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BAYESIAN DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS: 

USE OF DERIVATIVES IN SURFACE PREDICTION 

Max D. Morris, Toby J. Mitchell, and Don Ylvisaker 

ABSTRACT 

The work of Currin et al. (1988) and others in developing "fast predictive approximations" of 

computer models is extended for the case in which derivatives of the output variable of interest 

with respect to input variables are available. In addition to describing the calculations required 

for the Bayesian analysis, the issue of experimental design is also discussed, and an algorithm is 

described for constructing "maximin distance" designs. An example is given based on a 

demonstration model of eight inputs and one output, in which predictions based on a maximin 

design, a Latin hypercube design, and two "compromise" designs are evaluated and compared. 

Key Words: Bayesian Prediction, Computer Experiment, Computer Model, Interpolation, Latin 

Hypercube Design, Maximin Design, Random Functions. 
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I. INTRODUCTION 

In the past few decades, computer models have become important tools in virtually aU fields of 

scientific research. As surrogates for physical or behavioral systems, computer models can be 

subjected to experimentation, the goal being to predict how the corresponding real system would 

behave under certain conditions. Here we regard a computer model as a computer program that 

maps a vector of \np\it variables t into a vector of output variables y, where t and y are physically 

meaningful. We view y as a fimction y(t) over some domain T in the space of the input variables. 

This function is deterministic; if the program is run twice on the same computer using the same 

value oft, the same value of y will result We are specifically interested here in computer models 

which, in addition to calculating the response at a given set of input values, also provide 

derivatives of y with respect to elements oft. 

We consider a computational experiment to be a collection of runs of the computer model, made 

for the purpose of investigating y(t) for teT. For convenience, we shall consider T to be defined 

only by the design variables, i.e., those variables that are changed during the course of the 

experiment In a typical experiment of n runs, the i* computer run is made using inputs t '̂̂ eT, 

i = 1,2,.., n; this collection of input configurations is called the experimental design. 

One of the most fundamental problems ttiat can be approached through computational 

experiments is the prediction of y(t) at sites t that have not been directly observed. This is 

motivated by applications requiring a large number of evaluations of y, such as numerical 

optimization, in which repeated execution of the model may be prohibitive due to computing 

expense. Hence, we seek to develop & fast predictive approximation to a computer model, that is 

sufficiently accurate for many purposes, based on relatively few actual runs. In this paper, we 

shall restrict our attention to a single output variable, i.e. scalar y. 

Recently, there has emerged an interest in using random functions (stochastic processes, random 

fields) as a structure on which to base the design and analysis of computational experiments, 

particularly for the puipose of constnicting fast predictive approximations. Sacks, Schiller, and 

Welch (1989) and Sacks, Welch, Mitchell, and Wyim (1989) use an approach similar in some 

ways to the spatial modeling techniques of kriging for prediction of a computer model. Currin, 

Mitchell, Morris, and Ylvisaker (1988) also use random functions as a basis for model prediction, 

but they formulate the problem firom a Bayesian point of view, under which uncertainty about the 

file:///np/it
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fimction y is expressed by means of a probability distribution over all possible response 

functions. In these approaches, the values of y generated by the computational model are 

regarded as "data" that, unlike most physical measurements, are exactly reproducible. 

Many modem computer models have the potential for providing not only the output values 

themselves, but also partial derivatives of outputs with respect to inputs, dy(t)/dtj. Recent 

research has produced computer-automated methods for "enhancing" computer codes; i.e. 

expanding codes that compute only outputs so that they also compute derivatives (e.g., Griewank 

(1988), Oblow, Pin, and Wright (1986), and Worley, Wright Pin, and Haiper (1986)). These 

derivatives are of interest to users of computer models who are often concemed about the 

"sensitivity" of model outputs to inputs ~ the amount of change induced in y by a small change in 

one or more elements of t. When derivatives are calculated in the execution of a computer 

model, they are a source of additional information that may be useful in computer experiments. 

For example, Worley (1987) discusses a method of uncertainty analysis (determination of the 

probability distribution of y that results from a known probability distribution of t) that uses 

values both of the output of interest and its derivatives. 

In this report we will discuss a natural extension of our woik in fast predictive approximation 

based on the stochastic process model, that allows use of derivative information about y. Our 

approach to Bayesian prediction is outlined in Section II, and an example of a fast predictive 

approximation based on ouQ)ut values and their derivatives is presented in Section III. In Section 

rv, we discuss the experimental design problem - how the values of t can be chosen for the 

needed runs of the computer model. Our emphasis here is on D-optimal design based on weak 

prior information. In Section V, the example problem is continued with an examination of fast 

predictive approximations based on data from several different designs. 

n. METHODOLOGY 

Details of our approach to the Bayesian prediction problem where derivative values are not used 

may be found in Currin, et al. (1988). Here, we offer a brief description and indicate the 

modifications necessary for incorporation of derivative information. 

We represent prior "knowledge" about the unknown fimction y(t), teT, by the Gaussian process 

Y= {Y(t), teT), with mean fimction M(t) = E[Y(t)] and positive definite covariance fiinction 
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K(t s) = Cov[Y(t), Y(s)]. For every finite set S c T , the response vector 

Ys = (Y(Si), Y(S2), • • • , Y(Sm)) ,̂ where m is the number of sites in S, is multinormal with mean 

E[Ys] = Us and covariance matrix Cov[Ys, Ysl = Oss- Normality is chosen for convenience; the 

posterior process, given the vector of observed responses yp on the set of n design sites D c T, is 

well kix)wn and is also Gaussian, with mean and covariance: 

m ID = E[Ys I yo] = \i-s + OsDOSoCyo -\i-D> (2.1) 

Oss ID = Cov[Ys, Ys I yo] = Oss - OSD<'DDO'DS (2.2) 

where OsD is, for example, the covariance matrix Cov[Ys, YQ], M-S and p.^ are the expectations of 

Ys and Yp respectively, and yo is the observed value of Y^. Following execution of the 

computer model at each site in design D, we use the posterior mean of Y(s) as the fast predictive 

approximation for the true response y(s) at any site s, and the posterior standard deviation of Y(s) 

as a measure of the uncertainty of prediction there. Of course, the specification of the prior is the 

central issue in practice. We simplify matters by adopting various stationarity restrictions: For 

any pair of sites t s in T, M(t) = M(s) = \i and K(t s) = o^R(s -1) , where R is a "correlation 

function" that depends only on the difference vector (s -1) , with R(0) = 1 and R(s-t) = R(t-s). 

Further simplification comes from adoption of the "produa correlation rule": 

R(s-t) = nRj(srtj) ^̂ -̂ ^ 
j-1 

The Rj's are chosen from a parametric family of correlation functions on the real line; the 

correlation parameters, as well as \i and o, are chosen using maximum likelihood or cross-

validation. 

The specification of a prior process, v^th appropriate mean and covariance functions, determines 

also various derivative processes. (See Paizen 1962, p. 83, for formal definitions and conditions 

for existence.) For example, the first partial of Y with rcspea to ti is: 

,. Y(ti+h,t2,..., tk) - Y(ti,t2 tk) 
lim 
h-»o h 
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A given stochastic process may then have a number of derivative processes, associated with 

different orders of derivatives involving different subsets of the elements of t. We shall denote 

by Y *̂"*̂ ' '*^ the derivative of order aj in input ti, i.e. 

It can be shown that for Gaussian processes Y, the existing derivative processes are also 

Gaussian, with 

E[Y^'" *""'• *^(t)] = M^'" '""' "^(t) (2.4) 

and 

Cov[Y *̂" •*••••• •'̂ (t), Y*'- "^ • • • • "^(S)] = K '̂" • • • • •̂ ' '̂ - • • • • '^(t, s) . (2.5) 

Since Y and its derivative processes are jointly Gaussian, prediction using derivative values as 

well as response values can be done using appropriately modified versions of (2.1) and (2.2). 

Here we treat the case where the available derivatives are the k first-order partial derivatives with 

respea to each of the elements of t. Let the random variables that correspond to the response and 

derivative values at the design sites be held in the n(k-H) vector 

Y* = [Y(°°"0)(t(»)),YO0"0)(t(i)), ••• .Y(°0"i)(t(»)),Y<°0"V)), ••• ,Y<°°.i)(t<"))]T . (2.6) 

The prior mean ^D and covariance matrix ODD of YD can be calculated via (2.4) and (2.5), as can 

the matrix OSD of covariances between Ys and YD, where S is any finite set of sites in T. 

Prediction at S can then be made be substituting yo, HD, ODD. and OSD for yD. M̂D. ODD. and OSD in 

(2.1) and (2.2), 

Simpler versions of (2.4) and (2.5) result from our stationarity restrictions and the product 

correlation rule (2.3). Specifically 

E[Y(°°-°>(t)] = E[Y(t)] = \i (2.7a) 



5 

and 

E[Y^*"'*"-*^(t)] = 0 (2.7b) 

if at least one aj > 0. Also, 

COV[Y('"'^ • • • • '^(t), Y^"'^'•••'"^(s)] = o2(-l)2>i 11^1'''%^-tj). (2.8) 

Of course, the chosen Rj's must correspond to differentiable processes. For example, Gaussian 

processes with the correlation fimction used by Sacks et al. (1989) 

Rj(srt) = e-«^"rt'' (2.9) 

with Bj > 0 and 0 < Pj < 2, arc infinitely differentiable for pj = 2 but not differentiable at all for 

Pj < 2. In his discussion of that paper, Michael Stein refers to an alternative class of processes that 

is exactly m times differentiable, m > 1. In the present context, we require that Y be at least once 

differentiable. A usefiil way to derive such processes is by integrating known processes - see 

Mitchell, Morris, and Ylvisaker (1990) for some examples that are stationary on an interval. In 

the examples of this paper, we shall use (2.9) with pj = 2. 

The expressions above for posterior means and covariances require specification of the scalars n 

and o and the functions Rj. In practice, we choose a parametric family for each Rj a priori, but 

allow its parameters, and also \i and o, to be determined by the data, usually by maximum 

likelihood. We can isolate the parameters \i and o in the likelihood by defining 

CDD = O~^ODD 

and 

V = H"VDD ; 
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it is evident that CDD depends on the correlation parameters (but not on î or o), and v is a binary 

vector with 1 in position (i-l)(k+l>i-l, i=l,..., n, i.e., in each position corresponding to the mean 

of some Y(t '̂̂ , and 0 everywhere else. The log likelihood is, apart from additive and 

multiplicative constants, 

L(^, o, 6) = - n(k-i-l) In o2 - In I CDDO) I - "A" (yD-iiv)T[CDD(e)]"kyD-^v) ( .̂10) 

where dependence on the correlation parameters, collectively denoted as 9 here, is now explicitiy 

indicated. For fixed 6, maximization of L over \L and o^ is obtained by: 

. , , vT[CDD(e)]-VD (2.11) 

vT[cSD(e)]-V 

o (̂e) = -jj^(y5-il(e)v)'r[CDD(e)]-'(yD-A(e)v) . (2.12) 

Determination of 6, which requires maximization of L((i(6), 0(6), 6) is usually done by 

constrained iterative search. Although this can be done using routines from standard 

mathematical software libraries, it may require a considerable amount of computation, depending 

on the dimension of 6. 

Generalization to the case where \i and o have the usual "noninformative" prior distributions, i.e. 

\i and logo have independent uniform prior distributions over arbitrarily large domains, is 

relatively straightforward, but a fiilly Bayesian approach, in which vague priors are also attached 

to the correlation parameters, appears difficult to implement 

m. EXAMPLE: BOREHOLE MODEL 

In his discussion of a method of uncertainty analysis, Woriey (1987) uses a simple demonstration 

model of the flow of water through a borehole that is drilled firom the ground surface through two 

aquifers. (His use of this particular model follows that of Harper and Gupta (1983), who use it in 

demonstrating other methods of uncertainty analysis.) The response variable he examines from 

this model is Q, the flow rate through the borehole in mVyr, which is determined by the equation: 
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2JIT„(H„-HI) (3.1) 

Q= ? rrr^ r—v 
ln(r/rj 

2LTu Tu 
1 + ;; + -=-

ln(r/rJr^Kw M 

where the eight inputs and their respective ranges of interest and units arc: 

r^ = radius of borehole, 0.05 to 0.15 m 

r = radius of influence, 100 to 50,000 m 

Tu = transmissivity of upper aquifer, 63,070 to 115,600 m'̂ /yr 

Hu = potentiometric head of upper aquifer, 990 to 1110 m 

Ti = transmissivity of lower aquifer, 63.1 to 116 m /̂yr 

Hi = potentiometric head of lower aquifer, 700 to 820 m 

L = length of borehole, 1120 to 1680 m 

K„ = hydraulic conductivity of borehole, 9855 to 12,045 m/yr. 

Since Q can be expressed as a simple, explicit equation in the "inputs", it certainly is not typical 

of the computationally intensive computer models that motivate this woik. However, it is useful 

for demonstration purposes, since its simplicity will allow us to quickly assess the accuracy of 

predictions at a large number of test sites via direct evaluation. In Section V, we shall 

demonstrate the use of our methodology for predicting Q as a fimction of all 8 inputs. Here, to 

illustrate the pattern of required calculations, we shall consider only two, rw and K^, and fix the 

remaining outputs at their respective lowest values. The range of K̂ ^ has been extended (for this 

calculation only) to [1500,15,(XX)] to produce a somewhat more nonlinear, nonadditive function. 

Also, the two input variables considered here have been scaled so that each takes its values from 

the imit interval; the scaled versions of r,, and K^ are denoted by ti and tg, respectively. Figure 1 

is a contour graph of Q as a function of ti and tg over the region of interest 

For demonstration purposes, consider the experimental design at the 3 sites marked as heavy dots 

on Figure 1. The data, Q and its first derivatives with respect to ti and tg, are displayed in Table 

1. We place these values in the data vector yD, as indicated at (2.6): 

yo = ( 3.0489 .12.1970,27.4428 .71.6374 , • • • , 244.4854 f . (3.2) 



Figure 1, 
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Table 1. Design and data for a simple example, 

site ti tg Q aQ/9ti 3Q/8tg 

t(l) 

t(2) 

t(3) 

0.0000 

0.2680 

1.0000 

0.0000 

1.0000 

0.2680 

3.0489 

71.6374 

93.1663 

12.1970 

185.7917 

123.6169 

27.4428 

64.185 

244.4854 

Note that the data are organized into segments of k+1 = 3 elements each, where the i"* segment 

corresponds to t®, the i* design site. Conforming to this pattern, the prior covariance matrix ODD 

is organized as a nxn = 3x3 array of (k-»-l)x(k+l) = 3x3 blocks, where the i* diagonal block holds 

the within-site covariances at t̂ '̂  and the (i,j)* off-diagonal block holds the between-site 

covariances corresponding to the pair (tP'\ t^^. That is. 

ODD = O'̂ CDD = o^ 

CDg-̂ > c^B-2) cSB-3) 

CDg-'> c S P c^P 

CD8-'> cSg-2) c^e-3> 

where, for example. 

c;8-2)=o-2 

Cov[Y(«')(t(̂ >), Y(°o>(tO))] Cov[Y(~>(t(i)) . Y<»°)(t<2))] Cov[Y(°°)(t(*)), Y<°*)(t(2))] 

Cov[Y<»°)(t(»)) , Y ôô tO))] Cov[Y('0>(t")) . Y<»°)(tO>)] Cov[Y(»0)(t(')) , Y(0»(t(2))] 

Cov[Y(°»)(t(̂ >), Y(°°)(t(2>)] Cov[Y(°»)(t(»>), Y<i V ) ) ] Cov[Y(Oi)(t(>)), Y(°i\t(2>)] 

To compute the elements of CDD. we use (2.8), where tiie correlation functions Rj are given at 

(2.9) with Pj = 2. It is evident that CDD is independent of o^. For example, if Sj =0.4 and 

6g = 0.5, the (1,3) and (2,2) elements of CDB"̂ ^ arc, respectively, 

(CDB-^^U = Ri( tP- tf»>) RiXtP- ti^>) = Ri(.2680) Rg'(l) = -0.58935 

(CDS-^^W = -Ri"(tP>- tf i>) R8(tP)-1|>>) = -R,"(.2680) Rgd) = 0.44439 

where we have used the fact that 

Rj'(x) = -2ejxe"*^', Rj"(x) = (-2ej-i-4ejV)e"®^' . 
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Noting that V = (1 0 0 1 0 0 1 0 0)"̂  here, we maximize the likelihood for fixed (Gi, Gg) = (.4, .5), 

using (2.11) and (2.12); tiiis yields M-(.4, .5) = 70.77 and o(.4, .5) = 135.70. Substimtion into 

(2.10) gives the maximum log likelihood at (Gj, Bg) = (.4, .5). A search of the (Gj, Gg) - space 

using a standard numerical optimization routine finds that the greatest log likelihood occurs at 

§1 = .429 and §g = .467; the corresponding maximum likelihood values for \L and o are jl = 69.15, 

o = 135.47. 

Now suppose we wish to calculate the posterior mean and variance of Y(s) at an arbiti'ary site s. 

Equations (2.1) and (2.2) imply 

m ID = (i + CjoCoBkyo - (iv) (3.3) 

o„iD = O^d -QDCDB^CD.). (3.4) 

where we have chosen M- = M̂ and o = o. The data vector yo is given at (3.1) and the matrix CDD 

is available firom the final iteration of the likelihood maximization. The one remaining ingredient 

is the lxn(k+l) = 1x9 vector C,D = <r̂ o,*D. which can be partitioned into it=3 segments: 

c:D=[c;,i')c.7?)c;^)] 

where, for instance, 

C,*̂ > = o-2[ Cov[Y(°°\s),Y<°°W] Cov[Y(°°>(s), Y<> V ^ ] COV[Y(°°)(S), Y<°»)(t(3))] 

(Because of the constant multiplier, C,*D is independent of o .̂) These values are computed in the 

same way as the entries of CDD were computed above, with the correlation parameters 6] and Gg 

fixed at their maximum likelihood values. 

Now predictions can be made at any set of sites S, using (3.3) and (3.4). Here we find, for 

example, the posterior mean at s = (.5,.5) is 69.4 with a posterior standard deviation of 2.7. At 

s = (1,1), the posterior mean is 230.0 and the posterior standard deviation is 19.2. The posterior 

means can be computed quickly, once the n(k+l)xn(k+l) = 9x9 linear system 

CDDg = yD-iiv 
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is solved for the 9x1 vector g. Predictions may then be made at any site s by 

Ks) = miD = ii + C,'Dg . 

Predictions on a 21x21 grid were generated in this way and used to produce the contour graph of 

Q(ti, tg) over the region of interest as shown in Figure 2. 

rv. OPTIMAL DESIGN 

An advantage to the use of random fimctions for prediction is that the posterior variability of Y 

can be used to provide measures of uncertainty, and designs can be sought to minimize the 

expeaed uncertainty in some sense. See Ylvisaker (1987) and Sacks et al. (1989) for references 

to some previous woilc along tiiese lines. Criteria that have been considered are G-optimality 

(minimization of the maximum variance of Y,ID for se T), A-optimality (minimization of the 

average variance of Y,ID for se T), and D-optimality (minimization of the generalized variance 

of YsiD for a specific Sc T). 

Johnson, Moore, and Ylvisaker (1990) establish an interesting link between these criteria and the 

geometric properties of certain designs, for the case in which only the response is observed. They 

show that, when the prior correlation between sites is extremely weak and is a decreasing 

function of an appropriately defined intersite distance, necessary conditions for a design to be D-

optimal are (1.) the minimum distance between pairs of points in the design is maximized, and 

(2.) the number of point pairs separated by this distance is minimized. 

Mitchell, Morris, and Ylvisaker (1991) discuss similar results for the case in which both the 

response and its derivatives are observed. Arguments are given there to justify the maximization 

of I CDD' ^ ^ convenient way to minimize the generalized variance of YSID or YSID'. we 

therefore refer to designs that maximize this determinant as D-optimal. Here, we briefly 

summarize without proof one of their results. Define a product correlation function such that 

R(s-t) is a decreasing function of the Euclidean norm of its argument, lls-tll; for 
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Figure 2. 
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example, the correlation defined by equations (2.3) and (2.9) has this property if Gj = 1 and Pj = 2 

for all j . Next, define a family of correlation functions: 

RK(s-t)=[R(s-t)]'^ 

indexed by the positive integer K. For any design D, let d*(D) be the smallest Euclidean distance 

between any two sites. Fmally, let J(D), called the index of the design, be the number of site 

pairs separated by this distance d*(D). Then the following result holds: 

Theorem: As K tends to infinity, the designs that maximize I CDD ' are such that (1.) d*(D) is 

maximized, and among the designs for which this is true, (2.) J(D) is minimized. 

Designs for which conditions (1.) and (2.) of the theorem are satisfied will be called maximin 

distance designs, or simply maximin designs. 

A practical weakness of design optimality for a given R is that one seldom knows, at design time, 

what correlation function wiU be selected for analysis. This difficulty has a parallel in optimal 

design for regression experiments, where the optimal design is highly dependent on the choice of 

regression model, which is not usually made until the data are analyzed. A pragmatic approach 

there is to base the design on weaker prior information than one expects to invoke in the analysis, 

e.g. use a cubic rather than a linear or quadratic polynomial model for design. Our use of 

maximin designs in this context is similarly motivated. Although the limiting (weak) correlation 

needed to link the maximin property to D-optimality is not useful for analysis, a somewhat 

"pessimistic" design strategy based on weak correlation seems prudent 

In order to constmct specific maximin distance designs, we wrote a computer program to find 

designs that minimize a surrogate criterion fiinction: 

«l>p(D) = [2: idip'(D)]»'P , (5.1) 
i=lj=i+l 

where dij(D) is the Euclidean distance between the ith and jth design points in design D. To see 

the motivation for tiiis, first rewrite (5.1) as 

1 n-l n d*(D) It. 

'^p^^^=7kf2:E(f^)^]''^ • 
d (D) i = i j ^ i Qij(D) 



14 

For pairs of sites separated by distance d*(D), the corresponding term in the sum is one. If a large 

value is chosen for p, pairs of site separated by greater distances will have associated terms in the 

sum that are approximately zero. Hence, for large p . 

<t>p(D) 
_ J'^(D) 

d'(D) 

For large enough p, minimizing (t>p is primarily accomplished by maximizing d*, and to a much 

smaller degree by minimizing J. 

Our computer program for minimizing <|>p implements a simple point-exchange algorithm based 

on the optimization technique of simulated aimealing. (See Kiricpatrick, Gelatt, and Vechhi 

(1983) for a discussion of simulated annealing, or Bohachevsky, Johnson, and Stein (1986) for a 

generalization of this technique applied to a statistical problem.) Briefly, a search begins with a 

randomly constructed design, which is sequentially modified as follows. First one site from the 

design is randomly selected, and each coordinate of that site is subjected to a (trial) random 

penurbation. (Specific distributions of perturbations used, and other particulars of the search, are 

specified for the example application of Section V.) If the modification is such as to decrease the 

value of (t>p, the change is made. If the value of (|>p would not be decreased by the change, a 

random choice is made eiUier to make the change anyway or to ignore the change. The 

probability that such a change (to a design with higher (t>p) is made decreases with the amount of 

increase which would result in (|)p. The probability that a change resulting in any given increase 

in (|>p is made also decreases as the optimization proceeds, according to an "annealing schedule". 

V. EXAMPLE REVISITED 

We iK)w return to our example model, described by equation (3.1), to demonstrate an application 

of this methodology for an 8-dimensional input vector. For this purpose, all eight inputs were 

scaled as in Section in so that the range of each tj was the unit interval, T=[0,1]*. Initially, we 

applied the prediction method to the design used by Worley (1987) in his demonstration of a 

methodology he calls deterministic uncertainty analysis, which uses both observed values of Q 

and its first derivatives. Although his primary interest is in exploring how a specified probability 

distribution on t is propagated to Q, his analysis includes an interim step that involves prediction 
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of Q at sites not included in the design, using essentially a first order Taylor series expansion of 

Q. In his demonstration, Woriey's experimental design was a 10-run Latin hypercube sample, 

generated using a non-uniform distribution across T, and he compared predictions of Q with its 

actual value at sites in a 50-run Latin hypercube test set, generated using the same distribution. 

Worley reports root mean square errors, over these 50 sites, of 1.89, 2.45, and 2.37 for Uiree 

versions of his method; for comparison, the range of true values of Q over the test set is 24.97 to 

144.57. Usingourprocedure, the corresponding root mean square error is 0.610. Encouraged by 

this result we undertook a more extensive investigation using the same model. 

We first tried two different experimental designs, each of 10 runs. The first design is a Latin 

hypercube sample, as introduced by McKay, Beckman, and Conover (1979). (Actually, our 

version of the Latin hypercube is a bit different than what is described in this reference, since we 

used 10 equally-spaced values within the range of each input instead of randomly chosen values 

from 10 non-overlapping intervals of equal length; we suspea that this modification has very 

littie effect in this application.) One hundred random Latin hypercube samples were generated, 

and the one used here was selected so as to minimize the largest correlation between any two 

columns of the design matrix. 

We also generated a maximin distance design in 10 runs using the algorithm described in Section 

rv. After some initial experimenting to find annealing parameters that appeared to be effective 

for this problem, our first attempt at finding an optimal design consisted of ten searches, in which 

each element of the starting design matrix was chosen ftom the unit interval, perturbations were 

nomially distributed with a standard deviation of 0.3 (except when this would result in a value 

outside the unit interval, in which case the change was modified to yield either 0 or 1), p = 10(X), 

and a schedule of 1(X) "temperatures" was used. Five of these searches resulted in designs with 

d* = 2, and the other five produced smaller values. Of the five with d* = 2, one had an index of 

42, three had indexes of 38, and one had an index of of 37. These five designs (unlike the others) 

placed all sites in the comers of T. 

Following this last observation, ten additional searches were made using a modified search in 

which only designs on the 2* comers of T were considered, i.e. each coordinate in the initial 

design was 0 or 1 with equal probability. Here, once a site was seleaed for modification, the 

level of an individual coordinate was reversed with probability 0.3; again p = 1000. Of these 

searches, nine yielded designs with d* = 2, one of these with index 40 and the remaining eight 
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with index 36. Our (tentative) conclusion based on this search was that these last eight designs 

are optimal, although they are not all equivalent. The design we chose from this set is given in 

Table 2. 

The correlation function associated with each of the eight inputs was chosen to be of the form 

shown in equation (2.9) with Pj=2. Using each of the two designs individually, the parameters of 

the process di, a, and Gj, j=l,2, • • • ,8) were estimated by the method of maximum likelihood, as 

described in Section III. In order to evaluate how well our predictions match the true model, we 

selected two "test sets" of sites at which to compare Q and Q. The first of these is a random 

sample of 4(X) sites, selected firom the uniform distribution over T. The second set of test sites is 

the 256 comers of T, i.e. those points at which each of the inputs takes either the high or low 

extreme value in its range. The first set is intended to provide an indication of how well each 

predictor does throughout the interior of T, while the second allows us to compare their 

performance at the extreme sites. Values of Q range from 12.4035 to 230.6478 in the first test 

set and ftom 7.8197 to 309.5756 in the second. Predictions were made for each design, at the 

sites in each test set and errors of prediction (Q - Q) were calculated. These errors arc 

sununarized in Table 3; errors for the maximin design are based on the 246 comer points not 

included in the design. 

Table 3 indicates mixed results for the predictors based on these two designs. The Latin 

hypercube appears to produce better predictions on the random test set while the maximin 

Table 2. A maximin distance design in [0,1]* for n = 10. 
(d' = 2,J = 36) 

tl 

1 
1 
1 
0 
1 
0 
0 
0 
0 
1 

2̂ 

1 
1 
0 
1 
1 
1 
0 
0 
0 
0 

h 

0 
1 
0 
0 
0 
1 
1 
0 
1 
1 

M 

0 

0 

0 

0 

0 

t̂  

1 
0 
1 
1 
0 
0 
1 
0 
0 
1 

t<j 

0 
0 
0 
1 
1 
0 
0 
1 
1 
1 

t7 

1 
1 
0 
0 
0 
0 
1 
1 
0 
1 

i i 

1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
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Table 3. Comparison of predictive errors for two test sets: 
Latin hypercube design and maximin design. 

Test set 

Design 400 random points in T 256 comers of T 

Latin hypercube 

maximin design 

maximum error = 
minimum error = 
root m.s.e. = 
Corr[ Q,Q ] 

5.68 
-11.82 

3.162 
0.998438 

maximum error = 15.73 
minimum error = -40.69 
root m.s.e. = 9.217 
Corr[Q,Q] = 0.995634 

maximum error = 5.12 
minimum error =-28.34 
root m.s.e. = 9.547 
Corr[Q,Q] = 0.990784 

maximum error 
minimum error 
rcx)t m.s.e. 
Corr[ Q,Q ] 

15.67 
•12.78 
4.681 
0.998860 

distance design does a somewhat better job on the comers of T. These results may be due in part 

to the proximity of each design to the two test sets. To investigate this, we calculated Euclidean 

distances from each site in the test sets to each of the two experimental designs. The minimum, 

maximum, and average distances ftom points in each test set to each design are given in Table 4; 

again, distances firom the maximin design are calculated only on the 246 comer points not 

included in the design. As we suspected, the Latin hypercube design is considerably closer (on 

average) to the random test set than is the maximin design, and this may partially explain the 

difference in performance we see here. Suiprisingly, the Latin hypercube design is also 

somewhat closer (on average) to the 2S6-site test set than is the maximin design. On this test set 

however, the maximin design yielded a smaller root mean square error by a factor of about 2, and 

a smaller absolute error by a faaor of about 3. 

Table 4. Comparison of design to prediction-site distances for two test sets: 
Latin hypercube design and maximin design. 

Test set 

Design 4(X) random points in T 256 comers of T 

Latin hypercube 

maximin design 

minimum distance =0.187 
maximum distance = 1.148 
average distance = 0.788 

minimum distance =0.591 
maximum distance = 1.445 
average distance = 1.142 

minimum distance =0.903 
maximum distance = 1.478 
average distance =1.107 

minimum distance = 1.0(X) 
maximum distance = 1.732 
average distance =1.342 
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Anotiier relevant consideration in the comparison of the two designs is the nature of the true 

function Q, which appears to be mainly a function of the first two inputs. When one considers the 

projection of the designs into the low dimensional subspaces defined by the coordinates, it is 

clear that the Latin hypercube design does better than the maximin design, even if one adheres to 

the maximin criterion. (For example, the projection of the Latin hypercube design onto any 

coordinate is a maximin design in that one-dimensional space.) On the other hand the maximin 

design, by definition, spreads the design sites as much as possible in the full k-dimensional space, 

whereas the intersite distances in the Latin hypercube design are to some extent left to chance. 

We therefore continued our investigation by generating a couple of "compromise" designs, both 

of which are Latin hypercube designs in that their one-dimensional projections onto every 

coordinate produces equispaced sites on [0,1]. 

The design we shall call compromise #1 is a modification of our maximin design to give it the 

desired one-dimensional projections. Starting with each column of the design matrix of Table 2, 

the five O's were replaced with the values 0,1/9,2/9,3/9, and 4/9, assigned in random order, and 

the five I's were similariy replaced with 5/9, 6/9, 7/9, 8/9, and 1. This procedure is essentially 

the same as randomly selecting a Latin hypercube design ftx)m among those which, if each entry 

were rounded to 0 or 1, would be the maximin design given in Table 2. 

Compromise #2 is intended to apply the maximin criterion within the class of Latin hypercube 

designs. It was constmcted using our simulated annealing algorithm with minor modifications. 

A randomly constmaed Latin hypercube was used as the starting design in each search, and trial 

permrbations were created by exchanging two entries in a randomly chosen column of the design 

matrix; the result of any such exchange is another Latin hypercube. Although 20 searches were 

attempted, the apparent maximin design in this class was generated only once, so it is quite 

possible that the result is only a "near maximin" design. 

Summaries of the prediction errors generated at the test sets by these two designs, and of 

distances from the test sets to the designs, are given in Tables 5 and 6. Compromise #1 seems to 

be particulariy successful in comparison to our first two designs, in that root mean square errors 

arc smaller than werc attained prcviously for either design, for both test sets. Although the error 

summaries arc somewhat less impressive for compromise #2, they still represent general 

improvement over the first two designs examined, yielding a somewhat larger root mean square 

error than the maximin design on the comers of T, and more accurate predictions on the interior 

of T than either the maxinun or (original) Latin hypercube designs. Distances from these 
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Table 5. Comparison of predictive errors for two test sets: 
two compromise Latin hypercube designs. 

Test set 

Design 4(X) random points in T 256 comers of T 

compromise #1 

compromise #2 

maximum error = 5.76 
minimum error = -2.43 
rootm.s.e. = 0.765 
Corr[ Q,Q ] = 0.999862 

maximum error = 5.66 
minimum error =-6.63 
rootm.s.e. =1.584 
Corr[ Q,Q ] = 0.999485 

maximum error = 10.04 
minimum error = -10.28 
root m.s.e. = 3.222 
Corr[Q,Q] = 0.999414 

maximum error = 14.19 
minimum error = -27.94 
root m.s.e. = 6.242 
Corr[Q,Q] = 0.997846 

Table 6. Comparison of design to prediction-site distances for two test sets: 
two compromise Latin hypercube designs. 

Test set 

Design 400 random points in T 256 comers of T 

compromise #1 

compromise #2 

minimum distance = 0.325 
maximum distance =1.168 
average distance = 0.774 

minimum distance = 0.378 
maximum distance =1.112 
average distance = 0.772 

minimum distance =0.910 
maximum distance = 1.552 
average distance = 1.124 

minimum distance =0.903 
maximum distance = 1.445 
average distance = 1.100 
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Latin hypercubes to the points in the test sets appear to be simUar for each test set. They are also 

similar to the distances reported for the first Latin hypercube, with the exception of minimum 

distance to the 400 point test set, which is somewhat larger for the compromise designs. 

Finally, to see how much was gained by using the derivative information, we repeated the 

example for a couple of the designs, using only the observed Q at each of the ten design sites, 

with the same type of correlation function. For the Latin hj^iercube design, the maximum 

absolute errors and root mean squared errors were roughly four times larger than those shown in 

Table 3, while for compromise #1, these errors were roughly ten times larger than those shown 

for the same design in Table S. 

VI. CONCLUSION 

We have described a generalization of the methods of Currin et al. (1988), for developing a fast 

predictive approximation of a computer model based on evaluations of the output and its partial 

derivatives at a set of design sites. A generalization of the woik of Johnson, Moore, and 

Ylvisaker (1990), as elaborated in Mitchell, Morris, and Ylvisaker (1991), provides an asymptotic 

argument for the tise of maximin distance designs in this context. In the example calculation 

described here, a comparison of predictions based on a Latin hypercube design and a maximin 

design lead to mixed results, with the Latin hypercube performing better on the interior of the 

input domain and the maximin design performing better at the extremes of the region. Two 

compromise designs, which are constructed in an effort to preserve the strengths of both the Latin 

hypercube structure and the maximin criterion, are more generally successful. 

While the design and analysis procedures described here are straightforward in principle, some 

questions will require further attention. In particular, the type of correlation function used in an 

analysis may have considerable influence on the predictions. Our somewhat arbitrary selection of 

a correlation function has produced reasonably good results in the example of Section V. 

However, more complicated computer models with inputs of higher dimension will undoubtedly 

pose more difficult challenges, and both theoretical consideration and empirical investigation of 

the effea of different correlation functions will be important Further investigation of what may 

be expected firom maximin (and other "optimal") designs, Latin hypercube designs, and designs 

constructed from other approaches, is also in order. When these and other issues are better 

resolved, it will eventually be important to consider how both design and analysis may be 

implemented sequentially as data are collected. 
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