) → 0 more rapidly as d(xi,xj)

12



increases, the prior for k will increase stochastically between the Antoniak (1974) prior, in the case

where wij ≡ 1 ∀i, j, to k ∼ δn, in the case where wij = 0 ∀i, j. Note that subjects are more likely

to be assigned to the same cluster if they are located close to each other in terms of the distance

measure d(·). Individuals at isolated regions of X with Ni = ∅ will be assigned (φi |φ(i),X, α) ∼ G0,

so that the base parametric mixture model will be used in extrapolating across sparse data regions.

This structure addresses the curse of dimensionality problem by allowing larger model deviations

in regions with more data.

Let θ = (θ1, . . . , θk)′ denote the k ≤ n unique values of φ = (φ1, . . . , φn)′, and let S =

(S1, . . . ,Sn)′ be a vector of indicators denoting the global configuration of subjects to unique values

θ, with Si = h if φi = θh indexing the location of the ith subject within the θ vector. Excluding the

ith subject, θ(i) = θ \ φi denotes the k(i) unique values of φ(i) and S(i) denotes the configuration

of subjects {1, . . . , n} \ i to these values. Grouping subjects with common values of φj , j 6= i, into

clusters, expression (15) is equivalent to

(φi |φ(i),X, α) ∼
(

α

α+ wi

)
G0 +

(
1

α+ wi

) k(i)∑
h=1

w∗ihδθ(i)
h

, (17)

where w∗ih =
∑

j 6=i 1(S(i)
j = h)wij . Similarly, the prior predictive distribution of φn+1 is

(φn+1 |xn+1,φ,X, α) ∼
(

α

α+ wn+1

)
G0 +

(
1

α+ wn+1

) k∑
h=1

w∗n+1,hδθh
, (18)

where w∗n+1,h =
∑n

j=1 1(Sj = h)wn+1,j The predictive density of yn+1 given xn+1, φ and X is

(yn+1 |xn+1,φ,X, α) ∼
(

α

α+ wn+1

)∫
f(yn+1 |xn+1, φ) dG0(φ)

+
(

1
α+ wn+1

) k∑
h=1

w∗n+1,hf(yn+1 |xn+1, φ = θh). (19)

This density is a mixture of the base parametric model, obtained by integrating f(y |x, φ) across

the mixing measure G0, and a finite mixture of k densities having distinct values for φ. Because the

probability weights assigned to the different components of the mixture depend on the location of

xn+1 ∈ X , it is clear that the prior allows model deviations to vary systematically with predictors.

In addition, as long as there are no discontinuities in w(·), the following continuity property holds:

lim
xn+1→x0

(yn+1 |xn+1,φ,X) d= (y |x0,φ,X),

13



implying that the predictive densities converge as the predictor values move closer together.

2.3 Choice of Kernel Function

Note that the approach relies on the choice of a bounded kernel function, w(·), which impacts the

degree of borrowing of information from the neighbors in estimating the density at any particular

predictor value, x. The issues involved in choosing w(·) are related to those arising in choosing

a kernel function in density estimation (Härdle, 1991), though the mechanics of how the function

impacts the density estimator are very different.

In the special case in which p = 1, w(·) can be taken to be the standardized kernel of an

arbitrary density. For example, a natural choice, which is easily generalized to multiple dimensions

(p > 1), is the Gaussian kernel, which would result in

wij = w(xi, xj) = exp
{
− ψ

2
(xi − xj)2

}
, (20)

where ψ−1/2 is a pre-specified bandwidth parameter. In this case, all subjects would technically

be in the same neighborhood, though for small to moderate ψ−1/2, wij → 0 rapidly as |xi − xj |

increases. Another possibility would be the kernel of a triangular distribution

wij = w(xi, xj) =
{

1− ψ1/2|xi − xj | for |xi − xj | ≤ ψ−1/2

0 otherwise (21)

where any two subjects, i and j, having predictor values within ±ψ−1/2 are in the same neighbor-

hood, and within the neighborhood wij decreases linearly with |xi − xj |.

For categorical predictors, xi ∈ X = {1, . . . , C}, it may be more natural to let

wij = w(xi, xj) =
{

1 if xi = xj

ψ if |xi − xj | = 1 (22)

which assigns a weight of one to subjects with the same predictor value and a weight of 0 ≤ ψ ≤ 1

to subjects with a predictor value differing by one unit (can be extended to assign a lower weight

to subjects differing by two units, etc). It is interesting to compare the resulting procedure to

the DDP of MacEachern (1999; 2001). The DDP allows for dependency in the distributions at

x = c and x = c + 1 by assuming the distributions have the same number of atoms and allowing

dependency in these atoms. In contrast, under our proposed approach, the distributions share a
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subset of their atoms, but the number of atoms can change to accommodate evolving deviations

from the base measure.

Although an arbitrary choice of w(·) can be used without complications in implementation, we

focus on a multivariate Gaussian kernel for ease in generalization to p > 1 cases:

wij = w(xi,xj) = exp
{
− ψ

2
(x1 − x2)′Σ−1(x1 − x2)

}
, (23)

where Σ is taken to be the empirical covariance matrix of X. By plugging in the empirical covariance

matrix, prior elicitation is simplified and only the value of the smoothing parameter ψ needs to be

specified. In a variety of simulated and real data examples, we have found ψ = 1/4 to provide a

reasonable default choice, though sensitivity analyses should be conducted in practice.

3. Posterior Computation

3.1 Gibbs Sampling Algorithm for Mixture Parameters

For posterior computation, we recommend an adaptation of the Polyá urn Gibbs sampler (MacEach-

ern, 1994; West et al., 1994; Escobar and West, 1998, among others) developed for Dirichlet process

mixture models. The Pólya urn scheme has been widely used in implementing Gibbs sampling

for DP mixture models. For related approaches for species sampling models, refer to Ishwaran

and James (2001; 2003). To improve mixing of the Markov chain, our algorithm updates the

cluster-specific parameters, θ, separately from the cluster membership indicators, S, and number

of clusters, k. We initially assume that the base parametric mixing measure, G0, is known, though

generalizations will be considered.

Note that the full conditional posterior distribution of φi can be derived as follows:

(φi |φ(i),y,X) ∝ qi,0Gi,0 +
k(i)∑
h=1

qi,hδθ(i)
h

, (24)

where the posterior obtained by updating the prior G0(φ) with the likelihood f(yi |xi, φ) is

Gi,0(φ) =
G0(φ) f(yi |xi, φ)∫
f(yi |xi, φ) dG0(φ)

=
G0(φ) f(yi |xi, φ)

hi(yi |xi)
,

qi,0 = c α hi(yi |xi), qi,h = cw∗ihf(yi |xi, θh), and c is a normalizing constant.
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Instead of sampling directly from (24) in implementing Gibbs sampling, we alternate between

(1) updating the configuration of subjects to clusters, S, and the number of clusters, k; and (2)

updating the cluster-specific parameters θ:

1. To update S and k, we sequentially sample from the full conditional posterior distributions

of Si, for i = 1, . . . , n. From expression (24), it follows that

Pr(Si = h |φ(i),y,X) = qih, for h = 0, 1, 2, . . . , k, (25)

Whenever Si = 0, φi has a value different from those in the existing clusters and we generate

this value from Gi,0.

2. To update the parameters θ conditional on S and k, we sample θh, for h = 1, . . . , k, from the

full conditional posterior distribution:

(θh |θ(h),S, k,y,X) ∝
{ ∏

i:Si=h

f(yi |xi, θh)
}
G0(θh). (26)

These steps can be incorporated within an MCMC algorithm that also has steps for updating

additional model unknowns and latent variables within a larger hierarchical model.

Because f(yi |xi) =
∫
f(yi |xi, φi) dG0(φi) is a parametric mixture model for the conditional

distribution of yi given xi, there will typically be unknown parameters characterizing G0. Extending

our formulation to explicitly allow for dependency of G0 on parameters γ, we let π(γ) denote the

hyperprior distribution for γ. Then, from the above formulation, it follows that the full conditional

posterior distribution of γ can be expressed as:

(γ |φ,y,X) ∝ π(γ)
{ k∏

h=1

G0(θh;γ)
}
. (27)

For mixtures of normal linear regression models, expressions (25) - (27) have simple closed forms,

as described in Section 3.2.

3.2 Mixtures of Normal Linear Models

It is interesting to consider the simple special case in which

f(yi |xi, φi) = (2πσ2)−1/2 exp
{
− 1

2σ2
(yi − x′iβi)

2
}
,
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so that f(yi |xi) is characterized by a nonparametric mixture of normal linear regression models. In

this case, we fix the normal residual variance, but allow the regression coefficients to vary by letting

φi = (β′i, σ
−2)′ and βi = (βi1, . . . , βip)′. It is straightforward to modify the approach to allow σ−2

to also vary with i, but we focus on the simpler case for ease in presentation. Also, because we

are allowing the mixture distribution to change with x ∈ X , the approach is very flexible even

assuming fixed variance.

To complete a Bayesian specification of the model, the error precision τ = σ−2 is assigned

a gamma prior, π(τ) = G(τ ; aτ , bτ ), and we choose a multivariate normal for the base para-

metric mixture distribution, G0(βi;β,Σβ) = Np(βi;β,Σβ). For additional flexibility, we choose

hyperprior distributions for γ = {β,Σβ}, the parameters characterizing G0. In particular, let

π(γ) = π(β)π(Σβ), π(β) = Np(β;β0, Vβ0) and π(Σ−1
β ) = W(Σ−1

β ; (ν0Σ0)−1, ν0), the Wishart

density with degrees of freedom ν0 and expectation Σ−1
0 .

The conditional probabilities in expression (25) can be calculated plugging in:

hi(yi |xi,β,Σβ , τ) =
Np(0;β,Σβ)N(0; yi, τ

−1)
Np(0; β̂i, V̂βi

)
,

for hi(yi |xi), where V̂βi
= (Σ−1

β + τxix′i)
−1 and β̂i = V̂βi

(Σ−1
β β + τyixi). In addition, letting

θh = βh, the value of βi for subjects in the hth cluster, expression (26) simplifies to

(βh |β(h),S, k,β,Σβ , τ,y,X) ∼ Np(βh; β̂h, V̂βh
), (28)

where V̂βh
= (Σ−1

β + τ
∑

i:Sh=1 xix′i)
−1 and β̂h = V̂βh

(Σ−1
β β + τ

∑
i:Sh=1 xiyi). The full conditional

posterior distributions of the remaining unknowns can be expressed as follows:

(τ |S, k,β1, . . . ,βk,β,Σβ,y,X) ∼ G
(
aτ +

n

2
, bτ +

1
2

n∑
i=1

(yi − x′iβi)
2
)
, (29)

(β |S, k,β1, . . . ,βk, τ,Σβ,y,X) ∼ Np(β̂, V̂β), (30)

(Σ−1
β |S, k,β1, . . . ,βk, τ,β,y,X) ∼ W

({ k∑
h=1

(βh − β)(βh − β)′ + ν0Σ0

}−1

, k + ν0

)
(31)

where V̂β = (V −1
β0

+ kΣ−1
β )−1 and β̂ = V̂β(V −1

β0
β0 +

∑k
h=1 Σ−1

β βh). Gibbs sampling can proceed by

sequentially sampling from (25), which follows a multinomial closed form in this case, and (28)-(31).

This algorithm is applied in Sections 4 and 5 to simulated and real data examples.
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In the mixture of normal linear regression models case, the conditional predictive density of a

future observation yn+1 from a subject with predictors xn+1 can be expressed as follows:

(yn+1 |xn+1,φ,y,X) ∼
(

α

α+ wn+1

)∫
f(yn+1 |xn+1,βn+1, τ) dG0(βn+1;β,Σβ)

+
(

1
α+ wn+1

) k∑
h=1

w∗n+1,hf(yn+1 |xn+1,βh, τ)

d=
(

α

α+ wn+1

)
N(yn+1;x′n+1β, τ

−1 + x′n+1Σβ xn+1)

+
(

1
α+ wn+1

) k∑
h=1

w∗n+1,hN(yn+1;x′n+1βh, τ
−1) (32)

which is a finite mixture of normals. Note that large values of α will lead to a high degree of

shrinkage towards the first normal component. The first component will also receive high probability

weight when there are few subjects in the data set close to xn+1, because at such locations wn+1 ≈ 0.

For the remaining k normal components, each of which has a distinct set of regression coefficients,

the weights will depend on the number of subjects in the data set that have predictor values

close to xn+1 and are allocated to that component. In this manner, the weights on the different

components are spatially adaptive according to the location of xn+1 ∈ X . In addition, the number

of components k is treated as unknown and will change across the MCMC samples.

Interest commonly focuses on estimating the predictive density of yn+1 for a variety of xn+1

values, possibly to investigate changes in the density across X . To remove the conditioning on the

unknowns, S, k,β1, . . . ,βk, τ,β,Σβ , one can calculate the expected predictive density averaging

over the posterior distribution by using a large number of iterates collected after apparent con-

vergence of the Gibbs sampling algorithm. In particular, letting t = 1, . . . , T index the iteration

number, one can use the estimator:

f̂(yn+1 |xn+1) =
1
T

[
T∑

t=1

(
α

α+ wn+1

)
N(yn+1;x′n+1β

(t), τ (t)−1
+ x′n+1Σ

(t)
β xn+1)

+
(

1
α+ wn+1

) k(t)∑
h=1

w∗n+1,hN(yn+1;x′n+1β
(t)
h , τ (t)−1

)

]
. (33)

Note that this estimator is defined for a particular yn+1 value. In practice, one can estimate the

density at a dense grid of possible yn+1 values.
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4. Simulation Examples

In order to assess the computational performance of the Gibbs sampling algorithm and whether the

approach seems to give reasonable results, we analyzed data from a series of simulated examples.

Although we also considered sample sizes of n = 200 and n = 1000, we focus on n = 500 for sake

of brevity (other cases yielded similar results). We consider p = {2, 3}, with xi = (1, xi2, xi3)′

and xi2, xi3 simulated from independent uniform distributions. For the hyperparameters, we let

α = {0.5, 1}, β0 = 0, Vβ0 = (X′X)−1/n, ν0 = p, Σ−1
0 = Ip×p, and aτ = bτ = 0.1. We considered

a range of values for ψ, ψ ∈ {0.125, 0.25, 0.5}, using weight function (23). In the primary analysis,

α = 0.5 and ψ = 0.25.

As a null case, we first simulated data under the normal linear regression model,

f(yi |xi) = N(yi;−1 + 2xi2, 0.01)

[trying also a variety of alternative values for the true regression function and error variance]. We

then analyzed the simulated data using the proposed Gibbs sampling algorithm run for 10,000

iterations with a 1,000 iteration burn-in. Based on examination of trace plots for the different

unknowns, convergence was rapid and mixing was efficient. In each case, the predictive mean

regression function closely approximated the true linear regression function, which was entirely

enclosed in pointwise 99% credible intervals. In addition, estimates of the predictive density of

yn+1 at the 10th, 25th, 50th, 75th, and 90th percentiles of the empirical distribution of xi2 were

essentially indistinguishable from the true normal density. These results held regardless of the value

of ψ, though estimated predictive mean curves and densities were slightly bumpier for ψ = 0.125.

As a more interesting case, we simulated data from a mixture of two normal linear regression

models, with the mixture weights depending on the predictor, with the error variance differing, and

with a non-linear mean function for the second component:

f(yi |xi) = e−2xi2N(yi;xi2, 0.01) + (1− e−2xi2)N(yi;x4
i2, 0.04).

Figure 1 shows the true density (dotted line), estimated predictive density (solid line), and point-

wise 99% credible intervals (dashed lines) for a range of values of xi2. The estimates correspond
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approximately to the true densities in each case. The bottom right panel contains an x − y plot

of the data along with the estimated predictive mean curve (solid line), which is indistinguishable

from the true mean curve (dotted line). Essentially identical results were obtained for analyses

with ψ = 0.125, ψ = 0.5, and α = 1. Repeating the analysis as described above, but with φi
iid∼ G

and G ∼ DP (αG0), we obtained poor results (density estimates diverged substantially from true

densities, posterior mean curve failed to capture true non-linear function), suggesting that a DP

mixture model is inadequate.

5. Application: Epidemiologic Study

5.1 Data Structure and Scientific Problem

The methods are applied to a study of reproductive hormones and obesity. Study participants were

premenopausal 35-50 year old women randomly selected from the membership list of a Washington,

DC health plan. Luteinizing hormone (LH) was measured in urine collected by the women on the

first or last five days of the menstrual cycle to avoid mid-cycle variability due to the rapid rise in

LH at the time of ovulation. Appropriately-timed urine samples assayed for LH and a current body

mass index (BMI) were available for 522 women.

An association between LH and BMI would be interesting for several reasons. First, there is

growing evidence that LH has a proliferative effect on uterine smooth muscle cells, possibly leading

to fibroid growth. An abnormally elevated LH level among obese women may indicate a greater risk

of developing fibroids, a common reproductive tract tumor which leads to substantial morbidity in

the U.S. On the other hand, LH also has a critical role in ovulation and menstrual cycling, and

abnormally low LH levels may indicate reproductive dysfunction. Hence, it is interesting to assess

how the distribution of BMI changes as LH changes. Of course, it is important to adjust for the

potentially confounding effect of age.

We do not expect the distribution of BMI among women of a given age with a particular value

of LH to be normally distributed, and there is likely to be some degree of positive skewness. In

addition, given the above biological considerations, it seems plausible that the shape of the BMI

density may change as LH changes, with a possible differential effect for the more obese women in
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the right tail of the distribution. Hence, the density regression approach proposed in this article

seems ideal for these data.

5.2 Univariate Analysis

For woman i (i = 1, . . . , 522), let yi, xi2 and xi3 denote BMI, LH and age, respectively. Vari-

ables were normalized prior to analysis, but transformed back to the original scale in presenting

the results. Prior specification and posterior computation proceeded as in Section 4. We initially

considered LH as the only predictor. As previously, samples appeared to converge rapidly to a

stationary distribution and mixing was good. Figure 2 presents the estimated predictive density of

BMI for LH values corresponding to the 1, 10, 25, 50, 75 and 90th percentiles of the empirical dis-

tribution. As expected, the BMI densities tend to be right-skewed. Interestingly, the distributions

are more highly skewed, with a greater proportion of morbidly obese women (BMI > 40), when

LH values are low. In fact, there is even evidence of a second mode at high BMI values when LH

is low.

These results suggest that obese women, particularly morbidly obese women, tend to have

low LH levels. This goes against the hypothesis that obese women may be at greater risk of

uterine smooth muscle cell proliferation and fibroid development due to increased LH. However, it

is consistent with our secondary hypothesis that obese women may have diminished reproductive

functioning, which is manifest by low LH levels. The raw LH and BMI data are plotted in Figure

3, along with the posterior predictive mean curve and pointwise 99% credible intervals. The second

mode at low LH levels, which was picked up by our density regression estimator, is also apparent

in the raw data. Overall, there is a decreasing trend in mean BMI with increasing LH, with

the nonlinear curve flattening out at higher LH levels. Conclusions were robust to the degree

of smoothing. For ψ = 0.125, the density estimates were slightly bumpier and for ψ = 0.5 the

estimates were slightly smoother, but the differences were barely noticeable. The second mode at

high BMI for low LH was present in all analyses.

5.3 Bivariate Analysis
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The above results did not consider age, which is an important predictor of BMI. To adjust for

possible confounding, we repeated the analysis including age as an additional predictor. For mul-

tivariate predictors, we are faced with the problem of how to summarize changes that occur in the

response distribution across the predictor space. We chose to estimate the predictive density of

BMI given age and LH for a range of LH values, with age fixed at its sample mean value. We then

repeated this exercise to estimate the predictive density for a range of age values with LH fixed at

its sample mean. To assess interactions between age and LH, we estimated the predictive densities

for the same range of LH values, but with age fixed at a low or high value.

The age main effect is illustrated in Figure 4. The BMI densities have a slight increase in positive

skewness between the mid and late 40s as the proportion of morbidly obese women increases.

Interestingly, there are minimal changes with age in the mode of the BMI density, and changes in

the mean are primarily attributable to an increasing subset of obese and morbidly obese women, an

observation not apparent from mean regression curves. The LH main effect results are essentially

identical to those from the univariate analysis, so adjustment for age did not impact our conclusions

about the relationship between LH and BMI. These results were robust to moderate changes in the

choice of ψ and α.

6. Discussion

This article has proposed a Bayesian approach to the density regression problem, relying on a

mixture model with a novel prior specification for the mixing measure. In particular, the mixing

measure is allowed to vary depending on the location of a multivariate (potentially continuous)

predictor x ∈ X . The proposed structure has a number of appealing properties, including the

availability of a simple weighted Pólya urn-type scheme, which facilitates posterior computation via

a simple Gibbs sampling algorithm. Results of simulated and real data applications are promising.

In future research, it will be interesting to consider additional properties of the proposed prior

specification and to generalize the approach. One conceptually straightforward extension would be

to allow the smoothing parameter, ψ, and precision parameter, α, to vary depending on the location

of x ∈ X . In addition, because these hyperparameters play such an important role, it would be
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interesting to consider methods that allow the data to inform about their values. Other areas in

need of additional consideration, include efficient computation in non-conjugate cases (refer to Neal,

2000 for related work in DP mixture models) and approaches allowing full nonparametric Bayesian

inference on the collection of unknown distributions (see Gelfand and Kottas, 2002; Ishwaran and

James, 2002 for related approaches based on approximating the DP).

Appendix A: Proof of theorem 1

Let G = (G1, G2, ..., Gn)′ and G∗ = (G∗1, G
∗
2, ..., G

∗
n)′. Notice that we have

G = CG + DG∗

where A = C + D, with cij = aij for i 6= j, cij = 0 for i = j, and D a diagonal matrix with

dii = aii. Hence we have

(In −C)G = DG∗ ⇒ G = (In −C)−1DG∗

Letting B = (In −C)−1D, it suffices to prove the following Lemmas:

1. The matrix (In −C) is invertible

2. B is row stochastic, so that b′i1n = 1 (rows sum to 1)

3. B has non-negative entries

Lemma 1: (In −C) is invertible

Proof: Let C̃ = In −C. Then we have

n∑
j=1,j 6=i

|c̃ij | =
n∑

j=1,j 6=i

|cij | = 1− cii < 1 ∀i ∈ {1, 2, ..., n}

Hence, the matrix C̃ = In − C is strictly diagonally dominant. Note that a square matrix S is

strictly diagonally dominant if |sii| >
∑

j 6=i |sij |, 1 ≤ i ≤ n. From Serre (2002, p73), strictly diago-

nally dominant matrices are invertible, so lemma 1 holds.
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Lemma 2: The matrix B is row stochastic.

Proof: Notice that B = (In − C)−1D = [D−1(In − C)]−1, and hence B = B̃−1, where B̃ =

D−1(In −C). Hence we have

b̃ij =
hij

cii
, hij = 1 for i = j, and hij = −cij for i 6= j

Hence we have for i ∈ {1, 2, ..., n},

n∑
j=1

b̃ij =
1−

∑n
j=1,j 6=i cij

cii
=
cii
cii

= 1.

Thus, B̃ has 1 as an eigenvalue and 1n as an eigenvector. Because the eigenvectors are preserved

during the inverse operation and 1 is an eigenvalue of B̃−1 = B, B is row stochastic.

Lemma 3: B = (D−1(In −C))−1 has non negative entries.

Proof: Let b = (b1, b2, ..., bn)′, such that bi > 0 for i ∈ {1, 2, ..., n}. Let x be the solution of the

equation, Bx = b and i = argmin xi. Then we have

1
cii
xi = bi −

n∑
j=1,j 6=i

cij
cii
xj > xi

 n∑
j=1,j 6=i

cij
cii



⇒

 1
cii
−

n∑
j=1,j 6=i

cij
cii

xi > 0 ⇒ xi > 0

and since xi was the minimum, we have x > 0. From Serre (2002, page 80), a matrix S is

nonnegative if and only if x ≤ 0 implies Sx ≤ 0. Hence, Lemma 3 follows directly.

Appendix B: Proof of theorem 3

The correlation between Gxi(B) and Gxi′ (B) has the following form:

Cor{Gxi(B), Gxi′ (B)} =
E{Gxi(B)Gxi′ (B)} − E{Gxi(B)}E{Gxi′ (B)}[

V{Gxi(B)}V{Gxi′}
]1/2

.

The numerator can be expressed as follows:

E
[
{bi1G∗x1

+ bi2G
∗
x2

+ . . .+ binG
∗
xn
}{bi′1G∗x1

+ bi′2G
∗
x2

+ . . .+ bi′nG
∗
xn
} −G0(B)2

= E

({ n∑
h=1

bihbi′hG
∗
xh

(B)2
}

+
[ n∑

h=1

bihG
∗
xh

(B)
{∑

l 6=h

bi′lG
∗
xl

(B)
}])

−G0(B)2
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=
{ n∑

h=1

bihbi′hE{G∗xh
(B)2}

}
+
{ n∑

h=1

bih(1− bi′h)G0(B)2
}
−G0(B)2

=

(
n∑

h=1

bihbi′h

[
G0(B){1−G0(B)}

1 + α
+G0(B)2

])
+G0(B)2

n∑
h=1

bih −G0(B)2
n∑

h=1

bihbi′h −G0(B)2

=
( n∑

h=1

bihbi′h

)[
G0(B){1−G0(B)}

1 + α

]
. (34)

Because the term in [·] equals V{Gxh
(B)} for h = i, i′, it follows directly that Cor{Gxi(B), Gxi′ (B)} =∑n

h=1 bihbi′h.
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Appendix C: Proof of theorem 4

Letting wi+ = w′
i1n−1, for i = 1, . . . , n, we first show that there exists a unique vector w+ =

(w1+, . . . , wn+)′ corresponding to B. In particular, the elements of this vector correspond to the

solution to the following system of equations:

α

α+ wi+
= pi01 + pi02

(
α

α+ 1

)
+ . . .+ pi0n

(
α

α+ n− 1

)
, for i = 1, . . . , n.

It is straightforward to obtain the simple closed form solution wi+ = α(1 − p′i0Γ0)/(p′i0Γ0), for

i = 1, . . . , n, where Pr(Mi+ =
∑

j 6=iMij = m) = pi0m, for m = 0, . . . , n− 1, is the probability mass

function for Mi+, which can be calculated from B using expression (12).

Following a similar route to solve for wij , for all i, j, holding wi+ as fixed:

wij

α+ wi+
= pij1

(
1

α+ 1

)
+ . . .+ pij,n−1

(
1

α+ n− 1

)
= p′ijΓ1

we obtain wij = (α + wi+)p′ijΓ1 = αp′ijΓ1/p′i0Γ0. It remains to show 0 ≤ αp′ijΓ1/p′i0Γ0 ≤ 1.

Letting Rij = p′ijΓ1/p′i0Γ0, we have

Rij =
pij1

1
α+1 + . . .+ pij,n−1

1
α+n−1

pi01 + pi02
α

α+1 + . . .+ pi0n
α

α+n−1

=
0× 1

α + pij1
1

α+1 + . . .+ pij,n−1
1

α+n−1

α
[
pi01

1
α + pi02

1
α+1 + . . .+ pi0n

1
α+n−1

]
Thus, letting p̃ij = (0,p′ij)

′, wij = αRij can be expressed as

wij =

∑n
m=1 p̃ijm

(
1

α+m−1

)
∑n

m=1 pi0m

(
1

α+m−1

) . (35)

Recalling that pi0m = Pr(Mi+ = m − 1) while pijm = Pr(Mi+ = m,Mij = 1), we have pi0,m+1 ≥

pijm, for m = 1, . . . , n − 1, which implies that pi0m ≥ p̃ijm, for m = 1, . . . , n. It follows that∑n
m=1 p̃ijm/(α+m− 1) ≤

∑n
m=1 pi0m/(α+m− 1). Hence, 0 ≤ wij ≤ 1.
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Figure Captions

1. True conditional densities of y|x (dotted lines) and estimated predictive densities f̂(y |x)

(solid lines) for a range of x values in the simulation example. Dashed lines correspond to

99% pointwise credible intervals.

2. Predictive densities for body mass index (BMI) conditional on a range of values for luteinizing

hormone (LH). Posterior predictive means (solid lines) and 99% credible intervals (dashed

lines) are shown.

3. Plot of data values for luteinizing hormone (LH) against body mass index. Predictive mean

curve (solid line) and 99% pointwise credible intervals (dotted lines) are shown.

4. Predictive densities for body mass index (BMI) conditional on a range of values for age

adjusting for LH.
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