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SUMMARY

Studies of latent traits often collect data for multiple items measuring different aspects of the trait. For
such data, it is common to consider models in which the different items are manifestations of a normal
latent variable, which depends on covariates through a linear regression model. This article proposes a
flexible Bayesian alternative in which the unknown latent variable density can change dynamically in lo-
cation and shape across levels of a predictor. Scale mixtures of underlying normals are used in order to
model flexibly the measurement errors and allow mixed categorical and continuous scales. A dynamic
mixture of Dirichlet processes is used to characterize the latent response distributions. Posterior compu-
tation proceeds via a Markov chain Monte Carlo algorithm, with predictive densities used as a basis for
inferences and evaluation of model fit. The methods are illustrated using data from a study of DNA dam-
age in response to oxidative stress.

Keywords: Dynamic Dirichlet process; Factor analysis; Hierarchical model; Latent variables; Measurement error;
Random effect; Surrogate data.

1. INTRODUCTION

In many applications, the primary response variable of interest cannot be measured directly and one must
instead rely on multiple surrogates. For example, in studying DNA damage and repair, it is not feasible to
directly measure the frequency of DNA strand breaks for each cell in a sample. However, using single-cell
gel electrophoresis (also known as the comet assay), one can obtain multiple measures that relate directly
to the frequency of strand breaks. In such settings, it is natural to use a latent response model in which
the different measured outcomes are assumed to be manifestations of a latent variable, which in turn may
depend on covariates, such as the dose of an exposure.

Often, in applying such models, one assumes that both the latent and manifest variables are
normally distributed (see Roy and Lin, 2000, 2002; Xu and Zeger, 2001, for recent references). How-
ever, a number of approaches have been proposed which allow the measured outcomes to have different
parametric distributions, typically restricted to be underlying normal (Muthén, 1984; Shi and Lee, 2000)
or in the exponential family (Muthén, 1984; Sammel et al., 1997; Moustaki and Knott, 2000; Dunson,
2000, 2003). In addition, one can potentially use a latent class model in which the underlying response
is categorical (see Miglioretti, 2003, for a recent reference). Since full likelihood approaches are of-
ten difficult to implement and may be sensitive to distributional assumptions, some authors have advo-
cated the use of robust score tests (Sammel and Ryan, 2002) or estimating equation-based approaches
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(Reboussin et al., 1999; Roy et al., 2003). Such methods are most useful when interest focuses on
assessing changes in the overall mean response profile with covariates. However, in certain applica-
tions, one may anticipate possible changes in not only the mean but also the distributional shape across
levels of a predictor. For example, in the molecular epidemiology studies which motivated this arti-
cle, the distribution of DNA damage across cells in a sample may have different shapes depending
on the level of oxidative stress induced by a chemical exposure, the amount of time after exposure
damage is measured, and the presence of polymorphisms in genes involved in the base excision repair
pathway.

To allow the surrogate outcome distributions to be unknown, Dunson et al. (2003) proposed an approx-
imate Bayesian approach for quantile regression. Following Lavine (1995), they replaced the likelihood
function with a substitution likelihood based on quantiles. Covariate effects were incorporated on the level
of the surrogate outcomes and residual dependency was accommodated through a shared latent normal
variable. In order to reduce dimensionality in assessing covariate effects on the latent response of inter-
est, it may be preferable to allow covariates to affect the location of the latent variable, while avoiding
parametric assumptions about the latent variable distribution.

This article proposes a Bayesian semiparametric approach to this problem. The surrogate outcomes are
related to a latent response variable through a factor analytic model, with a scale mixture (West, 1987) of
underlying normals used to characterize flexibly the measurement error distributions. Our primary focus
is on developing an approach for assessing dynamic changes in the latent response distribution across
levels of a predictor, X ∈ {1, . . . , d}. For example, X may represent the level of a treatment, age, or time
since exposure. To allow for uncertainty in the latent response distribution conditional on X , we propose
a dynamic mixture of Dirichlet processes (DMDP). In particular, the latent response distribution in group
h is represented as a mixture of the distribution in group h − 1 and an unknown innovation distribution,
which is assigned a Dirichlet process (DP) prior (Ferguson, 1973, 1974). This structure accommodates
autocorrelation in the distributions, and results in a flexible dynamic mixture structure for the surrogate
outcomes.

The proposed approach is an alternative to the dependent Dirichlet process (DDP) of MacEachern
(1999, 2000), which is a class of priors for a collection of unknown distributions (see also De Iorio et al.,
2002, 2004; Gelfand et al., 2004). The DDP characterizes dependence through a stochastic process for
a fixed number of atoms in the unknown distributions. The proposed DMDP instead allows evolving
changes in the number of atoms through a weighted mixture of independent DP measures. This approach
extends the weighted mixture formulation of Müller et al. (2004), which was used to borrow strength
across studies, to a time series setting. An innovative alternative approach to defining dependent nonpara-
metric measures was recently proposed by Griffin and Steel (2006). Their order-based DDP allows the
weights in the Sethuraman (1994) stick-breaking representation of the DP to be dependent on covariates.
They considered a nonparametric time series model as a special case, though our proposed DMDP has
advantages in terms of ease of implementation.

For a recent review of Bayesian nonparametric inference, refer to Müller and Quintana (2004). Sev-
eral authors have used DP priors for intermediate variables in hierarchical models, without allowing the
unknown distributions to vary with covariates. Bush and MacEachern (1996) used a DP mixture for a
random block factor, and Kleinman and Ibrahim (1998) applied a related approach to random effects dis-
tributions in mixed effects models. Also considering semiparametric linear mixed models, Ishwaran and
Takahara (2002) developed an iid weighted Chinese restaurant algorithm for inference. Mukhopadhyay
and Gelfand (1997) proposed a general class of DP mixtures of hierarchical generalized linear models.
Recent authors have considered improved approaches for computation and inference (Neal, 2000; Gelfand
and Kottas, 2002; Ishwaran and James, 2002).

Section 2 proposes the semiparametric latent response model and prior structure. Section 3 outlines
a hybrid Gibbs sampler and Metropolis algorithm for posterior computation, and discusses inferences.
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Section 4 applies the approach to data from a study of DNA damage in relationship with oxidative stress,
and Section 5 discusses the results.

2. SEMIPARAMETRIC HIERARCHICAL MODEL

2.1 Data structure and measurement model

Let yhi = (yhi1, . . . , yhip)
′ denote a p ×1 vector of surrogate measurements for the latent response of the

i th (i = 1, . . . , nh) subject in group h (h = 1, . . . , d). For example, in the DNA damage study, yhi denotes
surrogates of DNA damage for the i th cell in dose group h. The elements of yhi are ordered so that the
first p1 (0 � p1 � p) elements are continuous and the remaining p2 = p − p1 elements are categorical.
To facilitate joint modeling, we link the categorical surrogates to the underlying continuous variables
as in Muthén (1984). Formally, let yhi j = g j (y∗

hi j ; τττ j ), for j = 1, . . . , p, where y∗
hi j is a continuous

variable underlying yhi j . For the continuous surrogates, we have yhi j = y∗
hi j for j = 1, . . . , p1. For the

categorical surrogates, with yhi j ∈ {1, . . . , d j }, we have yhi j = ∑d j
l=1 l × 1(τ j,l−1 < y∗

hi j < τ j,l) for
j = p1 + 1, . . . , p, where τττ j = (τ j,0, . . . , τ j,d j )

′ are thresholds satisfying −∞ = τ j,0 < τ j,1 = 1 <
τ j,2 < · · · < τ j,d j −1 < τ j,d j = ∞. Hence, g j (·) is the identity link for continuous surrogates, and is
otherwise a threshold link mapping from R → {1, . . . , d j }, where d j is the number of categories of the
j th surrogate.

Letting y∗
hi = (y∗

hi1, . . . , y∗
hip)

′, we relate the underlying continuous variables to the latent response
through the following measurement model:

y∗
hi = µµµ + λλληhi + εεεhi , (2.1)

where µµµ = (µ1, . . . , µp)
′ is a vector of intercept parameters, λλλ = (λ1, . . . , λp)

′ are factor loadings,
ηhi is a latent response variable for subject i in group h, and εεεhi = (εhi1, . . . , εhip)

′ is a vector of inde-
pendently distributed measurement errors measuring idiosyncratic features of the different surrogates. A
primary goal in considering this model is to assess how the latent response distribution changes between
groups.

To address this goal, one could potentially use a mean regression model in which E(ηhi ) = x′
hiβββ

and V(ηhi ) = 1, where xhi = [1(h = 2), . . . , 1(h = d)]′ is a vector of group indicator variables
and the variance of the latent variable density is fixed at 1 for identifiability. In fitting the model and
performing inferences, one could avoid parametric assumptions on the residual measurement error and
latent variable distributions by using two-stage least squares procedures (with some risk of bias). Al-
ternatively, one could follow a full likelihood-based or Bayesian approach after specifying a distribu-
tion for εεεhi and ηhi . For example, an obvious choice that satisfies the moment constraints would be
εεεhi ∼ Np(0, ���) and ηhi ∼ N(x′

hiβββ, 1), where ���−1 = diag(ψ1, . . . , ψp) is the measurement error
precision matrix and ψ j = 1 for the categorical surrogates, j = p1 + 1, . . . , p, to ensure identifi-
ability. Related approaches have been considered by Sammel et al. (1997) and Dunson (2003), among
others.

As a more flexible approach for modeling of the residual distributions, we use a scale mixture of
normal distributions (Fernandez and Steel, 2001) by letting εhi j ∼ N(0, σ 2

hi j ), where σ 2
hi j = κ−1

hi j ψ
−1
j

with κhi j ∼ G(ν j/2, ν j/2). This specification results in a t density with ν j degrees of freedom and, for
ν j > 2, mean 0 and variance ψ−1

j ν j/(ν j − 2) for the measurement error εhi j in the continuous variable
underlying the j th surrogate. For continuous surrogates, this accounts for heavier tails than expected
under the normal distribution, while for categorical surrogates, the use of a t-distribution results in a more
flexible link function than the probit form: Pr(yhi j � l|ηhi ) = �(τ j,l − µ j − λ jηhi ), where �(·) denotes
the standard normal distribution function, implied by assuming εi j ∼ N(0, 1). Here, we set ψ j = 1, for
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j = p1 + 1, . . . , p, for identifiability. See Johnson and Albert (1999) for an overview of the Bayesian
modeling of categorical data using latent variable formulations.

2.2 Nonparametric latent response model

Our focus is primarily on developing a nonparametric specification for the latent response distribution.
Let η1i ∼ G1, where G1 ∼ D(α0G0) is an unknown distribution drawn from a DP centered on nonatomic
base distribution G0 and with precision parameter α0 (as in Antoniak, 1974). Following Sethuraman’s
(1994) stick-breaking representation, we specify

G1 =
∞∑

l=1

p1lδθ1l ,
p1l∏l−1

m=1(1 − p1m)

iid∼ beta(1, α0), and θ1l
iid∼ G0, (2.2)

where δθ denotes the degenerate distribution with all its mass at θ , {p1l , l = 1, 2, . . . , ∞} is an infinite
sequence of random weights, and {θ1l , l = 1, 2, . . . , ∞} is a corresponding sequence of random atoms
generated from G0. It can be shown that G1 is almost surely discrete.

Letting ηηη1 = (η11, . . . , η1,n1)
′, the DP structure implies that the elements of ηηη1 are allocated to

k1 � n1 unique values (or clusters), which we denote as θθθ1 = (θ1, . . . , θk1)
′. Letting ηηη

(i)
1 denote the

subvector of ηηη1 excluding the i th element, the conditional distribution of η1i given ηηη
(i)
1 is

(
α0

α0 + n1 − 1

)
G01 +

k(i)
1∑

l=1

(
n(i)

1l

α0 + n1 − 1

)
δ
θ

(i)
1l

, (2.3)

where the unique values of ηηη
(i)
1 are denoted as θθθ

(i)
1 = (θ

(i)
1l , l = 1, . . . , k(i)

1 )′, and n(i)
1l denotes the number

of elements of ηηη
(i)
1 having value θ

(i)
1l . This distribution is the mixture of the base distribution G0 and a uni-

form distribution with support on ηηη
(i)
1 , with the mixture weights depending on α0 and the sample size n1.

The form of (2.3) simplifies posterior computation and prediction of the latent response for an addi-
tional subject in group 1, denoted η1,n1+1. In particular, the conditional predictive density of η1,n1+1 given
ηηη1 is simply (

α0

α0 + n1

)
G0 +

k1∑
l=1

(
n1l

α0 + n1

)
δθ1l . (2.4)

Potentially, this predictive distribution could be used as a reasonable best guess for G2, the distribution
of η2i , the latent response for a subject in the second group. Such an approach would indirectly account
for dependency between G1 and G2 by modeling G2 conditionally on ηηη1. We prefer to specify explicitly
the dependence between G2 and G1. In particular, it is reasonable to assume that G2 shares features
with G1 but that innovations may have occurred. This can be modeled using the mixture structure G2 =
(1−π1)G1 +π1 H1, where 0 � π1 � 1 and H1 ∼ D(α1 H01) is a DP-distributed ‘innovation’ distribution.
Note that this formulation randomly modifies the discrete distribution G1 by (i) reducing the probabilities
allocated to the atoms in G1 by a multiplicative factor (1 − π1) and (ii) incorporating new atoms drawn
from the nonatomic base distribution H01.

Letting B1, . . . ,BK denote Borel sets partitioning R, we have

[G2(B1, . . . ,BK )|π1, G1] ∼ (1 − π1)G1(B1, . . . ,BK ) + π1DK (α1 H01(B1), . . . , α1 H01(BK ))
d= G1(B1, . . . ,BK ) + �2(B1, . . . ,BK ), (2.5)
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where DK (·) denotes the finite K -dimensional Dirichlet distribution, and

�2(B1, . . . ,BK ) = π1{DK (α1 H01(B1), . . . , α1 H01(BK )) − G1(B1, . . . ,BK )}
is a random innovation on G1(B1, . . . ,BK ). For any B ⊂ R, we have

E{�2(B)|π1, G1, α1} = π1{H01(B) − G1(B)}

V{�2(B)|π1, G1, α1} = π2
1 H01(B){1 − H01(B)}

(1 + α1)
.

The hyperparameters π1 and H01 control the magnitude of the expected change from G1 to G2, with
G2 = G1 in the limit as π1 → 0 and E{G2(B)|π1, G1, α1} = G1(B) as H01 → G1. The variance of the
change is controlled by π1 and α1, with V {�2(B)|π1, G1, α1} → 0 in the limit as α1 → ∞ or π1 → 0.
We do not consider the case in which α1 → 0 because that corresponds to the degenerate case in which
H1 places all its mass at a single point.

Extending this approach to later groups (h = 2, . . . , d), we let ηhi ∼ Gh , with

Gh = (1 − πh−1)Gh−1 + πh−1 Hh−1

=
{

h−1∏
l=1

(1 − πl)

}
G1 +

h−1∑
l=1

⎧⎨⎩
h−1∏

m=l+1

(1 − πm)

⎫⎬⎭πl Hl

= ωh1G1 + ωh2 H1 + · · · + ωhh Hh−1

Hl ∼ D(αl H0l), for l = 1, . . . , h − 1, (2.6)

where ωhl = πl−1
∏h−1

m=l(1 − πm), for l = 1, . . . , h, with π0 = 1 and ωωωh = (ωh1, . . . , ωhh)′, are
probability weights on the different components in the mixture. Note that this model can be expressed
equivalently as

ηhi =
h∑

l=1

1(Mhi = l)ξhil

Mhi ∼ Multinomial(1, . . . , h; ωh1, . . . , ωhh)

ξhil ∼ G∗
l , G∗

l ∼ D(αl G
∗
0l), for l = 1, . . . , h, (2.7)

where G∗
l = G1, G∗

0l = G0 for l = 1 and G∗
l = Hl−1, G∗

0l = H0,l−1 for l = 2, . . . , h. This formulation
expresses ηhi as equal to a randomly selected element out of a set of independent DP-distributed latent
factors ξξξ ih = {ξih1, . . . , ξihh}.

The Appendix derives the correlation coefficient between Gh−1(B) and Gh(B) and the marginal mean
and variance of Gh(B). Focusing on the special case in which G∗

0l(B) = G∗
0(B), for l = 1, . . . , d, so that

the same base distribution is chosen for each component in the mixture, we have

Corr(Gh−1(B), Gh(B)) =
∑h−1

l=1 ωhlωh−1,l(αl + 1)−1[∑h
l=1 ω2

hl(αl + 1)−1
]1/2[∑h−1

l=1 ω2
h−1,l(αl + 1)−1

]1/2
, (2.8)

with the (αl + 1)−1 terms dropping out in the special case in which αl = α, for l = 1, . . . , d. Because the
ω values depend on πππ , it is clear from this expression that the correlation in the unknown distributions is
driven by these mixture weights. This expression is particularly useful due to its simplicity and its lack of
dependency on B.
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Because factors drawn from a common DP cluster together as characterized in the Pólya urn scheme
of Expression (2.3), it is clear that latent variables for subjects in different groups can belong to the same
cluster. For example, if Mhi = Mh′i ′ , then subjects i and i ′ can potentially belong to the same cluster,
so that ηhi = ηh′i ′ . The prior probability of clustering together two subjects h, i and h′, i ′ in the same or
different groups is simply

Pr(ηhi = ηh′i ′) =
min(h,h′)∑

l=1

ωhlωh′l
αl + 1

, (2.9)

which is the probability that they are sampled from the same mixture component and are then grouped
together, summed across the different possibilities for the mixture component. It is clear from the above
expressions that πππ = (π1, . . . , πd)′ and ααα = (α1, . . . , αd)′ are key hyperparameters controlling the
clustering process and dynamic changes in the latent variable distribution across groups. Potentially, a
reasonable simplifying assumption in some applications may be πh = π and αh = α, for h = 1, . . . , d.
This special case may be particularly useful when group sizes are small. However, for greater flexibility,
we choose hyperprior distributions for πππ and ααα as follows:

π(πππ) =
d∏

h=1

beta(πh ; aπh , bπh ) and π(ααα) =
d∏

h=1

G(αh ; aγh , bγh ), (2.10)

where G(a, b) denotes the gamma density with mean a/b and variance a/b2. In most applications, one
may expect a priori that correlation between Gh−1 and Gh is moderate to high. Such belief corresponds
to the expectation that the π values are less than 0.5 and may be close to 0, which can be reasonably
expressed using aπh = aπ = 1 and bπh = bπ = 4. It is also reasonable, in most cases, to anticipate that a
small to moderate number of atoms are added in moving between two groups, which can be expressed by
choosing a prior that assigns high probability to small values of α (e.g. aγh = aγ = 1 and bγh = bγ = 1).

2.3 Identifiability and prior specification

An important issue in latent variable models is the incorporation of constraints to ensure identifiability
of the model from the observed data. Although this is different from formal Bayesian identifiability, it is
nonetheless an appealing property for a Bayesian model. As a starting point for a discussion of identifi-
ability, consider the expectation and covariance of y∗

hi integrating out the latent variables ηηηhi and κκκhi

E(y∗
hi ) = µµµ + λλλ E(ηhi ),

V(y∗
hi j ) = λ2

j V(ηhi ) + ψ−1
j

(
ν j

ν j − 2

)
, for j = 1, . . . , p,

cov(y∗
hi j , y∗

hi j ′) = λ jλ j ′V(ηhi ), for all j �= j ′. (2.11)

The correlation coefficient between the underlying variables, y∗
hi j and y∗

hi j ′ , denoted ρh( j, j ′), can be
used as a measure of the correlation between yhi j and yhi j ′ . Clearly, there is a potential nonidentifiability
problem, since the model is invariant to transformations that (i) multiply V(ηhi ) by any positive constant
c1 while dividing λ j by

√
c1 for j = 1, . . . , p or (ii) add any real number c2 to E(ηhi ) while subtracting

λ j c2 from µ j for j = 1, . . . , p. To eliminate this problem, we recommend fixing the values of one of the
elements of both µµµ and λλλ; say by letting µ1 = 0 and λ1 = 1.

It is important to consider carefully the sources of information about the group-specific latent variable
distributions, G1, . . . , Gd . For purposes of discussion, first consider the simple case in which p1 = p = 1
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and d = 1, so there is one continuous outcome and a single group. Since the factor loadings, λλλ, charac-
terize dependency among the outcomes, we recommend fixing λλλ = 1 for identifiability when p = 1.
With this constraint, there is information in the data about the shape of G1, since the distribution of y1i1
is characterized as the mixture of a t-distribution across G1. Lack of fit of the t-distribution, such as a
positively skewed shape or multimodality, can be accommodated through a nonnormal mixing distribu-
tion, G1. Extending to the d > 1 group case, the mixing distribution will change dynamically from G1
to Gd across the range of the group index (e.g. across dose groups or time points). Hence, the model can
accommodate systematic differences in lack of fit. For example, in the presence of heterogeneity in a dose
or treatment effect, there may be increasing skewness in higher treatment groups.

Finally, considering the general case in which p � 1 and d � 1, the density of the j th surrogate in
group h can be expressed as the mixture of a t-distribution with mean µ j +λ jηh across the Gh-distribution
for ηh :

fYhj (y) ∝
∫

{1 + ψ j (y − µ j − λ jηh)2/ν j }−(ν j +1)/2 dGh(ηh).

Hence, the marginal distribution of Yhj will be increasingly driven by the characteristics of Gh as the
factor loading λ j and the correlation with the other surrogates increase. If the surrogates in group h tend
to be positively skewed or to have other characteristics inconsistent with the t-distribution, these features
will be reflected in Gh . Common features of the surrogate distributions which tend to change across the
groups will be reflected in differences among G1, G2, . . . , Gd . In this manner, the data clearly inform
about the latent variable distributions G1, . . . , Gd .

A Bayesian specification of the model is completed with priors for the threshold parameters τττ and
additional unknowns in the measurement model (2.1). Letting Uhi = [Ip ηhi Ip] and γγγ = (µµµ′, λλλ′)′,
Expression (2.1) is equivalent to y∗

hi = Uhiγγγ + εεεhi . Following Albert and Chib (1993), we choose a
uniform improper prior for the threshold parameters, τττ j , for all j ∈ {p1 + 1, . . . , p} such that d j > 2,
with the τ values known for d j = 2. For the remaining parameters, our prior can be expressed as follows:

π(γγγ ) ∝ N(γγγ 0, �γ )1(λ j > 0, j = 1, . . . , p), π(ν j )
d= G(aν, bν), π(ψ j )

d= G(aψ, bψ). (2.12)

We choose the first and (p + 1)st diagonal elements of �γ to be ≈0 in effect fixing µ1 and λ1, for
identifiability purposes. This is done to simplify book-keeping in developing the computational algorithm,
and yields essentially identical results to treating µ1 and λ1 as strictly fixed constants. Focusing on the
case in which the surrogates all have the same direction, we constrain λ j > 0, though this sign restriction
is not necessary for identifiability.

3. POSTERIOR COMPUTATION AND INFERENCES

This section outlines a Markov chain Monte Carlo algorithm for posterior computation and predictive in-
ference. In the absence of outside information about G1 and systematic changes that occur across groups, a
natural choice for G0, H01, . . . , H0,d−1 is the standard normal distribution. This choice results in a semi-
parametric model, which is centered on a parametric model having normally distributed factors. Given
the focus in the literature on normal latent variable models, this form is particularly appealing and will
be our focus in developing a computational algorithm. The form of the algorithm is motivated by effi-
ciency considerations, and we utilize approaches for efficient sampling in DP models while also using a
block-updating approach for the unknowns in the measurement model. The steps involved in these two
components are described separately in the following two subsections. We focus on the case in which all
the surrogates are continuous since the extension to the general case is straightforward using the Albert
and Chib (1993) approach.
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3.1 Updating the unknowns in the latent response model

In this section, we describe our algorithm for updating the latent variables ηηηh , the mixture weights πh ,
and precisions αh , for h = 1, . . . , d, integrating out the infinite-dimensional {G1, . . . , Gd}. Our approach
is related to the Pólya urn Gibbs sampler described by MacEachern (1994) and West et al. (1994). Com-
plications arise due to the DMDP structure of Expression (2.6), but most of these are alleviated by using
the characterization of Expression (2.7).

Let θθθ l = (θl1, . . . , θl,kl )
′ denote the unique values of the latent variable in the lth mixture component

ξξξ l = {ηhi : Mhi = l, h = 1, . . . , d, i = 1, . . . , nh}, and let Shi = (l, r) denote that Mhi = l and
ηhi = θlr , so that subject h, i belongs to the r th cluster in the lth mixture component, with S = {Shi , h =
1, . . . , d, i = 1, . . . , nh}. Let ml and mlr denote the total number of subjects having Mhi = l and Shi =
(l, r), respectively. Also, let θθθ

(hi)
l , k(hi)

l , S(hi), m(hi)
l , and m(hi)

lr denote the values obtained excluding
subject h, i . Then, the conditional prior distribution of ηhi given the latent variable values and mixture
component indicators for all other subjects is

h∑
l=1

ωhl

⎡⎢⎣( αl

αl + m(hi)
l

)
G∗

0l +
k(hi)

l∑
r=1

(
m(hi)

lr

αl + m(hi)
l

)
δ
θ

(hi)
lr

⎤⎥⎦ . (3.1)

We first derive the conditional posterior distribution of ηhi , updating this prior with the data. Introducing
shorthand notation, let whl0 and whlr denote the respective multipliers on G∗

0l and δ
θ

(hi)
lr

in Expression

(3.1). Multiplying the conditional prior (3.1) by the conditional likelihood,
∏p

j=1 N(ỹhi j ; λ jηhi , σ
2
hi j ),

with ỹhi j = yhi j − µ j , and normalizing results in the following full conditional posterior distribution
for ηhi :

w̃hl0 N(̃ηhi , Ṽηhi ) +
h∑

l=1

k(hi)
l∑

r=1

w̃hlrδθ
(hi)
lr

, (3.2)

where Ṽηhi = (1 +∑p
j=1 σ−2

hi j λ
2
j )

−1 and η̃hi = Ṽηhi

∑p
j=1 σ−2

hi j λ j ỹhi j are the conditional posterior vari-
ance and mean derived under the base parametric prior ηhi ∼ N(0, 1), the updated component weights
are defined as follows:

w̃hl0 = c · whl0 · (2π)−1/2∏p
j=1 N(ỹhi j ; 0, σ−2

hi j )

N(0; η̃hi , Ṽηhi )
, w̃hlr = c · whlr ·

p∏
j=1

N(ỹhi j ; λ jθ
(hi)
rl , σ−2

hi j ).

Computation can potentially proceed by Gibbs steps, which successively sample from the full conditional
distribution (3.2) for each ηhi . However, since this approach results in slow mixing, we suggest an alter-
native approach following MacEachern (1994). In particular, letting Shi = (0, l) if ηhi is allocated to a
new cluster in mixture component l and Shi = (r, l) if ηhi = θ

(hi)
rl , we alternate between the following

steps:

1. Update S by sampling each Shi from its full conditional distribution, which is multinomial with
Pr{Shi = (r, l)|S(hi), θθθ(hi), k(hi), ααα, πππ, γγγ , ννν,ψψψ} = w̃hlr , for l = 1, . . . , h, r = 0, 1, . . . , h. When-
ever Shi = (0, l), for any l, we replace ηhi with a draw from N(̃ηhi , Ṽηhi ) to assign subject h, i to
their own cluster in component l.

2. Generate new values for θθθ l , for l = 1, . . . , d, conditional on the current configuration of subjects to
clusters by sampling θlr , for r = 1, . . . , kl , from its full conditional posterior distribution, which is



Bayesian dynamic modeling of latent trait distributions 559

N
(
θ̂lr , V̂θlr

)
, with

θ̂lr = V̂θhl

d∑
h=l

∑
i :Shi =(r,l)

p∑
j=1

σ−2
hi j λ j ỹhi j and V̂θhl =

⎛⎝1 +
d∑

h=l

∑
i :Shi =(r,l)

p∑
j=1

σ−2
hi j λ

2
j

⎞⎠ .

3. Update πl , for l = 1, . . . , d − 1, from its full conditional posterior distribution which is

beta

⎛⎝aπl +
d∑

h=l+1

nh∑
i=1

1(Mih = l + 1), bπl +
d∑

h=l+1

nh∑
i=1

l∑
m=1

1(Mih = m)

⎞⎠ ,

where Mih = m if Sih = (r, m) for any r .
4. Update αl , for l = 1, . . . , d, using the procedure proposed by West (1992), noting that for updating

αl the relevant number of clusters is kl and the relevant sample size is ml =∑d
h=1

∑nh
i=1 1(Mih = l),

which varies from iteration to iteration.

3.2 Updating the unknowns in the measurement model

Sampling of the coefficients, γγγ, and unknowns, {ψ j , κi j , ν j }, proceeds as follows:

Step 2,a. Update γγγ in a single block by sampling from the joint conditional distribution, which is
N2p(γ̂γγ , �̂γ ) subject to the constraint that λ j > 0 for j = 1, . . . , p, where

γ̂γγ = �̂γ

⎛⎝�−1
γ γγγ 0 +

d∑
h=1

nh∑
i=1

p∑
j=1

σ−2
hi j u′

hi j yhi j

⎞⎠ and �̂γ =
⎛⎝�−1

γ +
d∑

h=1

nh∑
i=1

p∑
j=1

σ−2
hi j u′

hi j uhi j

⎞⎠−1

,

where uhi j is the j th row vector of Uhi .

Step 2,b. Update the measurement error parameters by sampling from the full conditional distribution of
ψ j (for j = 1, . . . , p):

G
(

aψ + n

2
, bψ + 1

2

d∑
h=1

nh∑
i=1

κhi j (yhi j − u′
hi jγγγ )2

)
,

sampling from the full conditional distribution of κhi j (for all h, i, j):

G
(

ν j + 1

2
,
ν j + ψ j (yhi j − u′

hi jγγγ )2

2

)
,

and finally updating the ν j values in a Metropolis step.

3.3 Inferences on the latent response distribution

Posterior summaries of ρh( j, j ′) calculated from the MCMC output can be used as a basis for inferences
on correlation between the surrogates. However, the primary focus is typically on assessing changes in
the distribution of the latent response as a function of the predictors. For this purpose, it will be useful to
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Table 1. Posterior summaries of the parameters in the DNA damage application

Parameter Posterior summary

Mean SD 95% Credible interval

µ1 0 0 [0, 0]
µ2 −0.19 0.06 [−0.31, −0.07]
µ3 −0.14 0.02 [−0.18, −0.11]
µ4 −0.03 0.02 [−0.07, 0.00]
µ5 −0.11 0.06 [−0.23, −0.01]
λ1 1 0 [1, 1]
λ2 0.16 0.04 [0.09, 0.25]
λ3 0.84 0.02 [0.80, 0.88]
λ4 0.97 0.02 [0.93, 1.02]
λ5 0.12 0.04 [0.03, 0.21]
α1 3.95 1.38 [1.73, 7.02]
α2 4.04 1.64 [1.45, 7.95]
α3 4.29 1.70 [1.46, 8.09]
α4 3.24 1.55 [0.76, 6.76]
α5 2.29 1.33 [0.32, 5.38]
π1 0.47 0.12 [0.24, 0.72]
π2 0.41 0.14 [0.15, 0.69]
π3 0.32 0.13 [0.06, 0.59]
π4 0.19 0.12 [0.03, 0.47]

ρ†
1 0.73 0.15 [0.38, 0.94]

ρ2 0.71 0.17 [0.35, 0.96]
ρ3 0.74 0.16 [0.39, 0.99]
ρ4 0.86 0.13 [0.52, 1.00]

†ρh = Corr(Gh(B), Gh−1(B)), for h = 1, . . . , d − 1

have estimates of the predicted density function of η in each group, as well as measures of the magnitude,
location, and weight of evidence of changes between groups. To address these goals, we recommend
collecting draws from the conditional predictive distributions of ηh,nh+1 for a future subject in dose group
h, for h = 1, . . . , d. Generalizing Expression (2.4), this distribution is simply

g(ηh,nh+1) =
h∑

l=1

ωhl

⎡⎣( αl

αl + ml

)
N(ηh,nh+1; 0, 1) +

kl∑
r=1

(
mlr

αl + ml

)
δθlr (ηh,nh+1)

⎤⎦ . (3.3)

One can collect samples from this distribution after apparent convergence, along with the mean and
selected percentiles. Samples can be obtained easily due to the simple mixture structure, the mean is
available in closed form, and percentiles can be estimated by calculating the cdf at a dense grid of values.

After convergence, the samples of ηh,nh+1 represent draws from the predictive density of the latent
response in group h, and inferences can be based on comparing these densities between groups. One can
also estimate marginal posterior densities of differences in quantiles between groups, which is useful in
summarizing group differences, as we illustrate in Section 4. In addition, by also collecting draws from the
conditional distributions of the surrogate outcomes for additional subjects in each group, we can estimate
predictive densities of the surrogates. By comparing these predictive densities to the empirical distribu-
tions, one can assess goodness of fit of the procedure. In particular, it is of interest to look for surrogates
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which do not follow the trajectory predicted by the model, since this may suggest that the simple one-
factor structure may be insufficient. Although we have focused on the one-factor case throughout this
article, the generalization to multiple factors is straightforward.

4. APPLICATION TO DNA DAMAGE STUDY

We illustrate the methodology using data from a genotoxicity experiment analyzed previously by Dunson
et al. (2003). The study assessed the effect of oxidative stress, induced by hydrogen peroxide exposure,
on the frequency of DNA strand breaks using single-cell gel electrophoresis. Human lymphoblastoid cells
(n = 500) drawn from an immortalized cell line were randomized to one of the five dose groups (0, 5,
20, 50, or 100 micromoles H2O2), resulting in 100 cells per dose group. For each cell (i = 1, . . . , 500),
we have p = 5 surrogate measures of DNA damage, including (1) % tail DNA, (2) tail extent divided by
head extent, (3) extent tail moment, (4) Olive tail moment, and (5) tail extent. For a detailed description
of these variables and diagnostics demonstrating nonnormality, refer to Dunson et al. (2003).

Letting h = 1, . . . , 5 index the dose group and normalizing each of the surrogates, yi = (yi1, . . . , yi5)
′,

prior to analysis, we apply the approach proposed in Sections 2 and 3 to assess the effect of hydro-
gen peroxide exposure on the frequency of DNA strand breaks. To complete a Bayesian specification
of the model, we let γγγ 0 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)′, σ−2

γ, j = 1010 for j = 1, 6, and σ−2
γ, j = 2.0 for

j = 2, 3, 4, 5, 7, 8, 9, 10. A prior mean of 0 for the µ j values seems reasonable since the surrogates are
normalized. The prior for the factor loadings expresses our belief in a moderate degree of dependency in
the surrogates. In addition, we let aν = 10.0 and bν = 1.0, since we anticipate heavier tails than nor-
mal, and we let aψ = 5.0 and bψ = 1.0 to express our belief in the magnitude of the residual variance
component. Finally, for the hyperparameters in the priors for πππ and ααα in Expression (2.10), we follow the
recommendation of Section 2.2.

We ran the MCMC algorithm for 50 000 iterations, discarding the first 5000 iterations as a burn-in,
and collecting every 10th sample to thin the chain. Based on examination of trace plots, convergence was
rapid and autocorrelation was low to moderate, reflecting good computational efficiency of our MCMC
algorithm under the constraints imposed on the model to ensure identifiability. Posterior summaries are
provided in Table 1.

Applying the approach described in Section 3.3, we estimated the predictive distribution of the latent
response variable ηhi for cells in each of the dose groups. The results are shown in Figure 1. Interestingly,
the densities change considerably in shape as dose increases, with the density in the control group having
an approximately log-normal shape with relatively low variance. As dose increases, the mean and variance
increase substantially, the distribution flattens out, and the right tail becomes increasingly fat. Figure 2
shows boxplots for samples from the posterior distributions for changes in the 10th, 25th, 50th, 75th,
and 90th percentiles of the predictive distribution for ηhi attributable to increasing H2O2 exposure from
0 (h = 1) to the maximum dose of 100 (h = 5). The differences clearly increase as one moves further
into the right tail, reflecting failure of a mean or median regression model. This pattern likely reflects
heterogeneity among the cells in their response to oxidative stress induced by hydrogen peroxide exposure,
with some cells having little or no induced damage. The ability to make inferences on changes in quantiles
of the response distribution is an appealing feature of our approach.

It is important to assess how well the model fits the data since we make some parametric assumptions
and use informative priors. In particular, we assume that a single latent response variable can be used
to characterize departures from the t-distribution and effects of hydrogen peroxide exposure on each of
the surrogate variables. To assess model fit, we estimated predictive distributions for each of the surrogate
variables at each dose level and compared these estimates to histograms of the raw data. The results for the
first four surrogates are included in Figure 3, with the fifth excluded to make the plot readable (though
the results are similar).



562 D. B. DUNSON

Fig. 1. Histogram and kernel smoothed density estimates for the latent DNA damage variable (ηi ) among cells in
each of the dose groups. The solid vertical lines represent the mean and the dashed lines represent 2.5th and 97.5th
percentiles.

Overall, the model-based predictive distributions do a good job at capturing the distributional shifts
that occur as dose increases. The best fit is for the Olive tail moment, which was recommended by Dunson
et al. (2003) as the best single surrogate of DNA damage. In contrast, the fit is not as good for tail
extent/head extent, which is known to be a poor surrogate due to sensitivity to individual pixels in the
tail of the image. At 100 micromoles, there is some evidence of a second mode in the right tail which is
picked up in Figure 1 but not in Figure 3, possibly due to over-smoothing by the t-kernel.

An important issue is sensitivity of the results to the choice of hyperparameters. To assess robustness,
we repeated the analysis using alternative priors with (i) aπ = 5 and bπ = 1 to correspond to lower
autocorrelation across dose groups, (ii) aα = 5 to correspond to less uncertainty in the normal base
distribution and a higher rate of adding atoms between dose groups, (iii) the prior variance doubled for
all the parameters in the measurement model, and (iv) the prior precision doubled for all the parameters
in the measurement model. In each of these cases, the figures were essentially identical to those obtained
in the primary analysis. Estimates of quantiles of the predicted latent variable densities in each dose group
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Fig. 2. Boxplots for samples from the posterior distribution of differences in the 10th, 25th, 50th, 75th, and 90th
percentiles between the latent response density for xi = 0 and xi = 100. D = difference in quantiles between the
conditional distribution of ηi |xi = 100 and ηi |xi = 0.

under priors (i) and (ii) are shown in Table 2; results for priors (iii) and (iv) differed by only 1.6%, on
average, from the primary analysis estimates and are not shown.

5. DISCUSSION

This article has proposed a Bayesian semiparametric latent response model in which the latent variable
density can shift dynamically across groups. Although inferences on covariate effects on the mean re-
sponse profile may be somewhat robust to the parametric form for the latent variable density, linear mean
regression structures may be insufficiently flexible in many applications. For example, this is often the
case in epidemiologic and toxicologic studies in which there may be increasing variance and skewness
at higher exposure levels. The genotoxicity application presents one striking example of this scenario,
though we anticipate many other applications in which the latent linear mean regression model fails. Our
proposed Bayesian approach is quite flexible, and should provide a useful alternative to existing methods,
such as the semiparametric median regression modeling approach of Kottas and Gelfand (2001).

The proposed DMDP should prove useful in other applications in which a distribution or random
function can change across levels of a predictor. Note that one can either apply the DMDP directly to the
distribution of interest, in order to model the distribution as discrete with an unknown number and loca-
tion of atoms, or use the DMDP for a mixture distribution, in order to characterize a continuous density.
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Table 2. Estimated percentiles of the predictive distribution of the latent response for cells in each dose
group in the DNA damage application

Dose Percentile Posterior Summary

Mean†

Main Prior (i) Prior (ii) SD 95% Credible interval

0 10 −0.99 −1.00 −0.98 0.05 [−1.08, −0.90]
0 25 −0.93 −0.97 −0.93 0.06 [−1.03, −0.79]
0 50 −0.68 −0.70 −0.68 0.10 [−0.86, −0.48]
0 75 −0.35 −0.39 −0.38 0.10 [−0.53, −0.14]
0 90 0.16 0.14 0.13 0.14 [−0.15, 0.40]
5 10 −0.97 −0.95 −0.96 0.05 [−1.05, −0.86]
5 25 −0.77 −0.79 −0.76 0.08 [−0.93, −0.61]
5 50 −0.34 −0.31 −0.33 0.08 [−0.48, −0.17]
5 75 0.14 0.13 0.13 0.08 [−0.02, 0.28]
5 90 0.54 0.51 0.50 0.17 [0.24, 0.91]

20 10 −0.90 −0.83 −0.90 0.07 [−1.01, −0.76]
20 25 −0.58 −0.60 −0.55 0.08 [−0.74, −0.43]
20 50 −0.11 −0.16 −0.08 0.10 [−0.31, 0.10]
20 75 0.48 0.50 0.50 0.11 [0.26, 0.70]
20 90 1.07 1.04 1.06 0.14 [0.81, 1.35]
50 10 −0.82 −0.77 −0.83 0.07 [−0.96, −0.69]
50 25 −0.43 −0.34 −0.43 0.07 [−0.56, −0.30]
50 50 0.14 0.23 0.14 0.08 [−0.01, 0.29]
50 75 0.81 0.88 0.84 0.12 [0.56, 1.03]
50 90 1.23 1.21 1.21 0.18 [1.01, 1.80]

100 10 −0.79 −0.74 −0.80 0.07 [−0.93, −0.65]
100 25 −0.40 −0.37 −0.40 0.06 [−0.52, −0.26]
100 50 0.16 0.15 0.17 0.07 [0.01, 0.31]
100 75 0.93 0.96 0.95 0.09 [0.72, 1.09]
100 90 1.91 2.09 1.95 0.40 [1.26, 2.96]

†Main = main analysis; (i) = prior with aπ = 5, bπ = 1; (ii) = prior with aα = 5, bα = 1

The DMDP should also prove useful when interest focuses on clustering of observations within and across
groups. For example, in a time course or dose response gene expression study, one may want to cluster
genes having similar levels of differential expression, both within a given time or dose group and across
times or doses.

An interesting area for future research is the generalization to broader classes of factor analytic and
structural equation models, allowing for uncertainty in the number of factors as in Lopes and West (2004)
for the normal linear factor model. It is possible that fewer factors may be needed to characterize the
covariance structure if one allows the factors to have nonparametric distributions. However, issues of
interpretation and identifiability need to be carefully considered. Potentially, a rich class of multivariate
distributions could be generated by including a few factors having unknown distributions. This idea is con-
ceptually related to models based on mixtures of factor analyzers (Utsugi and Kumagai, 2001; Fokoue and
Titterington, 2003; McLachlan et al., 2003), though previous methods have assumed fully parametric mix-
ture structures.
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APPENDIX

A.1 Characterization of correlation in the unknown distributions

From (2.6) and (2.7), it is straightforward to derive Corr(Gh(B), Gh−1(B)):

Corr(Gh(B), Gh−1(B)) = E{Gh(B)Gh−1(B)} − E{Gh(B)}E{Gh−1(B)}
[V{Gh(B)}V{Gh−1(B)}]1/2

. (A.1)

The expectation and variance terms are as follows:

E{Gh(B)} =
h∑

l=1

ωhl G
∗
0l(B) and V{Gh(B)} =

h∑
l=1

(
ω2

hl

αl + 1

)
G∗

0l(B){1 − G∗
0l(B)}, (A.2)

for h = 1, . . . , d . The numerator in Expression (A.1) can be calculated as follows:

E{Gh(B)Gh−1(B)} − E{Gh(B)}E{Gh−1(B)}
= E[{ωh1G∗

1(B) + · · · + ωhhG∗
h(B)}{ωh−1,1G∗

1(B) + · · · + ωh−1,h−1G∗
h−1(B)}]

− E{ωh1G∗
1(B) + · · · + ωhhG∗

h(B)}E{ωh−1,1G∗
1(B) + · · · + ωh−1,h−1G∗

h−1(B)}

=
h−1∑
l=1

ωhlωh−1,l [E{G∗
l (B)2} − E{G∗

l (B)}2]

=
h−1∑
l=1

ωhlωh−1,lV{G∗
l (B)}

=
h−1∑
l=1

(
ωhlωh−1,l

αl + 1

)
G∗

0l(B){1 − G∗
0l(B)}. (A.3)

Hence, focusing on the special case in which G∗
0l(B) = G∗

0(B), for l = 1, . . . , d, Expression (2.8) follows
from straightforward algebra.
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