
1SCIENTIFIC REPORTS |  (2018) 8:5845  | DOI:10.1038/s41598-018-23852-y

www.nature.com/scientificreports

Bayesian-Driven First-Principles 
Calculations for Accelerating 
Exploration of Fast Ion Conductors 
for Rechargeable Battery 
Application
Randy Jalem1,2,3, Kenta Kanamori4, Ichiro Takeuchi3,4,5, Masanobu Nakayama2,3,6,7,  
Hisatsugu Yamasaki8 & Toshiya Saito8

Safe and robust batteries are urgently requested today for power sources of electric vehicles. Thus, a 
growing interest has been noted for fabricating those with solid electrolytes. Materials search by 
density functional theory (DFT) methods offers great promise for finding new solid electrolytes but the 
evaluation is known to be computationally expensive, particularly on ion migration property. In this 
work, we proposed a Bayesian-optimization-driven DFT-based approach to efficiently screen for 
compounds with low ion migration energies ( )E

b
. We demonstrated this on 318 tavorite-type Li- and Na-

containing compounds. We found that the scheme only requires ~30% of the total DFT-E
b
 evaluations 

on the average to recover the optimal compound ~90% of the time. Its recovery performance for desired 
compounds in the tavorite search space is ~2× more than random search (i.e., for E

b
 < 0.3 eV). Our 

approach offers a promising way for addressing computational bottlenecks in large-scale material 
screening for fast ionic conductors.

There has been a rapidly growing interest to systematically search for new fast ionic conductors using 
high-throughput calculations, particularly by leveraging from the wealth of material information from crystal 
structure databases1–5. �e workhorse simulation tool that is o�en employed in these tasks has been based on 
�rst-principles density functional theory (DFT)6,7 which can o�er a level of predictive accuracy that is comparable 
to experimental results8–10. However, DFT-based material search with transition state property criterion (e.g., Eb) 
is still few and of limited scope11–14. �e relatively high calculation costs involved make these e�orts very tedious 
and in most cases impractical15–17. Other cheaper methods have been utilized as substitutes and for rough screen-
ing, one of these is by force-�eld (FF) approach such as bond valence summation18. However, the drawback of FF 
is that its accuracy is strongly tied to the quality of its �tted empirical parameters and the choice of the functional 
forms used to approximate interatomic bonding potentials. �e task of �tting for FF parameters, which relies on 
experimental and/or DFT data, is also time-consuming. As a result, it is technically challenging to obtain a truly 
robust FF parameter set that can be applied for a large variety of structures and chemistries.
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�e di�culty of keeping the computational cost manageable in DFT-based material search/screening has also 
made it prohibitive to readily expand the search space by ionic substitution, for example, in known database com-
pounds. Nonetheless, there is a huge merit for checking these gaps in the composition space because they could 
be fertile grounds for new materials19. In fact, a number of discoveries up to date were realized even with only 
a select few number of substitutions, such as in the case of Li/Na ionic conductors: layered-type AMO2 (A: Li, 
M:Co, Ni,)20,21, olivine-type AMPO4 (A: Li; M: Fe, Mn)22, garnet-type Li7La3Zr2O12

23, and tetragonal A10MP2S12 
(A: Li, Na; M: Ge, Sn)24,25.

In order to take advantage of the accuracy of DFT for predicting transition state properties and to extend 
today’s material search for fast ionic conductors beyond the known database composition space, two major com-
putational cost issues need to be tackled: (i) the inherent cost for calculating transition state properties itself (such 
as for Eb) and (ii) the cost due to the combinatorial complexity arising from ionic substitution in known structure 
types. Meanwhile, traditional regression/classi�cation techniques are limited with issues in terms of material 
discovery: (i) �tting precision and uncertainty issue which is linked to the need for larger and larger training 
dataset as the search space also becomes larger (i.e., to improve out-of-sample prediction) and (ii) the cost of 
building su�cient training data especially for calculation-intensive target properties (eg., Eb, ionic conductivity 
in rechargeable Li ion batteries). Our proposed solution, as will be further explained later, is to formulate an 
appropriate search/screening strategy in which instead of exhaustive or random searches, calculation resources 
are selectively allocated on compounds that would likely demonstrate fast ionic conduction, or in the case here, 
compounds with low Eb values. On the other hand, calculations for compounds with high Eb values are to be 
minimized, if not totally avoided. �is strategy can be formalized as the process of solving an optimization prob-
lem, but its objective function (i.e., for Eb) cannot be directly expressed analytically. Conventional optimization 
approaches such as convex optimization and gradient descent are not straightforward to implement in such cases.

Recently, machine learning algorithms based on Bayesian optimization (BO) have become increasingly pop-
ular for e�ciently solving material science problems. Unique from traditional machine learning methods (eg., 
LASSO and neural network), BO constructs a probabilistic model for the objective function and then exploits 
this model for deciding the next query point to be evaluated. BO has been successfully used in crystalline inter-
face optimization26, construction of interatomic potentials27, and low-energy region identi�cation in a poten-
tial energy surface28. Studies have also shown to implement BO together with DFT in order to �nd single- and 
binary-component solids with high melting temperature29, compounds with low lattice thermal conductivity30, 
and ternary compounds with desired elastic properties31. �ese demonstrations are indeed a step towards a sound 
and e�cient design of new materials.

Our present work is also aimed towards �nding new materials in an enhanced iterative-driven manner, but 
this time the chemical search space is a quinary system with battery as the target application and with the use of a 
transition state property as a practical search criterion – Eb. Quinary system is a challenging but highly relevant 
search space for battery research because many relevant materials and their optimization lies in this composition 
space. Examples include Li7−xLa3Zr2−xTaxO12 solid electrolytes which has an optimized ionic conductivity on the 
order of 10−3 S/cm32, LiNixMnyCozO2 cathodes which show good speci�c energy and speci�c power density33, and 
Na3Ti2P2O10F which is a new candidate anode material for sodium ion batteries16,34,35. Moreover, the Eb criterion, 
which can also be experimentally accessed (eg., by impedance measurements and NMR), is a very important 
metric for battery researchers since it is ubiquitous in all of the critical device components (anode, cathode, and 
electrolyte). Previous e�orts have dealt mainly on unary and binary systems, whereas the present study empha-
sized on formulating an e�cient and automation-compatible property-based search/screening in the extended 
composition space of �ve-component compounds with a �xed crystal structure (tavorite AMXO4Z system, where 
A, M, X, and Z are sites for ionic substitution), covering yet-to-be synthesized chemistries that are not yet found 
in databases. �e choice of tavorite AMXO4Z is motivated by the idea that it is relatively unexplored in terms of 
varying its composition, so there is a good possibility of �nding truly unreported new compounds36–38. Another 
reason is that one of the reported compound, LiFeSO4F, demonstrates high Li insertion rate which means that 
pathways within the structure can be highly favorable for ion transport36. Ion migration property in crystalline 
solids (i.e., Eb), to the best of our knowledge, still has no published databases up to now (experimental or compu-
tational) and also, by DFT, incurs significantly higher calculation costs than, for example, thermodynamic 
property-based search criteria (as in some of the previous works mentioned above26,28,29,31). We also demonstrate 
concretely in this work the ability of BO for knowledge transfer in a successive screening scenario, that is, using 
the posterior from one screening task as a prior for the next screening task. Finally, we also aimed to devise a 
practical work�ow for automated material search/screening that is �exible enough to handle a large number and 
variety of material descriptors, this is realized by coupling the work�ow with a modi�ed BO scheme that is gen-
eral for high dimensions39–42. We then use the BO probabilistic model to �nd compositions of low Eb for Li and 
Na ions within the database-reported ordered tavorite structure. �e target application for the tavorite-type ionic 
conductors is for solid electrolyte use, so only compounds that do not permit electronic conduction are consid-
ered (i.e., no transition metals are included for ionic substitution).

Results
Chemical search space and crystal structure description. Tavorite-type compounds with a general 
formula AMXO4Z (A: Li, Na; M: group 2, 3, 4, 13 elements; X: group 14, 15, 16 elements; Z: F, Cl, Br, I) were tar-
geted for the Eb-based solid electrolyte screening. �e model crystal structure (P 1) is shown in Fig. 1a with the 
host framework comprising with MO4Z2 octahedra (M 1a, 1h; O 2i) and XO4 tetrahedra (X 2i; O 2i). �e MO4Z2 
octahedra are corner-linked together at their trans-Z atoms to form chains along [111]. Each oxygen atoms from 
these chains are in turn shared with X atoms which then assumes a tetrahedral environment. Site splitting occurs 
for the A atoms (2i). Overall, the search space includes LiMXO4F dataset taken from our previous work13 and 
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newly calculated datasets for LiMXO4(Cl/Br/I) and NaMXO4(F/Cl/Br/I). Although there are di�erent local A 
cation pathways in the tavorite structure, our previous calculations determined that its ionic conduction is aniso-
tropic, with the dominant transport pathway being facile in one major cell direction13. �is conduction pass is 
de�ned by a series of local site-to-site jump environments, each sandwiched between two MO4Z2 octahedra. 
Hence, Eb sampling by NEB method was carried out only at the characteristic local pathway bottleneck, as shown 
in Fig. 1b in asterisk.

DFT-Eb dataset. Figure 2 shows the distribution of Li and Na DFT-Eb datasets (a total of 318 samples) that 
were prepared in advance for the BO-driven search. We note that although the dataset size may not be large 
enough for practical material discovery, it should be su�cient enough (considering the heavy computation cost 
of DFT approach for kinetics-related properties) for evaluating how fast BO-driven search can �nd the best or 
nearly-best one in a quinary system. Di�erences in the sample distribution of the two datasets are revealed by 
estimating their sample statistics such as maximum Eb (Eb max, ), median Eb (Eb), and skewness (α̂3) and kurtosis 
(α̂4): quantities are {Eb max,  = 1.424 eV, Eb = 0.448 eV, α̂3 = 0.960, α̂4 = 0.488} and {Eb max,  = 1.965 eV, Eb = 0.661 eV, 
α̂3 = 1.111, α̂4 = 1.594} for Li and Na, respectively. �is comparison clearly shows that the Na case has a broader 
range and more samples with large Eb which could mainly stem from the larger atomic mass and ionic radius of 
Na ( +rNa  = 1.02 Å vs. +rLi  = 0.76 Å for an octahedral environment)44. On another note, both distributions are pos-
itively skewed (α̂3 > 0) but with the Na case having a heavier tail towards large Eb values (α̂ Na4,  > α̂ Li4, ). �ese 
datasets should provide a more stringent performance check for the BO-driven search since random search can 
favorably sample in the low-Eb density region. The optimal compounds (

∗
x ) in the Li and Na datasets are 

LiScSbO4I (Eb = 0.104 eV) and NaErAsO4Cl (Eb = 0.116 eV), respectively; both are still unreported compounds.

BO-driven DFT-Eb search workflow. Figure 3 shows the schematic work�ow for the Eb-based BO-driven 
search within the AMXO4Z tavorite search space. At �rst, the search space of compounds is populated by various 
ionic substitutions at the A, M, X, and Z sites. Next, t = 5 initial randomly picked compounds (

=

=
x{ }i i

t
1
5) are sampled 

Figure 1. (a) Model unit cell for the tavorite AMXO4Z (P 1) showing various crystallographic sites and 
polyhedral units. Green/white spheres for A atoms indicate a splitting site. (b) �e predicted favorable 
conduction pass for A cations within the tavorite framework (A atoms removed) as shown in its 1 × 2 × 2 
supercell (in black, along c-direction) (13). �e local barrier height Eb marked by asterisks are equivalent 
characteristic path bottlenecks. �e VESTA so�ware was uses for structure visualization43.

Figure 2. Sample distributions for the DFT-Eb datasets prepared for the BO-driven search of tavorite AMXO4Z 
solid electrolytes. �ere are 163 and 154 DFT-Eb samples contained in the Li and Na dataset, respectively (see 
Supplementary Table S2 for the actual values).
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for DFT-Eb for training the Gaussian Process GP model. �e model posterior then provides the predictive mean 
function µ x( )

t
 and a predictive variance function σ x( )t

2  which then defines the acquisition function xa( ). 
Maximizing xa( ) then enables for deciding the next query compound xt to be evaluated for DFT-Eb. �e sequence 
is continued until a user-de�ned number of evaluations or stopping criterion is achieved. In this work, the num-
ber of function evaluations was set equal to the number of test data samples.

Performance evaluation of BO approach. In this paper, the additive BO model is labeled as aBO while 
the ordinary BO model is labeled as oBO. Figure 4a shows the e�ciency of the three search methods for minimiz-
ing the residual gap at each evaluation step t between optimal 

∗
xf ( ) and the current best solution ( xmax f ( )

x tt1:
) for 

the Li test data. In the high uncertainty regime (t < 20) of the simulated search (i.e., high σ2 since majority of test 
data compounds are still unobserved), aBO shows the best performance. Meanwhile, oBO performs slightly 
poorer than random search but when t > 20, it starts to outperform. �is behavior for oBO especially at the early 
stage of the search can be explained by its kernel complexity and the skewed Eb distribution (see Fig. 3). It should 
be emphasized though that the nature of the distribution for xf ( ) is usually not known in advance but incidentally 

Figure 3. Schematic work�ow for the proposed BO-driven DFT-Eb search for tavorite AMXO4Z compounds.

Figure 4. (a,b) Performance comparison for additive BO (aBO), ordinary (oBO), and random search using the 
Li-tavorite dataset (averaged from 1000 trials). Horizontal axes for both denote the sequential number of DFT-
Eb evaluations t. �e vertical axis in a) shows the residual gap at step t between optimal 

∗
xf ( ) and the prior best 

solution ( xmax f ( )
x tt1:

). �e vertical axis in (b) shows the average probability ratio of discovering the optimal Li-
tavorite compound 

∗
x . Note that both additive BO (aBO) and ordinary BO (oBO) search methods here used the 

tuned hyperparameters from half of the Li dataset excluded for search performance comparison (gray area).
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even with a non-normal distribution the BO approach is still generally e�cient in querying for low-Eb com-
pounds. Figure 4b shows an alternative performance comparison analysis which is based on the probability ratio 
of discovering the optimal Li-tavorite compound 

∗
x  as the number of observations t increases (again, as averaged 

over 1000 trials). �e plot indicates that at t = 35, there is already ~80% probability of discovering 
∗
x  for both 

BO-driven searches.
Figure 5a shows the search performance of the 3 methods, for the Na dataset: random search, oBO search, 

aBO search. Two transfer settings for BO were used: transferred hyperparameters only (Li-hp) and with both 
transferred hyperparameters and posterior GP (Li- GP) from Li dataset for BO. �e plots are averaged over 50 
trials for a search space of 154-compounds test data. For t < 40, oBO is overall performing poorer than random 
search and aBO regardless of the inherited model settings. �is can be primarily explained in a similar fashion as 
with the Li case, that is, from the viewpoint of kernel complexity and high estimation error when the number of 
unobserved compounds is still high. Out of the 5 tested models, Li-GP aBO gains a clear advantage over random 
search for t > 20. �ese results validate the use of model transfer and demonstrate the predictive power of the 
trained GP model from the Li dataset for the Na dataset. Additionally shown in Fig. 5b is the probability ratio of 
�nding the optimal Na-tavorite compound 

∗
x . At t = 50 evaluation steps (i.e., ~30% of the search space observed), 

Li-GP aBO and Li-GP oBO can �nd 
∗
x  ~90% and ~80% of the time, respectively.

Na and Li ionic conductivity (or Li and Na ion migration energy) are inherently di�erent properties and nor-
mally cannot be optimized simultaneously. However, with the systematic approach of knowledge transfer such as 
in the problem setting (i.e., from Li to Na system), we demonstrated that indeed we can e�ciently optimize and 
�nd the optimal compound(s) better than random method.

�e goal of the BO-driven search can be modi�ed so that compounds that satisfy a cuto� value are explicitly 
searched, in contrast with just �nding the single most optimal compound 

∗
x . To demonstrate this, we used the 

Li-GP transfer model setting and set a criterion of Eb < 0.3 eV, referred from perovskite Li0.34La0.51TiO2.94 solid 
electrolyte45. �e Na dataset was used for performance check and results are displayed in Fig. 6. �e vertical axis 
represents the average number of desired compounds found, which for the Na dataset, would be 17 total com-
pounds meeting the cuto�. For t < 50 (~30% search space coverage), aBO found twice the number of desired 
compounds than oBO and Random search, discovering ~73% (12.40 compounds) as compared to ~37% (6.26 
compounds) and ~33% (5.54 compounds), respectively. However, we note here that aBO failed to find the 
remaining compounds with Eb < 0.3 eV even up to ~80% search space coverage (t = 130). �is issue is due to the 
method trading o� some of its predictive accuracy for model �exibility. Still, aBO demonstrates its remarkable 
performance and suitability for large-scale material screening tasks, given that the search is prioritized on maxi-
mizing search hits for desired compounds with as few number of DFT-Eb calls as possible.

Descriptor contribution towards Eb prediction. Another advantage of additive Bayesian optimization 
is that the importance of each group of descriptors can be easily interpreted. Figure 7 shows the contributions of 
descriptor groupings for Li-GP aBO towards Eb prediction. �e degree of contribution was calculated by taking 
the normalized ratio of the covariance amplitude σf

2 for each groups. �e two main contributions came from 
descriptor groups related to the RDF features (g5) and lattice cell features (g1). Meanwhile, inter-polyhedron 
features (g4) does not contribute and thus could be removed, reducing model complexity from M = 5 down to 
M = 4 terms. �is non-contribution of inter-polyhedron features may be explained by their redundancy since the 
interatomic-based information contained in them could have been well-expressed already or have been better 
expressed by RDF features (g5). RDF features, on the other hand, are determined here as e�ective descriptors for 
the prediction of Eb with an inherently structure-independent nature, making it directly applicable for material 
search/screening tasks with multiple structure types.

Figure 5. (a,b) Performance comparison for additive BO (aBO), ordinary BO (oBO), and random search using 
Na dataset (averaged from 50 trials). Two transfer settings for BO were used: transferred hyperparameters only 
(Li-hp) and with both transferred hyperparameters and posterior GP (Li- GP) from Li dataset for BO. 
Horizontal axes for both denote the number of xf ( ) evaluations for DFT-Eb. �e vertical axis in a) denotes the 
residual gap at each evaluation step t between optimal 

∗
xf ( ) and the prior best solution ( xmax f ( )

x tt1:
). �e 

vertical axis in (b) denotes the percentage ratio of discovering the optimal Na-tavorite compound 
∗
x .
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To investigate the characteristics of the descriptor values among di�erent compounds, we analyzed the data 
distribution of some descriptors. We used g1 descriptors (lattice cell features) which were determined automati-
cally by the present BO method as signi�cantly contributing towards Eb prediction (see Supplementary Fig. 4). 
We observed that for g1 descriptors, there are di�erent distribution shapes, modalities (unimodal, multi-modal) 
and degree of skewness for the distribution of values which are indicative of variability and variety in the captured 
information. In addition, the ranges of each descriptor distributions (see Supplementary Table 5) indicate a vary-
ing degree of closeness of values among compounds. Nevertheless, g1 descriptors may be generally regarded as 
su�ciently di�erentiating for tavorite compounds. As an example, we examined descriptor df which represents 
the path bottleneck size for the migrating ion. A value of 0.707 Å (minimum among compounds) would make it 
geometrically unfavorable for Li ion to pass through (Li ionic radius is 0.76 Å in octahedral coordination, as in the 
tavorite structure), and much more unfavorable for Na ion (1.02 Å)44. Meanwhile, a value of 2.240 Å (maximum 
among compounds) means both Li and Na ion can pass through geometrically.

Based from above importance analysis on descriptor group contributions, we have shown that our chosen 
set of descriptors and the strategy of grouping them in their natural groups to de�ne sub-kernel spaces for the 
BO method is indeed an e�ective approach for navigating the ion migration energy landscape of the tavorite 
AMXO4Z search space.

Post-processing of Eb-screened tavorite compounds. In an actual material screening task, com-
pounds of interest are usually not only evaluated against a single property but also against other metrics. For 
example, screened compounds a�er simulated BO can be further narrowed down by thermodynamic stability 
criterion to assess whether they can be synthesized by experiment or not. For this purpose, we carried out DFT 

Figure 6. Average number of discovered Na-tavorite compounds with Eb < 0.3 eV vs. number of DFT 
evaluations.

Figure 7. Descriptor group contributions toward Eb prediction as based from Li-GP aBO model. Vertical axis 
shows the ratio related to the covariance scale σf

2 of each descriptor group as determined by marginal likelihood 
maximization.
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phase stability calculations based on the convex hull approach and aided by the pymatgen library46,47. Brie�y, the 
thermodynamic stability energy (Ed) of a given compound was checked against all possible linear combinations 
of competing phases found in the Materials Project (MP) database9. A compound phase may then fall under three 
cases: (i) Ed = 0, the compound is predicted to be at the thermodynamic ground state, (ii) Ed> 0, there is a driving 
force for decomposition, and (iii) for Ed ≈ 0, a compound is metastable and may be stabilized by appropriate 
synthesis condition or high kinetic barriers5. Based from this classi�cation and from previous empirical results for 
DFT formation energies, a value of 0.1 eV/atom was chosen as a reasonable upper limit for stability and 
metastability5,8.

For the Li-tavorite search space, 20 compounds met the Ed cutoff. Two of these are recorded in ICSD, 
LiMgSO4F (Ed = 0.034 eV/atom) and LiAlPO4F (Ed = 0.016 eV/atom), while the rest are hypothetical compounds 
that are predicted to be experimentally synthesizable. If both Ed and Eb criteria are used, three compounds 
remained, namely: LiMgSO4F (Eb = 0.200 eV, Ed = 0.035 eV/atom), LiMgSeO4Cl (Eb = 0.282 eV, Ed = 0.098 eV/
atom), and LiZrGeO4F (Eb = 0.246 eV, Ed = 0.091 eV/atom). Only LiMgSO4F has been characterized so far as a 
solid electrolyte, whereas the remaining two are new materials. The other database-reported compound is 
LiAlPO4F but it did not pass the Eb criterion (Eb = 0.550 eV). For the Na-tavorite space, 16 compounds satis�ed 
the Ed < 0.1 eV/atom condition, all of them are still unreported. Meanwhile, the hypothetical compound 
NaHfSiO4F met both Ed and Eb cuto�s (Eb = 0.254 eV, Ed = 0.085 eV/atom). �e Ed values for the next-tier com-
pounds (in the range 0.3 eV < Eb < 0.4 eV) are provided in Table S4. Figure 8b,c show the total density of states of 
LiZrGeO4F and NaHfSiO4F, with DFT-PBE electronic band gap energies determined to be 4.177 and 4.876 eV, 
respectively. These values are comparable with other known candidate solid electrolytes such as garnet 
Li7La3Zr2O12 (5.79 eV by HSE06) and Li10GeP2S12 (3.6 eV by PBE) which have wide band gap, indicative of being 
able to meet the requirement for very low electronic conductivity48,49. Additional data are provided in Table S3 for 
DFT-optimized structural information. �e ionothermal synthesis approach would be one of the possible routes 
for preparing the two new compounds, as demonstrated for already known ones such as tavorite LiMgSO4F37, and 
structure-isotopic compounds such as LiFeSO4F36, LiFePO4F50, and LiTiPO4F38,50.

From above results, we have shown that the present DFT-coupled Bayesian optimization approach with 
additive structure can be applied for quinary systems and when an initial crystal structure type is provided. 
However, the need for an input structure means that novel compounds with new crystal structures are unsearch-
able. Nevertheless, we would like to point out that there is now a rich plethora of structure prototypes that can 
be accessed from existing databases (for example, ICSD presently contains 9,093 structure prototypes)51. On 
another note, other state-of-the-art material search methods have been reported as well, such as crystal structure 
prediction (CSP) techniques based on evolutionary algorithm52. CSP approaches do not require an input struc-
ture (the initial atomic arrangement is usually set randomly) but they need composition and initial cell volume. 
�ese techniques are meta-heuristic and utilizes empirical rules to govern the search for ground state materials. 
CSP techniques need to deal with the curse of dimensionality which means that local or global minima structures 
becomes harder and harder to �nd as the number of atoms and/or element type increases52. Combining our 
approach with CSP techniques, for example for quinary systems, would be one interesting direction to pursue 
related to high-dimensionality material search.

Conclusion
A Bayesian-driven DFT-based screening for Li and Na ionic conductors with the tavorite structure was demon-
strated using ion migration energy E( )b  as the search criterion. �e BO search method was found to be generally 
more e�cient than random search even under a stringent condition of having a positively skewed Eb sample 
distributions. Using the Na dataset, additive BO with a knowledge transfer setting requires only an average of 
~30% search space coverage to recover the optimal compound ~90% of the time. Using the same test dataset and 

Figure 8. (a) DFT-calculated thermodynamic stability energy (Ed) of tavorite compounds with Eb < 0.3 eV. 
Total density of state of screened representative compounds that passed both Eb and Ed cuto�s: (b) LiZrGeO4F 
and (c) NaHfSiO4F.
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with a search criterion of Eb < 0.3 eV, additive BO also only needs to observe ~30% of the search space on the 
average to �nd ~70% of the total desired compounds, this is twice the recovery performance for desired materials 
of ordinary BO and random search which can only �nd ~37% and ~33%, respectively. �ese performances are 
realized with the use of e�ective descriptors, particularly RDF features. Overall, additive modeling can be an 
e�ective approach for addressing the high-dimensionality issue in BO-based searches.

Methods
Chemical search space and crystal structure description. Tavorite-type compounds with a general 
formula AMXO4Z (A: Li, Na; M: group 2, 3, 4, 13 elements; X: group 14, 15, 16 elements; Z: F, Cl, Br, I) were tar-
geted for the Eb-based solid electrolyte screening. We note that the M-X cation pair for group 5 and group 13 
elements was not included in this study. Although quinary systems have been reported with group 5 cations (e.g., 
with Ta5+ and Nb5+ in another structure type32,53), group 5 and 13 pairing is highly unlikely in the tavorite struc-
ture. �is unlikelihood is explained by the deviation of charge distribution for the group 5 - group 13 cation 
pairing case which leads to a signi�cant destabilization of the crystal structure. �e model crystal structure (P 1) 
is shown in Fig. 1a with the host framework comprising with MO4Z2 octahedra (M 1a, 1 h; O 2i) and XO4 tetra-
hedra (X 2i; O 2i). �e MO4Z2 octahedra are corner-linked together at their trans-Z atoms to form chains along 
[111]. Each oxygen atoms from these chains are in turn shared with X atoms which then assumes a tetrahedral 
environment. Site splitting occurs for the A atoms (2i). Overall, the search space includes LiMXO4F dataset taken 
from our previous work (13) and newly calculated datasets for LiMXO4(Cl/Br/I) and NaMXO4(F/Cl/Br/I).

DFT calculation settings. �e VASP code54 was used for DFT modeling which applies the projected aug-
mented wave (PAW) approach55. �e energy for exchange correlation was described in the generalized gradient 
approximation (GGA) with Perdew-Burke-Ernzernhof formulation for solids (PBEsol)56. �e initial coordinate 
dataset for the tavorite structure was referred from available crystal information �le (cif) in the Inorganic Crystal 
Structure Database (ICSD)52. With a unit cell of 16 atoms and a spin-polarized condition, a 500-eV cuto� for 
kinetic energy and a Monkhorst-Pack kpoint resolution of 5 × 4 × 3 were con�rmed to show a total energy con-
vergence of less than 1 meV/formula unit (fu). Database-unreported tavorite compounds were calculated using 
the available experimental cif data as template. �e calculation for static atomic charges was based from Bader 
method57. For the dynamical charges, Born e�ective charge calculation was carried out58.

�e nudged elastic band (NEB) technique was employed to calculate Eb
59. �e unit cell was expanded into a 

1 × 2 × 2 supercell and over-the-Brillouin-zone numerical integration was performed by Γ-point sampling. With 
these conditions, we point out that most of the compounds especially those in the low Eb region were converged 
to less than 10 meV/fu (with a few compounds with Eb > 1.5 eV converged to less than 30 meV/fu). A�er struc-
ture optimization on the initial and �nal state supercell models containing a single A vacancy, seven images in 
between for the migrating A cation were constructed by linear interpolation. �e value of Eb was then calculated 
according to the formula:

= −E E E (1)b max min

where Emax and Emin are the maximum and minimum supercell image energies, respectively, along the migration 
pathway.

Material descriptor formulation, formulation of DFT-Eb-based search/screening driven by BO.  
Candidate material descriptors were extracted from the DFT-optimized crystal structures, their description is 
available in Supplementary Table S1 and Supplementary Figure 1. �e resulting initial domain size of the feature 
space has a total of 348 descriptors. Details on the construction of additive Bayesian model are provided as well 
in Supplementary Information section.
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