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Abstract .  A Bayesian solution is given to the problem of making inferences 
about an unknown number of structural changes in a sequence of observations. 
Inferences are based on the posterior distribution of the number of change 
points and on the posterior probabilities of possible change points. Detailed 
analyses are given for binomial data and some regression problems, and nu- 
merical illustrations are provided. In addition, an approximation procedure to 
compute the posterior probabilities is presented. 
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i .  Introduction 

Let Yl,. -. , YT be a sequence of observations taken at equally spaced intervals. 
A sequence of random variables Y1,. . .  , YT is said to have n change points at 
j ( 1 ) , . . .  , j (n)  (1 < j(1) < . . .  < j(n) < T) if the density of y = (Yl,. . .  , YT)' has 
the form 

(1.1) p(y l Jj(1) n " . n  Jj(n), N = n ,  Oo,... , On)= r I p i ( y i  l Oi) 
i=0 

where Jj(i) is the event that  a sequence has a change point at j(i); N is the number 
of change points; yi = (Yj(O+I,... , Yj(i+l))', j(O) = O, j (n  + 1) = T; Pi(Yi I 0~) is 
the density of Yi with a parameter Oi and Oi ¢ Oi, i ¢ i r. In this paper, we consider 
the problem of making inferences about change points under the conditions that  
the places of change points, the number of change points and the values of Oi's are 
unkIlown. 

Since Page (1954), the change point problem has been considered by many 
authors from various viewpoints. For example, changes in a sequence of ran- 
dom variables have been considered by Bhattacharya and Johnson (1968), Pett i t t  
(1979), Schechtman and Wolfe (1985), Lombard (1987) and Carlstein (1988) from 
the nonparametric viewpoint; by Hinkley (1970) and James et al. (1987) from 
the maximum likelihood viewpoint; and by Chernoff and Zacks (1964) and Smith 
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(1975) from the Bayesian viewpoint. Changes in the regression case have been 
considered by Quandt (1958, 1960) and Hinkley (1969, 1971) from the maximum 
likelihood viewpoint; and by Bacon and Watts (1971), Booth and Smith (1982) 
and Tsurumi et al. (1986) from the Bayesian viewpoint. Changes in the time- 
series case have been considered by Box and Tiao (1965), Harrison and Stevens 
(1976) and Kitagawa (1987) from the Bayesian viewpoint. (For other references, 
see Poirier (1976), Zacks (1983) and Broemeling and Tsurumi (1987)). 

However, most studies have been concerned with the detection of a single 
change or the detection of more than one change using a stepwise procedure; as a 
result, few studies are available on the problem of detecting more than one change 
without using a stepwise procedure. Smith (1980) is one of those few studies. He 
analyzed the Lindisfarne scribes problem and gave posterior probabilities of up to 
two changes. 

In this paper, we deal with the problem of detecting more than one change 
point without using a stepwise procedure from the Bayesian viewpoint. For this, 
we propose a method to evaluate the posterior distribution of N and the posterior 
probability of each ,It unconditionally, using the predictive log likelihood proposed 
by Kitagawa and Akalke (1982). We also present an approximation procedure for 
decreasing the amount of computation. 

In Section 2, a Bayesian formulation of the problem is presented. In Section 3, 
the detailed analysis is given for binomial data and the Lindisfarne scribes problem 
is analyzed. In Section 4, an approximation procedure is presented. In Section 
5, changes in the regression case are studied for two specific models, the simple 
regression model and the discrete spline; numerical illustrations are also provided. 

2. A Bayesian formulation 

In this section, we derive the posterior distribution of N and the posterior 
probability of Jr. 

When the sequence is assumed to have n change points at j ( 1 ) , . . . ,  j (n),  
the density of y is given by (1.1). Assuming a prior density w(0) for 0; where 
9 = (80,... , 0n), the integrated likelihood of {Jj(]) N.. .  n J j (n) ,  N = n} is written 
38 

t J j ( ] )  n . - .  n N = 

"~ / ' ' "  ] P(Y I Jj(1) n - . . n  ']j(n), N --- It, O)¢d(O)dO. 

By Bayes' theorem, the posterior probability of Jj(1) n .  - • n Jj(n) given y and n is 
provided 38 

P(Jj (1)  n . . . n J~(n) I Y,  N -- n)  

P ( Y  I Jj(1) n . . .  N gj(,~), N = n ) w ( g j ( 1 )  n . .  . n j¢(n) I N = It) 

P ( Y  I N = n )  

where ~d(Jj(1) n " "  n Jj(n) [ N = n) is a prior probabil i ty of Jj(1) n - - .  N Jj(n) given 
n and 
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p ( y  I N = n) 

= ~_,p(y  l Jj(1) N. . .rhJj(n) ,  N = n ) w ( g j ( 1 ) n ' . . A J j ( n )  l N = n )  

~"~n --~ {(j(1) , . . .  , j(n)) I 1 < j(1) < - . .  < j (n)  < T}. 

Taking the sum of P(Jj(1) O..-N Jj(~) I Y, N = n)'s which involve Jr, the posterior 
probability of Jt given y and n is obtained as 

p(Jt } y, N = n )  = ~ , p ( J y ( , ) n . . . n J j ( n )  } y, N = n )  
~n,t 

~t,~,t = {( j (1) , . . .  , j(n)) I 3k such that j(k) = t 
l < k < n ,  l<j(1)<. . .<j(n)<T}.  

On the other hand, the posterior probability of N = n given y is provided by 
Bayes' theorem as 

P(Y I N = n)w(N = n) 
p(N = n [y )  -- p(y) 

where ¢z(N -- n) is a prior probability of N = n and 

T - 1  

p(y) --- ~ p ( y  l N - -  n ) w ( N = n ) .  
n=0 

The posterior probability of Jt given y is obtained as 

T - 1  

P(Jt l Y ) =  Z P ( J t  l Y, N = n ) p ( N = n l  Y)- 
n : ]  

The necessary ingredients to evaluate the posterior probabilities in the above 
formulation are p(y I -/3"(1) A . . .  N Jj(~), N --- n), w(Jj(1) R - . .  N Jj(n) I N = n) 
and w ( g  = n). In this paper, as w(Jj(1) r~ . . .  N Jj(,~) I N = n) and w(N = n) we 
assume the following prior probabilities used in Smith (1980) and Kitagawa and 
Akaike (1982). 

o3(gj(1) n . . - N  J j (n )  I N = ~)  - 1 
T _ I C  n 1 < n < T 

1 
~ ( N = n ) =  ~ O < n < T .  

The remaining ingredient, the likelihood of J -- {Jj(1) n . . .  N Jj(n), N = n} is 
provided concretely for some models in Sections 3, 5.1 and 5.2. In these sections, 
following Kitagawa and Akaike (1982) and according to the entropy maximization 
principle (Akaike (1977)), the model p(y I J, O) is specified by the maximum 
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likelihood estimate ~ of 9. Then the goodness of the model is evaluated by its 
expected log likelihood Ez  log p(Z I J, ~); where Ez denotes the expectation under 
the assumed distribution of Z,  p(z I J, 9). As an estimate of the expected log 
likelihood, the predictive log likelihood is used, which is defined by 

(2.1) logppred(y [ J) = logp(y ] J, O)-  Ey[logp(Y ] J, O)-  Ezlogp(Z ] J, B)] 

where Ev denotes the expectation under the assumed distribution of data. Using 
(2.1), we define the likelihood of J. 

3. Lindisfarne scribes problem 

The Lindisfarne scribes problem is one of the welt-known examples of the 
change point problem. The aim in this problem is to make inferences about changes 
of scribe using the data on the number of occurrences of present indicative 3rd 
singular endings s and 5 in each section of Lindisfarne. Table 1 shows the data 
taken from Smith (1980). These data have been analyzed by Smith (1980), Sil- 
vey (1958), Petti t t  (1979) and Carlstein (1988). The latter three authors drew 
the conclusion using some test statistics that the change occurred after the 5th 
section. Smith (1980) evaluated the posterior probabilities of up to two changes 
and concluded that the change occurred after the 4th section and again after the 
5th section. In this section, we apply our method to the data of Lindisfarne and 
compare our results with theirs. 

Tab le  1. N u m b e r  of o c c u r r e n c e s  of  p r e sen t  ind ica t ive  3rd  s i n g u l a r  e n d i n g s  s a n d  5 for d i f ferent  

s ec t ions  of  L ind i s fa rne .  

Sec t ion  s 5 To t a l  

1 12 9 21 

2 26 10 36 

3 31 13 44 

4 24 6 30 

5 28 24 52 

6 34 11 45 

7 39 9 48 

8 46 11 57 

9 41 7 48 

10 19 3 22 

11 17 3 20 

12 17 4 21 

13 16 4 20 

Let mr, Yt be the numbers of occurrences of present indicative 3rd singular 
endings and 5-forms at the t-th section (t = 1, . . .  , 13), respectively. Similarly to 
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Smith (1980), we assume the binomial distribution with parameters rot, Oi for yt 
(t = j(i) + 1,.. .  , j( i  + 1), i = 0 , . . .  , n). Then the integrated likelihood of J is 
written as 

where 0 = (00,...  , 0n). 

j ( i+ l )  

i=0 t=j(i)+ l 
m~ Cy, O y~ (1 - Oi)m~-Y~w(O)dO 

As w(O), Smith (1980) assumed a conjugate prior distribution. This is one of 
several possible selections. But in this paper, as mentioned in the previous section, 
we specify the model by the maximum likelihood estimate 0 of 0. Then we derive 
the predictive log likelihood (2.1) to define the likelihood of J. 

From the assumption for Yt, the maximum likelihood estimate of Oi is obtained 
as Oi = ~ Yt/ Y~ mt (i = 0 , . . . ,  n), and the maximum log likelihood is obtained 

t t 
as 

13 ~ j ( i+ l )  

I°gP(Y[ J 'O)= EI°gm*Cy* + E {ytlogO~+(mt-yt)log(1-Od}. 
t= l  i=0 t=j(i)+l 

It may be a possible selection to use the maximum likelihood as an estimate of 
P(Y [ J). However, the maximum log likelihood has the bias 

logp(y lJ ,  O) -  Ez  logp(Z [ J, O) 
13 n 

= E ( l o g  m, Cu~-  Ezlogm, Cz , )+ E f i ( O i -  Oi) l o g - -  
t= l  i=0 

j(i+l) 
where fi ----- E mt (i = 0 , . . . , n ) .  

t=j(i)+l 

(1 - Oi) 

This bias increases in average as dim(0) 

5} ~4 _ 2~3 + 4~}2 _ 30i + 
• 

fi Oi (1 - 

logppred(y [ J) 

= I ° g P ( Y l J '  ~}) - ~i--o {1 

1 

+ k~i(1 - ~)  
+ 

becomes large, which means that the use of the maximum likelihood causes an 
overestimation of the number of change points. To prevent such an overestimation, 
it is necessary to correct the bias. However, since the true parameter O is unknown, 
the present form of the bias is useless. Consequently, we employ the predictive log 
likelihood (2.1). 

The expectation of the bias can be written as 

Ey[logp(Y [ J, O) -  Ez logp(Z  [ J, 0)] 

O i 
= 2.., 1 + TeT(i-Ta7 + i=o f i  Oi (1 - Oi)= + 0 ( / 2 3 )  

Using this form, we define the predictive log likelihood in the current problem as 
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Table 2. Posterior d is t r ibut ion of N and  Smi th ' s  resul ts  

n p (N  = n [ y )  

0 0.003 

1 0.185 

2 0.210 

3 0.194 

4 0.155 

5 0.109 

6 0.068 

7 O.O38 

8 0.020 

9 0.010 

10 0.004 

11 0.002 

12 0.001 

Mean 3.4 

Mode 2 

Median 3 

Smi th ' s  

p ( g  = n [ y )  

0 0.000 

1 0.069 

2 0.931 

Table 3. Posterior probabili t ies of Jt's. 

t p(Jt l Y) 
1 0.265 

2 0.176 

3 0.215 

4 0.544 

5 0.744 

6 0.382 

7 0.205 

8 0.210 

9 0.158 

10 0.151 

11 0.158 

12 O. 146 
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As the estimate o f p ( y ] J ) ,  we use exp{logppred(ylJ)}.  
Now we apply our method to the data of Lindisfarne. Table 2 presents the 

estimate of each p(N = n ] y) as well as the posterior mean, mode and median 
of N and Smith's results. Table 3 presents the estimate of each P(Jt I Y). It is 
difficult to precisely compare our results with those of Smith because he has not 
presented the posterior probabilities of more than two changes; nevertheless, there 
seem to be some differences between them. While the posterior probability of two 
changes is quite dominant in Smith's results, it is not so dominant in our results. 
This difference may be caused by the difference between the assumed distributions 
for 0 and by the different policy for the bias correction. However, in spite of this 
difference between both results, we can agree with Smith's conclusion. Actually, 
if we take the posterior mode of N, the conclusion that  there are two changes is 
obtained. From Table 3, it is seen that the top two P(Jt I y)'s are obtained at the 
4th and 5th sections. 

4. An approximation procedure 

We call the evaluation of the posterior probabilities by the method mentioned 
in Section 2 the full computation. In the Lindisfarne scribes problem, the full 
computation was feasible. However, the number of estimations of p(y I J) 's  in 

T - 1  

the full computation, which is given by ~ T-1Cn, increases exponentially with 
n = 0  

the size of the sequence and quickly the full computation becomes infeasible. In 
this section, we present an approximation procedure which enables us to evaluate 
p(Jt ] y)'s even when the full computation is infeasible. 

The flow of the approximation is as follows: 

0. Calculate p(y I N = 0), and set n ~- 1. 

1. Calculate P(Jt I Y, N -- n) (1 < t < T) by the method in Section 2. 

2. Let m be the number of repetitions of Step 1. If n < m then set n ~- n + 1 
and return to Step 1. 

3. Determine whether n is sufficiently large to terminate. If so, then go to 
Step 7. If not, then set n ~- n + 1. 

4. Let a be a small value. Make the index set In, ,  -- {i I P(Ji ] Y, N = 
n - 1 ) < a  l < i < T } a n d c a l c u l a t e g ( n , t ) -  E p ( y I J )  ( l _ < t < T )  under the  

following assumption: 

T - 2 C n - l g ( n -  1, t) 
T_2Cn_ 2 t E In,a 

g ( n , t ) =  E p ( y l j ) +  y~. p ( J t l y ,  N = n - 1 ) g ( n , k )  
~ , ,  keIn , 1 - P( gk I Y,-AT--- n :  i i t ~ In,,  

' n - - 1  
~ , t  = { ( j ( 1 ) , . . . ,  j(n)) I ( j ( 1 ) , . . . ,  j(n)) E 12n,t, j(i)  ~ In,,  1 < i < n}. 
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5. Using g(n, t)'s and the relations 

t) 
P(Jt l Y, N = n ) - =  T-1Cnp(y ] N = n )  

T-1 
p(y I N  = n) - 1 T-lC~--------n E g(n, t), 

t--1 

calculate P(Jt I Y, N -- n) (1 _ t < T). 
6. Return to Step 3. 
7. Calculate P(Jt I Y) (1 __< t < T) assuming the prior 

1 k < n  
w(N = k) = n + 1 - 

0 k > n .  

The number of estimations of p(y [ J) ' s  is decreased in Step 4 by approxi- 
mating g(n, t)'s. The approximation of g(n, t) is introduced as follows. Consider 
the case where Jk is assumed to be an unimportant event, that is In,~ = {k}. In 
this case, it may be reasonable to consider assigning approximate values to the 
predictive likelihoods of J ' s  which involve Jk in order to decrease the amount of 
computation. To obtain such approximate values, we set the following two as- 
sumptions. The first assumption is that the mean of the predictive likelihoods 
of J 's  which involve dk when N = n is equivalent to the mean of those when 
N = n - 1. By this assumption, we have 

g(n, k) = T-2Cn-lg(r~ - 1, k) 
T - 2 e n - 2  

On the other hand, g(n, t) (t # k) can be written as 

g(n, t) = gl(n, t )+  g2(n, t) 

g~(n, t) = E p ( y  I J), g2(n, t) -- E p(y l J). 

We evaluate gl (n, t) by the method mentioned in Section 2. However, since g2 (n, t) 
is the sum of the predictive likelihoods of J ' s  which involve Jk, we assign an 
approximate value to it. An approximate value can be obtained using the relation 

E g 2 ( n ,  t) = ( n -  1)g(n, k). 
t#k 

This relation suggests that we may distribute ( n -  1)g(n, k) into g2(n, t)'s (t # k). 
Using the posterior probabilities when N = n - 1, we set the second assumption 

p(J, I ~, N = n - 1)/(n - 1) (n - 1)g(n, k) 
g2(n, t) = 1 - {P(Jk I Y, N - -  n -  1 ) / ( n -  1)} 

t#k .  
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The approximation of g(n, t) has been obtained. 
The above two assumptions may be ad hoc. However, a close approximation 

increases the amount of computation. We consider that they are acceptable ones 
in practical application. 

In the approximation procedure, there are some arbitrary constants, m and 
a. A basic strategy as to their choice is to chose the largest m and smallest c~, as 
large and small, respectively, as the computer may permit. By some experiments, 
we have found that: (i) When m is greater than the mode of N, the possibility to 
miss change points is very small. (ii) When a is less than a certain value, as the 
number of elements of In,~ is less than about T - n - 6 ,  relatively good approximate 
values are obtained. 

5. Detection of changes by regression models 

In this section, we give the estimate of p(y ] J) for two regression models, the 
simple regression model and the discrete spline. In addition, we show an example 
of the application of our method using the discrete spline. 

5.1 The simple regression model 
Assume the simple regression model 

Yt = ai +/~it + et ct ~ i.i.d. N(0, a 2) j(i) + 1 < t < j( i  + 1) 

for Yi. Then the density of Yi can be written as 

(5.1) {1 } ps(y  I = e x p  ( y i  - AiI.Li)'(yi - Ail.ti) 

where #~ = (ai,/3~)', ~ = dim(y~) and 

i j ( i)  + 1 Ai = j(i).+ 2 

j(i  + 1) 

Further, since the simple regression model is inapplicable to y~ when ~ -- 1, we 
assume the following outlier model for such Yi. 

( 5 . 2 )  

where/~i = ((~) and ¢ denotes the standard normal probability density function. 
Using (5.1) and (5.2), the density of y can be written as 

p(y l J, 0) = I I  PN(Yi I1~, (r 2) 1-I PS(Yi I I~i, a 2) 
iEI1 iEIG 
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where 0 = ( /*~, . . . ,  tt'~, a2), I 1 ---- { i l  ~ = 1 0 < i < n} and I c  = { i l  ~i > 2 
0 < i < n}. Therefore the maximum likelihood est imate 0 of 0 is obtained as 

&i = Yj(i)+l for i E 11 

~ i  t - 1  t = (AiAi) AiY i for i E Ia 

52 1 
= "T E (Yi - Aif*i)'(Yi - Aifti) 

iGIo 

and the maximum log likelihood is obtained as 

T T 
l ° g P ( Y l J '  O ) =  - 2  l°g 2rr62 2" 

The bias of the maximum log likelihood is given by 

logp(y [ J, O ) -  E z l o g p ( Z  [ J, O) 1{ } 
= 26-2 rcr2 + E ( a i -  &i) 2 + E ( # i -  f~i) 'A~Ai(#i-  fzi) - -  

iEI1 iEIG 

T 

2" 

Since 

we have 

( ~ i  - &i)  2 
a2 ~ X~I) 

( , i  - fti)'d'~di(Iti - fti) 2 
a2 ~ X(2) 

To 2 ~ X 2 

ki - -2#IG 
i 

for i E 11 

for i E Ic  

Ey[ logp(Y  I J, O ) -  E z l o g p ( Z  ] J, ~})] = 
T ( T  + #11 + 2# IG)  T 

2 

where X~k) denotes the x2-distr ibution of order k and # I ,  the number  of elements 
included in the set I , .  Therefore the predictive log likelihood is obtained as 

1ogppred(y [ j )  = _ T  log27r6.2 _ T ( T  + #11 + 2 # I c )  

The est imate of the likelihood p ( y i J )  is obta ined as exp { logppred(y iJ)} .  
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5.2 The discrete spline 
Harrison and Stevens (1976) presented three examples of sequences including 

a single change, which are shown in Fig. 1. Although they generated these se- 
quences by the linear growth model, it is possible to represent them by the model 
mentioned in the previous section. For example, the outlier case can be repre- 
sented by applying model (5.1) to the data at 1 _< t < 4 and 6 _< t < 10 and 
applying model (5.2) to the data at t = 5. However, if the data at 1 < t < 4 and 
6 < t < 10 are on a curve instead of a straight line, the model mentioned in the 
previous section becomes inappropriate. For such a case, a state-space model for 
regression, called the discrete spline by Tanabe and Tanaka (1983), is useful. 

Yt 

X 
X 

X 
X 

X X Yt 
X 

X 
X 

X 
X 

X 

X 
X 

X 
X 

X Yt 

X 
X 

X 

X 

X 

X 

x 

x 

t t 

F i g .  1. E x a m p l e s  o f  s e q u e n c e s  i n c l u d i n g  a s i n g l e  c h a n g e .  

The discrete spline for Yi is defined by 

(5.a) 

(5.4) 

Yt = xt + et et ~ i.i.d. N(O, a 2) j(i) + 1 < t < j(i  + 1) 

x t = 2 x t _ l - x t _ 2 + ~ t  ~ t ~ i . i . d . N  O, V j ( i ) + 3 < t < j ( i + l )  

where xt denotes the trend. From (5.3), the density of Yi is given by 

p(yi [ Di, vi, a2) = (27c)-~'/2a-~' exp { - - 2 ~ ( Y i  -- xi) ' (yi  -- xi) } 

where tti = (xj(i)+l, xj(i)+2)t, Yi = ( X j ( i ) + 3  , • • . ,  Xj(i+l) )' and xi = (#~, v i')'- 
From (5.4), the prior density of vi is given by 

o] 
D ~ - . . . 

1 - 2  1 

exp A2 (Dir.i)'Dxi} 
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Therefore the density of y~ corresponding to the discrete spline is given by 

(5.5) pD(u~ l t,~, 0"2, :~) 

= / p ( u ~ l u ~ ,  ~,~, ~)~(v~ l u~, 0"2, :~)d~,~ 

= (21r)-'~/2a - '~ IV/ 1-1/2 exp --2-~a2(y i - i~i )  ~ (Yi  

where Vi = I,~ + (1/A2)B~B~,  I,~ denotes the identi ty matr ix  of rank hi and 

A i 

1 0 

0 1 

1 - 2  B i -.~ 

0 0 

0 0 

1 0 

2 1 
: 

hi - 2 t~ - 3 • • • 1 

. 

On the other hand, since the discrete spline is inapplicable to yi  when hi _< 2, we 
assume the following model for such Yi.  

j ( i + l )  l ff) (T 
(5.6) PN(~ l U,, 0"~) = 1-[ 

k=j(~)+l 

where /~  = (a~). Using (5.5) and (5.6), the density of y can be wri t ten as 

p ( y  ] J, O, )~) = r l  PN(Y i  ] ]~i, 0"2) 1 - I  BD(Yi  ] I~i, 0"2, ,,~) 
icI1uI2 iGIG 

where 0 ---- ( j [ ~ , .  " " , ~[~n,! a2), Ix = {i[  hi = 1 0 < i < n}, /2 = {i[  hi = 2 0 _< 
i < n} and I c  = {i I ~ -> 3 0 < i < n}. In this model, the maximum likelihood 
est imate of A is hard to obtain analytically. Consequently, we first assume tha t  A 
is fixed• Then we obtain the conditional maximum likelihood est imate 0 of 0 as 

&~ = Yj(i)+l for i E I1 

~i = Yj(i)+l + Yj(i)+2 for i 6 12 
2 

= (AiV~ Ai) AiV i yi  for i • IG ~i t -i -i t -I 

} ~2 ~ (yk- ~)2 + Z (u~- A" "y-'  = ~u~) i (Yi - Ail2i) 
[ ieI2 k=j(i)+l ieIc 

and the conditional maximum log likelihood as 

l o g p ( y [ J ,  O, A) = -T log27rS~  1 T - ~  Z log I v, I -7 .  
i6Ia 
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The bias of the conditional maximum log likelihood is given by 

logp(y [ J, O, A) - Ez logp(Z [ J, O, A) 

= 2~ { T~2 + Z (~ -a')2 + Z 2(~-a,)  ~ 
iEla iEI2 

- #~) A~V~ A~(#~ - fz~) ~ - - -  + ~ ( . ,  ^ , , _ ,  

) 
i ¢ l c  

T 
2 

Since 

we have 

( ~  - a~)  ~ 

(7 2 ~'~ X~I) 

2 ( ~  - a~)2 
0. 2 ~'~ X~I) 

^ , ,AIV-1A , (~ - ~ i )  i i i~ t~ i  - f~ i )  

for i E 11 

(72 

T& 2 

a2 ~ X i ) '  #12+ ~_~ ~--2#IG 
iE1G 

for i c /2  

x~2) for i E Ic  

Ey[logp(Y I J, O, )~)- Ezlogp(Z l J , O, A)] 

T(T + #I~ + #12 q- 2#IG) T 
2 

# / 2  + ~ ~ - - 2 
iEIG 

Therefore the conditional predictive log likelihood is obtained as 

l o g p p r e d ( y  l J, ~) 

T 2 1 
= - ~ l o g 2 7 r 8  - ~  Z l °g lVi l  

iEIc 

T(T + #I1 + #12 + 2#Ic)  

2 #12 Z 2#Ic  - 2 
iCIG 

Assuming a prior density w(A) for ~, we obtain the estimate of p(y I J) as 

f exp [ J, w(A)dA. {logppred (y A) } 

In the actual numerical computation, we usually assume for A a prior distribution 
having uniform probabilities on finite discrete points, for example, w(A) -- 1/8 (A -- 
1, 2, 4, 8, 16, 32, 64, 128). 

5.3 An example of application 
In this section, we apply our method using the discrete spline to the data of 

opinion polls on the proportion of voters who support the Japan Liberal Demo- 
cratic Party collected by Chuochosa-sha, a Japanese institute conducting sample 
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surveys every month from December 1978 to November 1982. Figure 2 shows the 
data plotted against time. In this example, since the full computation is infeasible, 
we use the  a p p r o x i m a t i o n  p rocedure  unde r  the  following condi t ions :  (I) m is set 

as m = 4. (II)  a is set as cr = 0.004n. ( I I I )  T h e  p r o c e d u r e  is t e r m i n a t e d  a t  n = 9. 

T h e  resul ts  are given in Tables  4 and  5. 

Fig. 2. 

36 

t 
°t 
°t 

78.07 

4 19 24 27 28 jj 
× 

X 

t~ 

~. × 
x 

I | I l ! I ! I ! 
79,07 80.07 81.07 82.07 

Year. Month 

A time-series plot of a public support  rate  for the Japan Liberal Democratic Party. 

Table 4. Posterior probabilities of up to nine changes. 

0 0.000 

1 0.001 

2 0.059 

3 0.237 

4 0.192 

5 0.154 

6 0.113 

7 O.098 

8 0.082 

9 0.064 

Mean 5.0 

Mode 3 

Median 5 
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Table 4 presents the estimates of the posterior probabilities of up to nine 
changes as well as the posterior mean, mode and median of N. These results 
suggest that plural structural changes underlie the given series. 

Table  5, Posterior  probabi l i t ies  of J t ' s .  

t P(Jt I Y) t P(Jt l Y) 
1 0.074 25 0.034 

2 0.089 26 0.023 

3 0.301 27 0.275 

4 0.209 28 0.173 

5 0.104 29 0.035 

6 0.067 30 0.134 

7 0.150 31 0.150 

8 0.118 32 0.114 

9 0.022 33 0.127 

10 0.020 34 0.149 

II 0.016 35 0.088 

12 0.020 36 0.306 

13 0.015 37 0.058 

14 0.013 38 0.028 

15 0.014 39 0.015 

16 0.015 40 0.013 

17 0.030 41 0.012 

18 0.025 42 0.012 

19 0.998 43 0.011 

20 0.079 44 0.012 

21 0,138 45 0.011 

22 0.102 46 0.024 

23 0.044 47 0.027 
24 0.460 

Table 5 presents the estimate of each P(Jt [ Y). The largest posterior probabil- 
ity is obtained at the 19th observation. Its value is almost equal to 1. This suggests 
that the 19th observation is a change point. Actually, it is widely recognized that 
the change in the opinion poll between June and July in 1980 was a remarkable 
one in the last two decades. This change is believed to have been caused by the 
sudden death of Prime Minister Oohira at the beginning of the election campaign 
that started in June 1980. 

The second largest posterior probability is obtained at the 24th observation. 
Its value is not so large as the one at the 19th observation, but the 24th observation 
is also likely to be a change point since there are at least three change points 
according to the values of the mean, mode and median shown in Table 4. From 
Fig. 2, it is seen that the observed value largely shifts at the 24th observation. 
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Five other candidates for change points following the above two are at obser- 
vation points 36, 3, 27, 4 and 28. Figure 2 shows that the changes at these points 
are prominent. The slope of the trend obviously changes at the 36th observation 
and the observed values largely shift at the other four points. 

The Bayesian procedure identifies plural change points in the opinion poll 
data. These change points seem to agree with those views on the shifts of support 
for the LDP which were expressed by political observers and shown by analysis. 
The plot of the observation points also shows that these change points indicate 
the beginning of a shift in trend in the data. 

Additionally, we note that the results obtained when repeating Step 1 seven 
times are very similar to the results given in Tables 4 and 5. 
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