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Abstract

Dynamic mode decomposition (DMD) is a data-
driven method for calculating a modal representa-
tion of a nonlinear dynamical system, and it has
been utilized in various fields of science and en-
gineering. In this paper, we propose Bayesian
DMD, which provides a principled way to trans-
fer the advantages of the Bayesian formulation into
DMD. To this end, we first develop a probabilistic
model corresponding to DMD, and then, provide
the Gibbs sampler for the posterior inference in
Bayesian DMD. Moreover, as a specific example,
we discuss the case of using a sparsity-promoting
prior for an automatic determination of the number
of dynamic modes. We investigate the empirical
performance of Bayesian DMD using synthetic and
real-world datasets.

1 Introduction
Analyzing nonlinear dynamical systems is fundamental for
the understanding of complex phenomena in a variety of sci-
entific and industrial fields. For example, the analysis of
the Navier–Stokes equation has been one of the fundamen-
tal problems for understanding fluid flows. One of popular
approaches for this purpose is decomposition of the dynam-
ics into multiple components based on some criteria; the in-
dividual aspects of complex phenomena can be investigated
by examining each decomposed component. For example,
proper orthogonal decomposition (POD) (see e.g. [Holmes et
al., 2012]) decomposes the dynamics into orthogonal modes
that optimally capture the energy of the dynamics, and it
has been extensively applied in physics [Bonnet et al., 1994;
Noack et al., 2003]. In machine learning and pattern recog-
nition, a method equivalent to data-driven POD is known as
principal component analysis (PCA) and has been applied for
modal decomposition and dimensionality reduction of a wide
variety of numerical datasets [Jolliffe, 2002].

Dynamic mode decomposition (DMD) [Rowley et al.,
2009; Schmid, 2010; Kutz et al., 2016a] has been attract-
ing attention in various fields of science and engineering as
an approach for the above purpose that works without ex-
plicit knowledge on the governing equations (see Section 5

for some examples). Although DMD is a data-driven de-
composition technique like PCA, it generates modes that are
directly related to the dynamics behind the data; thus, these
modes are a useful tool for the diagnostics of complex dy-
namic phenomena. Insofar, several algorithmic variants of
DMD have been utilized according to given datasets or pur-
poses. However, most of these variants are deterministic (i.e.,
lack corresponding probabilistic models), and thus it could be
difficult to incorporate uncertainty in data into the analysis.
Building a probabilistic model for DMD enables us to treat
the data statistically and consider observation noises explic-
itly, as well as to enrich the DMD techniques systematically
by modifying the involved probabilistic distributions.

In this paper, we propose Bayesian DMD, which provides
a principled way to transfer the advantages of the Bayesian
formulation into DMD. To this end, we first develop a prob-
abilistic model corresponding to DMD, whose maximum-
likelihood estimator coincides with the solution of DMD.
Then, we provide the Gibbs sampler for the posterior infer-
ence in Bayesian DMD. Due to the Bayesian treatment, we
can infer posteriors of DMD-related quantities, such as dy-
namic modes and eigenvalues. Moreover, we can consider
variants of DMD within the unified Bayesian framework by
modifying the probabilistic model. In particular, we dis-
cuss the case of using a sparsity-promoting prior for dynamic
modes, which allows us to automatically determine the num-
ber of modes in the light of data.

The remainder of this paper is organized as follows. We
briefly review the underlying theory of DMD and its numeri-
cal procedure in Section 2. The probabilistic model for DMD
is described in Section 3, and based on that model, Bayesian
DMD is introduced in Section 4. In Section 5, we review
the related work. In Section 6, we show the experimental
results with synthetic and real-world datasets. This paper is
concluded in Section 7.

2 Background
We briefly review the underlying theory of DMD, the spec-
tral decomposition of nonlinear dynamical systems based
on the Koopman operator. We recommend readers to con-
sult papers such as [Mezić, 2005; Budis̆ić et al., 2012;
Mezić, 2013] for more details on the theory of the Koopman
operator and decomposition based on it.
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2.1 Koopman Spectral Analysis
Our interest lies in analyzing a (possibly, nonlinear) discrete-
time nonlinear dynamical system

xt+1 = f(xt), x ∈M,

whereM is the state space and t ∈ {0}∪N is the time index.
Let g :M→ C be a measurement function (observable) in a
function space G. Koopman operator K : G → G is defined
as an infinite-dimensional linear operator such that

Kg(x) = g(f(x)), g ∈ G.
Defining K, we can lift nonlinear dynamics f to a linear (but
infinite-dimensional) regime. However, it is difficult to nu-
merically compute K from data because of its infinite dimen-
sionality. Nonetheless, the infinite-dimensional system can
further be lifted to a finite-dimensional one as follows.

Suppose that there exists an invariant subspace of K, i.e., a
subspace G ⊂ G such that

Kg ∈ G, ∀g ∈ G,
and that a set of observables {g1, . . . , gn} (n <∞) spans G.
Moreover, consider the restriction of K to G and denote it by
K : G → G. Now K is a finite-dimensional linear operator.
Note that K has a matrix-form representationK with respect
to {g1, . . . , gn}, i.e.,

[Kg1 · · · Kgn]
T

= Kg,

wherein g = [g1 · · · gn]
T. In the sequel, we assume that

such invariant subspace G and the set of observables that
spans G exist.

Since K is linear, modal decomposition based on it can be
derived as follows. Let ϕ : M → C be an eigenfunction of
K with eigenvalue λ ∈ C, i.e.,

Kϕ(x) = λϕ(x).

This eigenfunction with respect to {g1, . . . , gn} is obtained
by ϕ(x) = zHg(x), wherein z is the left-eigenvector of K
corresponding to eigenvalue λ. Moreover, let vi and zi re-
spectively be the right- and the left- eigenvectors ofK corre-
sponding to eigenvalue λi, and suppose that they are normal-
ized so that vHi zi′ = δii′ , without loss of generality. If all the
eigenvalues of K are distinct (i.e., their multiplicity is one),
any values of g are expressed as

g(xt) =

n∑
i=1

ϕi(xt)vi. (1)

Applying K to both sides of Eq. (1), we have

g(xt+1) =
n∑
i=1

λiϕi(xt)vi. (2)

In this way, modal decomposition of observables via the
Koopman operator is given by

g(xt) =
n∑
i=1

λtiwi, wi = ϕi(x0)vi, (3)

wherein the values of g are described as a sum of Koopman
modesw, whose temporal frequency and decay rate are given
by ∠λ and |λ|, respectively. From the above, we could see
that, unlike the classical modal decomposition of linear time
invariant systems, this theory is applicable even to nonlinear
dynamical systems.

2.2 Dynamic Mode Decomposition
DMD [Rowley et al., 2009; Schmid, 2010; Kutz et al., 2016a]
is a numerical decomposition method, and it coincides with
modal decomposition via the Koopman operator under some
conditions. Suppose we have data matrices:

Y0 = [g(x0) · · · g(xm−1)] ∈ Cn×m and

Y1 = [g(x1) · · · g(xm)] ∈ Cn×m,
(4)

where g is again a concatenation of n observables, and m+ 1
is the number of snapshots in the dataset. The popular im-
plementation of DMD [Tu et al., 2014] is shown in Algo-
rithm 1, with which we finally compute the eigenvectors of
a matrix A = Y1Y

†
0 corresponding to its nonzero eigenval-

ues, wherein Y †0 denotes the Moore–Penrose pseudoinverse
of Y0. If the components of g span a subspace invariant
to K and all modes are sufficiently excited in the data (i.e.,
rank(Y0) = dim(G)), then the dynamic modes computed by
Algorithm 1 converge to the Koopman modes in modal de-
composition (3) in the large sample limit.
Algorithm 1 (DMD [Tu et al., 2014]).
(1) Compute the compact SVD of Y0 = UrSrV

H
r .

(2) Define a matrix Ã = UH
r Y1VrS

−1
r .

(3) Calculate eigendecomposition of Ã, i.e., compute w̃ and
λ such that Ãw̃ = λw̃.

(4) Return dynamic modes w = λ−1Y1VrS
−1
r w̃ and corre-

sponding eigenvalues λ.
Note that, for DMD to obtain the theoretical rationale, the

components of g need to span an (approximately) invari-
ant subspace. There are several studies that address this is-
sue (e.g., the use of nonlinear basis functions [Williams et
al., 2015], reproducing kernels [Kawahara, 2016], and de-
lay coordinates [Susuki and Mezić, 2015; Arbabi and Mezić,
2016]). In this paper, however, we simply assume data are
generated with observables that intrinsically span an (approx-
imately) invariant subspace, as in the previous studies on
DMD.

3 Probabilistic DMD
We develop a probabilistic model associated with modal de-
composition via the Koopman operator (Eqs. (1) and (2)).
The maximum-likelihood estimator (MLE) of this model co-
incides with the solution of DMD in the no-noise limit. As
will be described in the next section, this probabilistic model
forms the foundation for Bayesian DMD.

3.1 Generative Model
Let y`,j ∈ Cn be the j-th column of Y` in Eq. (4) plus obser-
vation noise, for ` = 0, 1. Following the relations in Eqs. (1)
and (2), the probabilistic DMD model for such data can be
given by

y0,j |ϕ1,j , . . . , ϕk,j ∼ CN

(
k∑
i=1

ϕi,jwi, σ
2I

)
,

y1,j |ϕ1,j , . . . , ϕk,j ∼ CN

(
k∑
i=1

λiϕi,jwi, σ
2I

)
,

(5)
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where we assume that the observation noise is Gaussian, and
CN (µ, σ2I) is the complex Gaussian distribution [Goodman,
1963] whose density is defined as

CN (µ, σ2I) =
1

πnσ2n
exp

(
− 1

σ2
(y − µ)H(y − µ)

)
.

Here, w1:k, λ1:k, and σ2 are the parameters to be estimated
(λ1:k denotes a set {λ1, . . . , λk}), and k is the tunable hy-
perparameter that determines the number of modes (usually
k ≤ n). In addition, we treat ϕi,j as a latent variable with the
standard Gaussian prior

ϕi,j ∼ CN (0, 1). (6)

3.2 Maximum-likelihood Estimator
To derive the MLE of probabilistic DMD, let us rewrite like-
lihood (5) in a matrix form, i.e.,

yj |ϕj ∼ CN
(
Bϕj , σ

2I
)
,

where we use notations as follows:

yj =

[
y0,j
y1,j

]
, ϕj =

[
ϕ1,j . . . ϕk,j

]T
,

B =

[
W
WΛ

]
, W =

[
w1 . . . wk

]
, Λ = diag(λ1, . . . , λk).

Marginalizing out ϕ with prior (6), we have

yj ∼ CN
(
0, BBH + σ2I

)
. (7)

In the following, we describe the relationship between prob-
abilistic model (7), total-least-squares DMD [Dawson et al.,
2016], which is a “noise-aware” variant of DMD, and stan-
dard DMD (Algorithm 1). In short, their estimation results
coincide in the no-noise limit.
Proposition 1. Suppose we have a dataset that is possibly
contaminated by observation noises E:

Ŷ` = Y` +E` = [y`,1 · · · y`,m] , ` = 0, 1,

and let Ŷ =
[
Ŷ T

0 Ŷ T
1

]T
and Σy = m−1Ŷ Ŷ H. In ad-

dition, let (σ2)?, W ? and Λ? be the MLEs of Eq. (7) given
Ŷ . If k = n, then the columns of W ? and the elements of
diag(Λ?) coincide with the dynamic modes and eigenvalues
obtained by total-least-squares DMD, respectively.

Proof. Following [Tipping and Bishop, 1999], the MLEs for
probabilistic model (7) are given as

(σ2)? =
1

2n− k

2n∑
i=k+1

µi, and

B? =

[
W ?

W ?Λ?

]
= Uk(Mk − (σ2)?I)

1
2R

with Uk = [u1 . . . uk] and Mk = diag(µ1, . . . , µk),
where µi is the i-th largest eigenvalue of Σy with correspond-
ing eigenvector ui, and R is an arbitrary unitary matrix. If
k = n, we have

W ?Λ?(W ?)−1 = U1,nU
−1
0,n,

y0,j

y1,j

'j

�2wiv2i,1:n

�i

mk

Figure 1: Graphical model of Bayesian DMD.

where U0,n comprises the first n rows and U1,n comprises
the last n rows of Un. Hence the columns of W ? and the el-
ements of diag(Λ?) are obtained by the eigendecomposition
of U1,nU

−1
0,n, which is exactly the same procedure with the

one in total-least-squares DMD [Dawson et al., 2016].

Proposition 2. If Y0 and Y1 are linearly consistent [Tu et al.,
2014] and there is no observation noise (i.e., E = 0), then
the estimation results of total-least-squares DMD coincides
with those of standard DMD (Algorithm 1).

Proof. From the definition of the linear consistency [Tu et al.,
2014], when there is no observation noise, rank(Σy) = n.

Hence, m−
1
2 Ŷ = UnM

1
2
n V H

n (Vn is comprising first n right
singular vectors of m−

1
2 Ŷ ). Consequently,

Ŷ1Ŷ
†

0 = U1,nM
1
2
n V

H
n

(
VnM

− 1
2

n U−1
0,n

)
= U1,nU

−1
0,n,

which shows the equivalence of the outputs of total-least-
squares DMD and standard DMD.

4 Bayesian DMD
For the Bayesian treatment of DMD, we consider the follow-
ing priors on the parameters in probabilistic model (5). First,
we put a Gaussian prior on w1:k:

wi|v2
i,1:n ∼ CN

(
0, diag

(
v2
i,1, . . . , v

2
i,n

))
(8)

with an inverse gamma hyperprior on v2
i,d (d = 1, . . . , n):

v2
i,d ∼ InvGamma (αv, βv) , (9)

whose shape parameter is αv and rate parameter is βv . More-
over, we consider priors on λ1:k and σ2 as

λi ∼ CN (0, 1) , σ2 ∼ InvGamma (ασ, βσ) .

A graphical model of Bayesian DMD is shown in Figure 1.

4.1 Posterior Inference by Gibbs Sampling
The conditional probabilistic distribution on each latent vari-
able in the above model becomes a complex Gaussian or an
inverse gamma distribution and thus is easy to sample. Con-
sequently, we can develop a Gibbs sampler for inferring the
latent variables. In the sequel, we use notations

ξ−i,j = y0,j −
∑
i′ 6=i

ϕi′,jwi′ , and

η−i,j = y1,j −
∑
i′ 6=i

λi′ϕi′,jwi′ .
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The sampling procedures of the Gibbs sampler are summa-
rized in Algorithm 2. In the following, λ̄ denotes the complex
conjugate of λ, and [wi]d denotes the d-th element of wi. In
our implementation, the hyperparameters α and β were set to
10−3.

Algorithm 2 (Gibbs sampling for Bayesian DMD).
(1) Sample w1:k from CN (mwi

,P−1
wi

) with

Pwi = diag
(
v−2
i,1 , . . . , v

−2
i,n

)
+

(1 + |λi|2)
∑
j |ϕi,j |

2

σ2
I,

mwi = P−1
wi

1

σ2

∑
j

ϕ̄i,j
(
ξ−i,j + λ̄iη−i,j

)
.

(2) Sample v2
1:k,1:n from InvGamma

(
av2i,d , bv2i,d

)
with

av2
i,d

= αv + 1, bv2
i,d

= βv + | [wi]d |
2.

(3) Sample λ1:k from CN (mλi
, p−1
λi

) with

pλi = 1 +
wH
i wi
σ2

∑
j

|ϕi,j |2, mλi =
wH
i

pλiσ
2

∑
j

ϕ̄i,jη−i,j .

(4) Sample ϕ1:m from CN (mϕj
,P−1

ϕj
) with

Pϕj = I +
1

σ2

(
W HW + Λ̄W HWΛ

)
,

mϕj = P−1
ϕj

1

σ2

(
W Hy0,j + Λ̄W Hy1,j

)
.

(5) Sample σ2 from InvGamma(aσ2 , bσ2) with

aσ2 = ασ + 2mn,

bσ2 = βσ +
∑
j

(y0,j −Wϕj)
H (y0,j −Wϕj)

+
∑
j

(y1,j −WΛϕj)
H (y1,j −WΛϕj) .

(6) Repeat (1)–(5) for a sufficient number of iterations.

4.2 Sparsity-promoting Prior
One of the difficulties when applying DMD to noisy data in
practice is how to determine the effective number of dynamic
modes. [Jovanović et al., 2014] proposed sparsity-promoting
DMD, in which the number of dynamic modes are deter-
mined by a lasso-like post-processing. In this work, we de-
velop a Bayesian approach for automatic determination of the
number of dynamic modes using a sparsity-promoting prior.
This approach works without manual tuning of hyperparam-
eters through the empirical Bayes technique.

Following [Park and Casella, 2008], we incorporate the
two-level Laplacian prior onw1:k, replacing prior (8) and hy-
perprior (9) by

wi|v2
i,1:n ∼ CN

(
0, σ2 diag

(
v2
i,1, . . . , v

2
i,n

))
, and

v2
i,d ∼ Exponential(γ2

i /2)

with new hyperparameters γ1:k. They change the parameters
of the conditional distributions for w1:k and σ2 (at Steps 1

-3 -2 -1 0 1 2 3
Im(log(6)="t)

-1.5
-1

-0.5
0

0.5
DMD TLS-DMD BDMD (average)

R
e(

lo
g
(6

)=
"

t)

Figure 2: Eigenvalues estimated for the Stuart–Landau equation.
Following a convention, log(λ)/∆t is plotted. In this scale, the
true eigenvalues lie on the imaginary axis since the data are peri-
odic. The ellipse denotes the 95% credible interval of the samples
generated from the Gibbs sampler of BDMD, for each eigenvalue.

and 5 in Algorithm 2) as follows:

Pwi =
1

σ2
diag

(
v−2
i,1 , . . . , v

−2
i,n

)
+

(1 + |λi|2)
∑
j |ϕi,j |

2

σ2
I,

aσ2 = ασ + 2mn+
1

2
kn,

bσ2 = βσ +
∑
j

(y0,j −Wϕj)
H (y0,j −Wϕj)

+
∑
j

(y1,j −WΛϕj)
H (y1,j −WΛϕj) +

∑
i,d

| [wi]d |
2

2v2i,d
.

Further, the distribution for v2
1:k,1:n (at Step 2) becomes the

generalized inverse Gaussian distribution (see e.g. [Devroye,
2014]) with the following parameters:

av2i,d = γ2
i , bv2i,d =

| [wi]d |2

σ2
, and pv2i,d =

1

2
.

To draw a sample from the generalized inverse Gaussian dis-
tribution, we used an efficient sampler of [Devroye, 2014].

Empirical Bayes for hyperparameter The set of hyper-
parameters γ1:k needs to be chosen appropriately for suc-
cessful model selection. We determine it by maximizing the
marginal likelihood, since we empirically found that this was
more stable than using gamma distribution as a hyperprior for
γ1:k. We use a Monte Carlo EM algorithm [Casella, 2001],
which comprises iterations between the Gibbs sampling with
the modified parameters (E-step) and the maximization of the
marginal likelihood (M-step) by

γ
(Q)
i =

√√√√2n

(∑
d

E
γ
(Q−1)
i

[
v2
i,d

])−1

,

where γ(Q)
i denotes the hyperparameter at the Q-th iteration

of the EM, and E
γ
(Q−1)
i

[·] denotes the expectation under the
hyperparameter at the previous iteration.

5 Related Work
DMD was originally proposed as a tool for diagnostics of
fluid flows [Rowley et al., 2009; Schmid, 2010], and it
has been utilized in various fields of science and engineer-
ing, including fluid mechanics [Schmid et al., 2011], anal-
yses of power systems [Susuki and Mezić, 2014], epidemi-
ology [Proctor and Eckhoff, 2015], robotic control [Berger
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Figure 3: Estimated values of (left) λ1 and (right) λ2, for
each noise magnitude σ. The box plots show the statistics
of the samples from the Gibbs sampler of BDMD (the red
lines denote the sample medians).

Table 1: Averages (and the standard deviations) of the absolute errors of esti-
mated (left) λ1 and (right) λ2 over 100 trials for each noise magnitude σ. As
for BDMD, the medians of the samples from the Gibbs sampler were adopted
as point estimation values.

|∆λ1|
σ

.00 .05 .10 .15 .20 .25

DMD
.00

(.00)
.01

(.01)
.03

(.01)
.04

(.01)
.05

(.01)
.06

(.02)
TLS-
DMD

.00
(.00)

.01
(.01)

.02
(.01)

.03
(.03)

.04
(.03)

.07
(.05)

BDMD
.00

(.00)
.02

(.01)
.02

(.01)
.01

(.01)
.01

(.01)
.02

(.02)

|∆λ2|
σ

.00 .05 .10 .15 .20 .25

DMD
.00

(.00)
.03

(.02)
.09

(.04)
.20

(.09)
.27

(.11)
.38

(.15)
TLS-
DMD

.00
(.00)

.02
(.01)

.03
(.02)

.05
(.03)

.06
(.03)

.06
(.05)

BDMD
.00

(.00)
.04

(.02)
.04

(.02)
.04

(.02)
.03

(.02)
.07

(.10)

et al., 2015], neuroscience [Brunton et al., 2016a], chaotic
systems [Brunton et al., 2016b], image processing [Kutz et
al., 2016b], and nonlinear system identification [Mauroy and
Goncalves, 2016]. Moreover, there are several algorithmic
variants such as the use of nonlinear basis functions [Williams
et al., 2015], formulation in a reproducing kernel Hilbert
space [Kawahara, 2016], and consideration for controlled
systems [Proctor et al., 2016].

While no previous work incorporates the probabilistic and
Bayesian point of view to DMD, several studies elaborated
on the effects of the observation noise; [Duke et al., 2012]
and [Pan et al., 2015] conducted error analyses on the out-
puts of DMD, and there is a line of research on low-rank ap-
proximation of DMD [Chen et al., 2012; Wynn et al., 2013;
Jovanović et al., 2014; Dicle et al., 2016; Héas and Herzet,
2017], with which we can mitigate the noise by ignoring in-
significant components of data. In addition, [Dawson et al.,
2016] proposed total-least-squares DMD, which explicitly
considered the presence of observation noise in datasets by
formulating DMD as a total least-squares problem. Note that,
in Proposition 1, we have shown that the MLE of probabilistic
DMD coincides with the solution of total-least-squares DMD.

6 Numerical Examples
We conducted experiments to demonstrate the performance
of Bayesian DMD (termed BDMD in this section) regarding
the tolerance to noise, the posterior inference, and the auto-
matic determination of the number of modes. In addition, we
examined the applications of BDMD to dimensionality reduc-
tion and time-series denoising tasks.

6.1 Estimation with Noisy Observations
We validated the performance of BDMD on two types of
noisy datasets: one was obtained from a limit cycle, and the
other was generated from a system with damping modes.

Limit cycle We generated data from the discrete-time
Stuart–Landau equation in polar-coordinates:

rt+1 = rt + ∆t(µrt − r3
t ), θt+1 = θt + ∆t(γ − βr2

t ),

and the noisy observable (i is the imaginary unit here):

yt =
[
e−2iθt e−iθt 1 eiθt e2iθt

]T
+ et,

where each element of et was sampled independently from
zero-mean Gaussian with variance 10−4. The Stuart–Landau
equation contains a limit cycle at r =

√
µ. We set the param-

eters by µ = 1, γ = 1, β = 0, ∆t = 0.01, r0 =
√
µ, and

θ0 = 0, generated 10,000 snapshots, and fed them into stan-
dard DMD (Algorithm 1), total-least-squares DMD (TLS-
DMD) [Dawson et al., 2016], and BDMD (with k = 5). The
estimated eigenvalues are plotted in Figure 2 wherein the el-
lipses denote the 95% credible interval of the samples gener-
ated from the Gibbs sampler of BDMD, for each eigenvalue.
While there is the bias on the estimation by standard DMD
due to the observation noise, the estimations by TLS-DMD
and BDMD coincide, which agrees with Proposition 1. Note
that one of the advantages of BDMD is that it returns the pos-
terior distribution of the parameters, instead of the point esti-
mation like TLS-DMD.

Damping modes We also investigated the performance for
identifying damping modes, i.e., modes that decay rapidly
over time. Generally, it is more difficult to identify damping
modes than to identify modes in a limit cycle. The dataset
was generated by

yt = λt1 [2 2]
T

+ λt2 [2 −2]
T

+ et,

where et was zero-mean Gaussian noise with different vari-
ances σ2 (σ = 0, 0.05, 0.1, 0.15, 0.2, 0.25), and we set
λ1 = 0.9 and λ2 = 0.8 as the eigenvalues. We compared
the performances of standard DMD, TLS-DMD, and BDMD
(with k = 2). A typical instance of the results is depicted in
Figure 3 wherein the box plots show the statistics of the sam-
ples generated from the Gibbs sampler of BDMD. The sam-
ple medians of BDMD and the estimations by TLS-DMD lie
near, and both are more accurate than the estimations by stan-
dard DMD. In addition, we ran 100 trials on the same type of
datasets generated with different random seeds. In Table 1,
the averages of the absolute errors of estimated eigenvalues
are listed. We can observe that the point-estimate perfor-
mance of BDMD is comparable to that of TLS-DMD.

6.2 Automatic Relevance Determination
We conducted an experiment to investigate how well BDMD
can determine the number of modes automatically. We gen-
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Figure 4: True and estimated dynamic modes in each column. The filled square de-
notes a positive value, and the empty denotes a negative value. The size of the square
corresponds to the absolute value of each element.
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Figure 6: Results of dimensionality reduction (best viewed in colors). The first and the second principal scores are plotted for PCA, whereas
the magnitudes and the angles of ϕ1 are plotted for BDMD-sp. The distinction between “walk” and “run/jog” are clearly observed in every
plot. The trajectories of Subject #2 are consistently distributed only in the upper part of (c).

erated a dataset by

yt = A

0.9t

0.7t

0
0

+ et, A =

0 −5 0 0
2 −4 0 0
3 −3 0 0
4 0 0 0

 ,
where et was zero-mean Gaussian noise with variance 10−4.
For determining the number of modes given noisy datasets,
standard DMD (Algorithm 1) may utilize the truncation of
small singular values at SVD step (Step 1), but the trunca-
tion threshold is not trivial in practice. Sparsity-promoting
DMD (SP-DMD) [Jovanović et al., 2014] uses a lasso-like
post-processing for automatic determination of the number
of modes, but it still requires to tune the regularization pa-
rameter. However, BDMD with the sparsity-promoting prior
(termed BDMD-sp hereafter) can automatically determine
the number of modes and the hyperparameter in the light of
data inherently, without any need for manual tuning.

We applied standard DMD, SP-DMD (with γ = 10 tuned
to give the best results), and BDMD-sp (with k = 4) to the
above-mentioned data. As for BDMD-sp, we adopted the
medians of the samples generated from the Gibbs sampler
as the point estimation values. A typical instance of the re-
sults is depicted in Figure 4 wherein the structures of the true
modes (matrix A) and the estimated modes are shown. In
this case, SP-DMD and BDMD-sp successfully recover the
structure of dynamic modes. Furthermore, we ran 100 trials
with the same type of datasets generated with different ran-
dom seeds, varying the number of snapshots fed into the algo-
rithms from m = 4 to 9. We investigated root-mean-square
errors (RMSEs) between the estimated and the true modes,
which were calculated after normalizing the maximum abso-
lute values and sorting the order of the modes. The results are

summarized in Figure 5 wherein the averages (and the stan-
dard deviations) of the RMSEs are plotted. We can see that
BDMD-sp achieves smaller errors than SP-DMD does.

6.3 Applications
We show two examples of BDMD applications: the dimen-
sionality reduction and the time-series denoising.

Dimensionality reduction
BDMD-sp provides a way for dimensionality reduction of
time-series data, since it can concentrate their information
on a small number of dynamic modes. To demonstrate the
performance, we address the task of data visualization using
BDMD-sp on the motion capture data of human activities.1
We chose locomotion data of three subjects (Subjects #2,
#16 and #35), for which both “walk” and “run/jog” motions
were recorded. We concatenated the recordings of “walk”
and “run/jog” of the three subjects and subsampled them by
1/4, finally obtaining 62-dimensional 421 measurements.

The results of the dimensionality reduction by PCA, t-SNE
[van der Maaten and Hinton, 2008], and BDMD-sp (with
k = 32) are plotted in Figure 6. As for PCA, we plot only
the first and the second principal scores, since the character-
istics of the first eight principal scores were all similar. As for
BDMD-sp, we focus on latent variable ϕ corresponding to the
dynamic mode of the largest magnitude and plot the medians
of its samples generated from the Gibbs sampler. Now let us
elaborate on the features of the results in Figure 6. The dis-
tinction between “walk” and “run/jog” is clearly observed as
the different distributions of the trajectories in every plot of
Figure 6. The distinction between Subjects #2, #16 and #35 is

1Downloaded from http://mocap.cs.cmu.edu/.
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Figure 7: A part of (upper) the noisy and (lower) the denoised time-
series. The RMSE decreased from 3.2 to 2.3.

less obvious, while the distribution of the trajectories implies
the difference of the locomotive behavior of Subject #2 from
those of the other two. On this point, BDMD-sp (Figure 6c)
shows the most consistent result wherein the trajectories of
Subject #2 are consistently distributed in the upper part of the
plot.

Univariate time-series denoising
We prepared a time-series dataset by extracting single series
{x} from the Lorenz attractor [Lorenz, 1963] (with ρ = 28,
σ = 10 and β = 8/3) and contaminated them with zero-
mean Gaussian noise of variance 16. The task was recovering
the original series from the noisy series. We applied BDMD
(with k = 1) on the noisy series and reconstructed them using
samples generated by the Gibbs sampler.

The original and the reconstructed series are plotted in Fig-
ure 7. The RMSE decreased from 3.2 to 2.3 by the denoising.
A simple moving average as a baseline achieved RMSE 2.5 at
the best, but note that we cannot necessarily obtain such per-
formance by moving average since it needs to tune the win-
dow size.

7 Conclusions
We have introduced the probabilistic model corresponding to
DMD and based on that model, proposed Bayesian DMD
to conduct posterior inference on the DMD parameters and
to enrich the DMD techniques systematically in the unified
Bayesian framework. We have shown that the MLE of the
proposed probabilistic model coincides with the solution of
the standard DMD algorithm in the no-noise limit. Moreover,
we have provided the Gibbs sampler for the posterior infer-
ence in Bayesian DMD. We have also discussed the case of
using the sparsity-promoting prior for automatic determina-
tion of the effective number of dynamic modes. Finally, we
have presented the results of the experiments with the syn-
thetic and the real-world datasets, which show the effective-
ness of Bayesian DMD.

Based on the Bayesian framework proposed in this study,
there would be various possible extensions of DMD. One of
the promising extensions would be the use of structured priors
on dynamic modes. For example, the dynamic modes mod-
eled with Markov random fields fit for images, and applica-
tions in natural language processing are possible with discrete
probability distributions as prior. Then a challenge would be
an efficient inference; we relied on the simple Gibbs sampler
in this study, but developing more fast and efficient ways is
of great importance.
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