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We present a practical scheme for performing error estimates for density-functional theory calculations.
The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of
exchange-correlation functionals by comparing with an experimental database of binding energies for
molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to
experiment on calculated quantities such as binding energies, bond lengths, and vibrational frequencies. It
is demonstrated that the error bars on energy differences may vary by orders of magnitude for different
systems in good agreement with existing experience.

DOI: 10.1103/PhysRevLett.95.216401 PACS numbers: 71.15.Mb, 02.50.Ng, 31.15.Ew, 68.43.Bc
Over the past few decades the use of density-functional
theory (DFT) [1] to predict structures, energetics, and other
properties of atomic-scale systems has spread to many
different fields and the number of applications has grown
enormously. Today applications may vary from studies of
chemical reactions in heterogeneous catalysis [2] through
geophysical investigations of melting at the physical con-
ditions of the Earth’s core [3,4] to studies of biomolecular
systems like DNA [5,6]. The general usefulness of the
calculations lies in their unbiased ‘‘first principles’’ char-
acter and the relatively high degree of predictive power and
reliability which has been established. With respect to the
latter, it is, however, often difficult to assess directly to
which extent a calculated quantity—this being a molecular
bond length or some other property—is to be trusted. In
practice the evaluation often falls back exclusively on the
experience and acquired insight of the person performing
the calculation.

In this Letter we present a scheme for systematic error
evaluation within the generalized-gradient approximation
(GGA) DFT. The scheme is simple to apply and intended
to provide users of GGA-DFT with realistic error estimates
for their calculations. The approach is based on ideas from
Bayesian statistics [7] in which an ensemble of model
parameters are assigned probabilities by comparing to a
database of experimental results. The ensemble gen-
erated can then subsequently be used to estimate error
bars on model predictions. In the end the scheme involves
only a few additional non-self-consistent evaluations of
exchange-correlation functionals. In spirit, it is in fact
close to a rather common practice within the field of
DFT-GGA calculations: To assess the validity of a calcu-
lated DFT-GGA result it is common to try out different
versions of the GGA-functional or perhaps to compare
with a local-density approximation (LDA) result. The
scheme presented here provides a systematic framework
for such an approach.

The statistical approach we use is inspired by Bayesian
statistics [7] and was further developed in the context of
modeling complex biomedical networks [8] and for con-
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struction of interatomic potentials [9]. The main ingre-
dients are a model M with a set of parameters �, and a
database D. In our case the model will be a GGA-type
exchange-correlation functional and the database will con-
sist of experimental atomization or cohesive energies Eexp

k
for a collection of molecules and solids (details below). We
now define a probability distribution for the model parame-
ters through

P��jMD� � exp�� C���=T�; (1)

where C denotes a standard least-squares cost function
C��� � 1

2

P
k�Ek��� � E

exp
k �

2 with Ek��� being the atom-
ization or cohesive energy of system k in the database
calculated with the parameters �. The ‘‘effective tempera-
ture’’ T determines the spread of the ensemble. In simple
fitting procedures only the best-fit parameters �bf , which
are obtained when the cost function takes on its minimal
value Cbf , are considered. Here, in contrast, a whole en-
semble of parameter sets are considered leading to a spread
of values on model predictions. Following Ref. [9], we take
the value of the effective temperature to be given by the
minimal (best-fit) value of the cost function Cbf as T �
2Cbf=Np, where Np is the number of parameters. For a
harmonic cost function each parameter will then, on aver-
age, contribute an additional cost of T=2 � Cbf=Np. This
choice was demonstrated to work well in the case of error
estimation for interatomic potentials [9].

The model we shall consider is GGA-DFT [10] where
the exchange functional is a local function of the density
n and its dimensionless gradient s � jrnj=�2kFn� [n �
k3

F=�3�
2�]. Several suggestions for different mathemati-

cal forms of the exchange functional within GGA exist
[10–14]. A commonly used class of these including PW-91
[15], PBE [11], revPBE [16] and RPBE [17] differ by the
choice of the so-called enhancement factor Fx�s� in the
exchange energy Ex:

Ex�n� �
Z
drn�r��LDA

x �n�r��Fx�s�; (2)
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TABLE I. Errors in DFT atomization energies and cohesive
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where �LDA
x �n� � �3kF=�4�� [for a spin polarized density

we have Ex�n"; n#� � �Ex�2n"� � Ex�2n#��=2]. The en-
hancement factors for PBE and RPBE are shown in
Fig. 1. In the following we shall expand the enhancement
factor as

Fx�s� �
XNp

i�1

�i

�
s

1� s

�
2i�2

; (3)

regarding the �’s as free parameters. We use three parame-
ters (Np � 3) which a train/test check for our database has
shown to give the optimal fit without over-fitting. The
model space could be extended in future work to include
a fraction of exact exchange as for the B3LYP [18] or
PBE0 [19] functionals.

The database we use consists of the experimental atom-
ization energies of the molecules H2, LiH, CH4, NH3, OH,
H2O, HF, Li2, LiF, Be2, C2H2, C2H4, HCN, CO, N2, NO,
O2, F2, P2 and Cl2 and the experimental cohesive energies
(per atom) of the solids Na, Li, Si, C, SiC, AlP, MgO, NaCl,
LiF, Cu, and Pt. In the cost function all systems in the
database appear with the same unit weight.

All calculations are performed with a real-space multi-
grid DFT code [20] using the projector-augmented wave
method [21] to describe the core regions. All calculated
energy differences have been converged to an accuracy
better than 50 meV with respect to the number of grid
points and unit-cell size or number of k points. The elec-
tron density is calculated self-consistently using the PBE
functional and the evaluation of the exchange-correlation
energy for other enhancement factors are performed using
the PBE density. This is a very good approximation due to
the variational principle. Energies are calculated at the
calculated equilibrium bond distances.

Since Eq. (3) is linear in the parameters �, the total
energy of a given system will also be linear in �:
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FIG. 1 (color online). Exchange enhancement factors as a
function of dimensionless electron density gradient. The gray
lines show enhancement factors drawn from the ensemble
exp��C���=T�. The dashed, dotted, and full lines show enhance-
ment factors for PBE, RPBE, and the best fit, respectively.

21640
E��� � E0 �
X3

i�1

�Ei�i; (4)

where the coefficients E0 and �Ei only have to be calcu-
lated once for each system. It is therefore very fast to
calculate energy values for different enhancement factors
in the ensemble.

Minimizing the cost function with respect to the three
parameters leads to the best-fit enhancement factor shown
in Fig. 1 corresponding to the parameters �bf �
�1:0008; 0:1926; 1:8962�. The function is seen to follow
quite closely the PBE enhancement factor at low values
of the gradient s. In particular, it is nearly one in the
homogeneous limit (s � 0) which is exclusively a result
of the fitting. For s values greater than 1.5 the best-fit
enhancement factor increases more steeply than PBE
being more similar to the RPBE factor. In Table I the
resulting errors are shown for LDA, PBE, RPBE, and for
the best fit. RPBE performs better on the molecules and
PBE is better for the solids; the best fit represents a com-
promise between the two. We would like to stress that the
main point of this Letter is not to derive an improved
functional. Much experience has been acquired concerning
how well different GGA functionals work for different
systems [22,28,29] and we do not expect to obtain a large
overall improvement within this simple GGA framework.
But as we shall see in the following the ensemble construc-
tion allows for realistic evaluation of the error bars on
calculated quantities.

The cost function appearing in the probability distr-
ibution Eq. (1) is very nearly quadratic in the model
parameters in the relevant range of parameter space.
We can therefore expand the exponent in the probability
distribution as C���=T � const� 1

2��
TA��, where A is

a symmetric matrix. With U being the unitary matrix
energies (in eV) relative to experiment. All calculations are
based on self-consistent PBE densities. Experimental numbers
are taken from Refs. [11,22–27].

Error LDA PBE RPBE Best fit

Molecules:
Mean abs. 1.46 0.35 0.21 0.24
Mean 1.38 0.28 �0:01 0.12
Max. (�) �0:35 �0:22 �0:32 �0:26
Max. (�) 3.07 0.89 0.46 0.71

Solids:
Mean abs. 1.35 0.16 0.40 0.27
Mean 1.35 �0:09 �0:40 �0:24
Max. (�) �0:72 �1:37 �0:94
Max. (�) 2.73 0.36 0.15

All:
Mean abs. 1.42 0.28 0.28 0.25
Mean 1.37 0.14 �0:16 �0:02
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O(O exp ) BEE (O)bf /

FIG. 2 (color online). Histograms of actual error relative to the
BEE �Obf �Oexp�=�BEE�O� for different quantities. Top: atom-
ization or cohesive energies. Middle: bond lengths and lattice
constants. Bottom: vibrational frequencies and bulk moduli. The
dashed lines show the expected normal distribution. Experi-
mental numbers are taken from Refs. [22,27,28,34,35].
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that diagonalizes A (AU � U�), we can finally write the
parameters of the enhancement factors in the ensemble as

� � �bf �U��1=2�

� �bf �

0:066 0:055 �0:034
�0:812 0:206 0:007
1:996 0:082 0:004

0
@

1
A �1

�2

�3

0
@

1
A; (5)

where �1, �2, and �3 are stochastic variables which
are Gaussian distributed with unit width: P ��i� �
exp���2

i =2�. Using this formula it is very easy to generate
a properly distributed ensemble of enhancement factors as
shown in Fig. 1. The ensemble is seen to spread over a
region including the PBE and PRBE functionals but not
extending as far as LDA within 1 standard deviation.

The key suggestion of this Letter is that for a given
calculated observable, say a bond length of a molecule,
the variation of the calculated value of this observable
within the ensemble of enhancement factors provides a
useful estimate of how large the error of the best-fit value
is compared to experiment. From an ensemble of parame-
ters, �1; �2; . . . ; �N , generated from Eq. (5), the standard
deviation �BEE�O� which we shall refer to as the Bayesian
error estimate (BEE) of the observable O can be deter-
mined. Considering O as a function of � the BEE is
evaluated as

�BEE�O� �

����������������������������������������������
1

N

XN
��1

�O���� �Obf�
2

vuuut : (6)

In the simple case where the observable is approximately
linear in the parameters � the BEE can be calculated
without explicitly generating an ensemble through
�BEE�O� � �

P3
i�1�@O=@�i�

2�1=2 and Eq. (5). Further de-
tails can be found in our implementation of the approach
[30].

The ensemble in Eq. (6) is around the best-fit enhance-
ment factor corresponding to �i � 0. However, consider-
ing that the ensemble of enhancement factors (Fig. 1) is
quite wide compared with the difference between, for
example, the PBE and the best-fit functional it seems
reasonable to alternatively apply the fluctuations around
either the PBE or RPBE functional.

It is useful to consider the ratio �Obf �Oexp�=�BEE�O�
of the actual error relative to the estimate. For any given
observable in a particular system this ratio is just a single
number, so in order to assess whether our approach pro-
duces reliable error estimates from a statistical point of
view we need to look at the distribution of ratios for several
observables and systems.

In Fig. 2 we show histograms of the relative error for
different observables for all the systems in the data-
base. The upper panel shows the distribution in the case
of the atomization or cohesive energies. As can be seen
the distribution agrees quite well with a Gaussian distribu-
tion of unit width indicating that the error estimates are in
21640
fact reasonable for the binding energies. The individual
standard deviations for the cohesive energies are in the
range from 0.09 eV for Na to 0.75 eV for Al and for the
atomization energies the range is from 0.07 eV for Li2

to 0.60 eV for C2H4. As an example, the GGA estimate of
the cohesive energy of Na (experimental value is 1.11 eV)
is 1:02	 0:09 eV. The middle panel in Fig. 2 shows
the relative error histogram for the bond lengths (for
both molecules and solids) and relative errors for the
molecular frequencies and solid bulk moduli is shown in
the lower panel [31]. For both distributions, we see that the
BEE’s give reasonable estimates of the actual errors.

It is well-known for experienced users of DFT calcu-
lations that the reliability with which energy differences
can be calculated vary dramatically depending on the
particular system. The BEE catches this behavior as can
be seen, for example, by comparing the cohesive energy
and the bcc-fcc structural energy difference for bulk
copper (Fig. 3). The BEE for the cohesive energy is
0.5 eV while the error bar on the structural energy differ-
ence is only 4 meV. The high reliability with which small
structural energy differences can be calculated for bulk
metals is confirmed by the fact that for almost all metals
the correct equilibrium structures are predicted from the
calculations [32].

For chemisorption systems the BEE for the energy dif-
ference between chemisorption at two different surface
sites may also be somewhat smaller than the error bar for
the total chemisorption energy as illustrated in the case of
CO on Cu(100) in Fig. 3. However as can be seen from the
figure the error bar on the site preference is so large that the
preferred chemisorption site cannot be reliably deter-
mined. This is in good agreement with the fact that for a
number of CO metal chemisorption systems DFT-GGA
calculations do, in fact, predict a wrong chemisorption
site [33].
1-3



FIG. 3 (color online). Upper panel: Calculated ensemble for
cohesive energy (x axis) and bcc-fcc energy difference (y axis)
for a copper crystal. The BEE’s are indicated by error bars. The
inset uses rescaled axes. Lower panel: Calculated ensemble for
binding energy (x axis) and bridge-top energy difference for CO
on a Cu(100) surface. Values for the experimentally preferred
states [23,36] (fcc and top) are indicated by vertical dotted lines.
Units are in eV.
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It should be noted that, in general, the error estimates
depend on both the choice of database and the class of
models (here the GGA’s). This means that if some piece of
physics is not present in the database or if the model is
completely unable to describe a particular feature unreal-
istic estimates may occur. For example all GGA’s are
unable to properly describe the long-range van der Waals
interactions and hence the BEE’s will be unrealistic for that
type of interactions. In practical calculations also other
approximations like limited basis set size or the use of
pseudopotentials may introduce additional errors which
are not accounted for by the present approach which is
based on well-converged calculations.

We further note that it may be possible to reduce the
error bars in some cases by picking a database focused on a
particular type of system. Using, for example, only the
subset of molecular systems in our database a different
best-fit functional is obtained where the mean absolute
error is only 0.15 eV compared to the 0.24 eV in Table I.
With this functional the fluctuations and hence the BEEs
will be reduced by almost a factor of 2. However, applying
this functional to bulk metals would lead to larger errors
which would be underestimated.

Summarizing, we propose a simple way to estimate a
large portion of the systematic error for DFT-GGA calcu-
lations, requiring only a few extra non-self-consistent en-
ergy calculations to calculate the error bars of any
observable which is a function of energies.

We acknowledge support from the Carlsberg Foundation
and the Danish Center for Scientific Computing through
Grant No. HDW-1101-05.
21640
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] K. Honkala et al., Science 307, 555 (2005).
[3] A. Laio et al., Science 287, 1027 (2000).
[4] D. Alfe, M. J. Gillan, and G. D. Price, Nature (London)

401, 462 (1999).
[5] C. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne,

J. Chem. Phys. 122, 084119 (2005).
[6] E. Artacho et al., Mol. Phys. 101, 1587 (2003).
[7] E. T. Jaynes, Probability Theory (Cambridge University

Press, Cambridge, United Kingdom, 2003).
[8] K. S. Brown and J. P. Sethna, Phys. Rev. E 68, 021904

(2003).
[9] S. L. Frederiksen, K. W. Jacobsen, K. S. Brown, and J. P.

Sethna, Phys. Rev. Lett. 93, 165501 (2004).
[10] D. C. Langreth and J. P. Perdew, Phys. Rev. B 21, 5469

(1980).
[11] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
[12] A. D. Becke, J. Chem. Phys. 107, 8554 (1997).
[13] F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C.

Handy, J. Chem. Phys. 109, 6264 (1998).
[14] A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik,

J. Chem. Phys. 112, 1670 (2000).
[15] J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992); (The

correlation part of PW91 is slightly different from the one
of PBE).

[16] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
[17] B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B

59, 7413 (1999).
[18] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[19] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158

(1999).
[20] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen,

Phys. Rev. B 71, 035109 (2005); http://www.camp.dtu.
dk/campos
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