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Abstract 

 
Accelerated life testing or partially accelerated life tests is very important in life testing experiments because 

it saves time and cost. Partially accelerated life tests are used when the data obtained from accelerated life 

tests cannot be extrapolated to usual conditions. This paper proposes, constant–stress partially accelerated 

life test using Type II censored samples, assuming that the lifetime of items under usual condition have the 

Topp Leone-inverted Kumaraswamy distribution. The Bayes estimators for the parameters, acceleration 

factor, reliability and hazard rate function are obtained. Bayes estimators based on informative priors is 

derived under the balanced square error loss function as a symmetric loss function and balanced linear 

exponential loss function as an asymmetric loss function. Also, Bayesian prediction (point and bounds) is 

considered for a future observation based on Type-II censored under two samples prediction. Numerical 

studies are given and some interesting comparisons are presented to illustrate the theoretical results. 

Moreover, the results are applied to real data sets. 

 

 

Keywords: Topp Leone-inverted Kumaraswamy distribution; censored samples; balanced; square error; 

LINEX loss functions; Bayesian two-sample prediction; MCMC. 
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1 Introduction 

 
Rapid developments, improvements of the high technology, consumer's demands for highly reliable products 

and competitive markets have placed pressure on manufacturers to deliver products with high quality and 

reliability. In life testing, it is very difficult to estimate the time of failure for modern high reliability products 

such as electronics, power cables, metal fatigue, insulating materials, laser, airplane parts, aerospace vehicles, 

etc.; since these types of products are not likely to fail under usual operating conditions in the relatively short 

time available for test. For this reason, accelerated life testing (ALT) or partially accelerated life testing (PALT) 

are preferred to be used in manufacturing industries to obtain enough failure data in a short period of time and 

necessary to study its relationship with external stress variables. Such testing could save much time, man power, 

material sources and money. The stress can be applied in different ways like constant stress, step stress and 

progressive stress among others. 

 

In constant stress where under one higher than usual stress level, each specimen is run at a constant stress level. 

In practical use, most products run at constant stress as a constant stress test mimics actual use, it is simple and 

has a lot of advantages over time-dependent stress loadings because most of real products are operated at a 

constant-stress condition, see Nelson [1]. For more details about ALT, see Bai and Chung [2], Balakrishnan and 

Han [3], AL-Dayian et al. [4], also Basak and Balakrishnan [5] among others. 

 

In ALT the main assumption is that a life-stress relationship is known or can be assumed so that the data 

obtained from accelerated conditions can be extrapolated to usual conditions. In some cases, such relationship 

cannot be known or assumed. So, PALT are often used in such cases. 

 

In a constant stress-PALT (CS-PALT), each test item is run at a constant stress under either usual use condition 

or accelerated condition only until the test is terminated, and the analysis of PALT has been extensively studied 

in recent years, [see Bai et al. [6], Ismail [7], Hassan et al. [8], Hyun and Lee [9], EL-Sagheer [10] and Behairy 

et al. [11]]. 

 

The Bayesian method has certain accurate advantages when the sample size is small. When little knowledge 

about the prior information is available, one can derive the objective Bayes estimates based on non-informative 

priors, such as the Jeffreys prior, For more details, [see Jeffreys [12], Xu and Tang [13] and Guan et al. [14]]. 

Recently many authors have studied PALT from the Bayesian view point, such as Jaheen et al. [15] and EL-

Sagheer [10]. Also, few studies have considered prediction assuming PALT such as Abushal and AL-Zaydi [16] 

and Prakash and Singh [17]. 

 

The accuracy of parametric statistical inference and modeling of datasets largely depends on how well the 

probability distribution fits the given dataset once it has met all distributional assumptions. Several studies have 

been carried out on statistical distributions in the quest to generate distributions with more desirable and flexible 

properties that can model real-life datasets of varying shapes of density and failure rate functions. Currently, 

most studies are focused on developing new families that are generalizations of existing distributions to provide 

better fit to the modeling of data. These families of distributions are constructed by either compounding two or 

more distributions or adding one or more parameters to the baseline model. Behairy et al. [18] introduced the 

Topp Leone-inverted Kumaraswamy (TL-IK)  distribution as a composite distribution of Topp Leone (TL   ) 

and inverted Kumaraswamy (IK     ) distributions. It’s denoted by TL-IK       ), its cumulative distribution 

function (cdf) and probability density function (pdf) are given, respectively, by: 

 

                                                                                                               (1) 

 

where 

 

            are shape parameters, and 

 

                                                                                                                                          (2) 

 

 

and the pdf corresponding to (1) is given by 
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                                                                                    (3) 

 

The reliability function (rf) and hazard rate function (hrf) are given, respectively, by: 

 

                                                                                                (4) 

 

and 

 

        
       

         
 

                                               
   

                     
 ,                                  (5) 

 

TL-IK         distribution contains some special well-known distributions in lifetime, such as the TL-Lomax 

(Pareto Type II), the TL-log-logistic (Fisk), the Lomax and the log-logistic (Fisk) distributions. Behairy et al. 

[18] derived some transformed distributions such as the TL-exponentiated Weibull, TL-exponentiated Burr 

Type XII, TL-Kumaraswamy Dagum and TL-Kumaraswamy-inverse Weibull, among several others. They 

studied the properties of this distribution; they obtained the stress-strength reliability, moments, moment 

generating and quantile functions of the TL-IK distribution. Also, they derived the maximum likelihood (ML) 

estimators, asymptotic variances and covariance matrix of the ML estimators and confidence intervals for the 

parameters; also they obtained the ML two-sample predictors for the future observation based on Type-II 

censored data. 

 

This paper is organized as follows: in Section 2, a description of the model and basic assumptions are presented. 

In Section 3, Bayesian point estimation and credible intervals (CIs) for the unknown parameters, the 

acceleration factor, rf and hrf of the TL-IK distribution for CS-PALT based on Type II censored data are 

obtained based on the balanced square error loss (BSEL) and balanced linear exponential loss (BLL) functions. 

Bayesian prediction (point and bounds) for a future observation based on two-sample prediction are considered 

in Section 4. In Section 5 numerical illustration is presented. Finally, some general conclusions are introduced in 

Section 6. 

 

2 Model Description and Assumptions 

 
In this section, the description of the model and basic assumptions are presented. Total items are divided 

randomly into two samples of size         and   , respectively, where   is the sample proportion. The first 

sample is allocated to usual conditions and the other is assigned to accelerated conditions. Each test item of 

every sample is run without changing the test condition until reaching the censoring number. 

 

Assumptions 

 
The lifetimes    ,   = 1, …,        of items allocated to usual conditions, are independent and identically 

distributed (i.i.d) random variables. 

 

The lifetimes                of items allocated to accelerated conditions, are i.i.d random variables. 

 

The lifetimes    and    are mutually statistically independent. 

 

In this study, the lifetimes of test items are assumed to have a TL-IK distribution. The pdf of an item at usual 

conditions is given by (3). 

 

The pdf and cdf for an item tested at accelerated conditions are given by: 

 

                                                                

                                                                                                                                            (6)                                             

 

where 
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                                                                                                       (7) 

 

           is the acceleration factor which is the ratio of the mean life at usual condition to that at accelerated 

condition and    . 

 

and 

 

                                                                                                           (8) 

 

The rf and hrf for an item tested at accelerated conditions are as follows: 

 

                                                                                                    (9) 

 

and 

 

        
                                                    

   

                       
 ,                                  (10)  

 

3 Bayesian Estimation 

 
In this section, the Bayes point and CIs estimation for the parameters, rf and hrf of TL-IK distribution for CS-

PALT based on Type II censored sample are derived. The BSEL and BLL loss functions are used. 

 

Bayesian statistics is an effective tool for solving some inference problems in a situation when the available 

sample is small for more complex statistical analysis to be applied. The lack of information may be offset (up to 

a certain point) by using the Bayesian approach, as it enables us to utilize more sources of information. Besides 

the sample data, so-called prior information may be included into the analysis. 

 

In Bayesian analysis, the unknown parameters are considered as random variables and use the prior information 

about the unknown parameters is considered. The posterior information is obtained to estimate the behavior of 

the products under usual conditions. The integrations obtained in these cases are complicated, therefore 

numerical results are performed using Markov Chain Monte Carlo (MCMC) method. 

 

Considering, the failure times consist of     smallest lifetimes                  out of a random sample 

of        lifetimes                       under usual conditions and                  out of a 

random sample of    lifetimes 

 

                  at accelerated conditions, respectively. 

 

The likelihood function (LF) for {      :                } at usual conditions is given by 

 

                    
               

         
                                                                                 (11) 

 

where                                         and          ,           are given by (3) and (4), 

respectively. 

 

The LF for {      :            } at accelerated conditions is given by 

 

                    
               

    
                                                                                   (12) 

 

where                      ,         
 
           and           are given by (6) and (9), respectively. 

Let    and    be the number of censored items at usual and accelerated conditions, respectively, where   
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                   and                   .                                                                                  (13) 

 

Substituting (3) and (4) into (11), and substituting (6) and (9) into (12), hence the LF according to CS-PALT, for 

                                          , can be written as: 

 

                              
  

 

   

                        

                                           
  

 

            
      

 

   

        
    

           
 
  

            
 
 
   

                             
  

                                       (14) 

 

where 

 

 
        

 
                 

  
                 

  
 

                   
  

                    
  

 
                                                        (15) 

 

The conjugate informative priors are assumed as prior distributions for the parameters. Further that, the elements 

of the parameters vector        
 
 are assumed to be independent and each has gamma distribution, that      

gamma         and       are the hyper-parameters of the prior distribution for        . Then the joint prior 

distribution of all the unknown parameters has a joint pdf given by 

 

        
                  

 
                                                                                        (16) 

 

where                and                  . 

 

Combining the LF in (14) and the joint prior distribution given by (16), then the joint posterior distribution for   

can be obtained as follows: 

 

                         
                        

   
                         

                                                       
  

 

            
       

           
    

           
 
   

            
 
 
   

                             
  

                                        (17) 

 

where               ,        and        are given by (15) and A is the normalizing constant which can be 

determined as follows: 

 

 
 

                                                                                                                                       (18) 

 

where 

 

 
 

  
 
 

 
 

 
 

 
        and                     .                                                                               (19) 

 

3.1 Bayesian estimation based on balanced loss functions 

 
Zellner [19] introduced the class of balanced loss function (BLF). An extended class of BLF was introduced by 

Jozani et al. [20] with the following form: 
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                                                                                                                            (20) 

 

where         is an arbitrary loss function, when     is a chosen estimator of   and the weight        . The 

BLF can be specialized to various choices of loss functions such as the squared error, absolute error, entropy, 

linear exponential (LINEX) loss functions, also the BLF generalizes the SEL function. Ahmadi et al. [21]                

suggested the BSEL function by substituting                 in (20), hence the BSEL function has the 

following form: 

 

  
                 

 
               

 

the corresponding Bayes estimator;          of a function;        using BSEL function is given by 

 

                                                                                                                                    (21) 

 

where      is the ML estimator of        and       is the Bayes estimator using SEL function. 

 

Also, if                            , is substituted in (20), the BLL function is 

 

  
                                                             

 

then the Bayes estimator using the BLL function of   takes the form 

 

        
 

 
                                                                                                                (22) 

 

where     is the shape parameter. 

 

The estimator of a function, using BLF is actually a mixture of the ML estimator of the function and the Bayes 

estimators using any loss function. Other estimators, such as the least squares estimator may replace the ML 

estimator  Many authors obtained the Bayes estimators for different other distributions using the symmetric and 

asymmetric BLF, [see AL-Hussaini and Hussein [22], Al-Zahrani and Al-Sobhi [23], Abushal and AL-Zaydi 

[16]]. 

 

In this paper, the BSEL and BLL functions are considered to obtain the Bayes estimators for the unknown 

parameters and the acceleration factor   of TL-IK       distribution. 

 

3.2 Bayesian estimation under balanced squared error loss function 

 
Let   and   are censored samples of size r obtained from a life-test on n items (Type II censored sample) whose 

lifetimes have a TL-IK (     distribution, and the BSEL function is defined by (21). 

 

(a) Bayesian estimation for the parameters 

 

From (17) and (21) the Bayes estimators for the parameters under BSEL function can be derived, respectively, 

as follows: 

 

       
              

 
              ,                                                                              (23) 

 

where            is given by (17), and  
 
     are given by (19). 

One can obtain the Bayes estimators for the parameters under the BSEL function, by substituting    by 

           in (23). 
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(b) Bayesian estimation for the rf and hrf 

 

The Bayes estimators for the rf and hrf; under the BSEL function, assuming that the parameters are unknown, 

are given below 

 

The Bayes estimator for the rf is 

 

                         
 
                .                                                                   (24) 

 

The Bayes estimator for the hrf is 

 

                         
 
               ,                                                                     (25) 

 

where         and         are the estimators for      and      using the ML method and        are the ML 

estimators of           . 

 

3.3 Bayesian estimation under balanced linear exponential loss function 

 
Let   and   are censored samples of size r obtained from a life-test on n items (Type II censored sample) whose 

lifetimes have a TL-IK (     distribution and the BLL function is defined by (22). 

 

(a) Bayesian estimation for the parameters 

 

From (17) and (22) the Bayes estimators for the parameters under BLL function can be derived, respectively, as 

follows: 

 

       
 

  

 
                       

 
                                                             (26) 

 

One can obtain the Bayes estimators of the parameters under BLL function, by substituting    by       or   in 

(26). 

 

(b) Bayesian estimation for the rf and hrf 

 

The Bayes estimators of the rf and hrf based on     function when the parameters are unknown are derived 

below 

 

The Bayes estimator of the rf is given by 

 

          
  

 
                         

 
                                                  (27) 

 

The Bayes estimator of the hrf is given by 
 

          
  

 
                         

 
                                                   (28) 

 

where         and         are the estimators of      and      using the ML method and       are the ML 

estimators of       or  . 

 

3.4 Credible intervals 

 

In general                      are 100(1- ) % CIs for    , 

 

where           or   if 

 



 

 
 

 

Al-Dayian et al.; JAMCS, 36(3): 11-32, 2021; Article no.JAMCS.66720 
 

 

 
18 

 

                                         
       

       
                                                     (29) 

 

The lower and upper bounds                   can be obtained by evaluating, 

 

                     
 

 
        and                         

 

 
. 

 

4 Bayesian Prediction Based on Two-Sample Prediction 

 
Prediction for future events on the basis of the past and present knowledge is a fundamental problem of 

statistics, arising in many contexts. 

 

Assuming that                  are the first r ordered life times in a random sample of n components 

(Type II censoring) whose failure times are independent and identically distributed as random variables Y`s 

having the pdf for an item tested at accelerated conditions is given by (6) which is an informative sample, and 

that                  is a future independent random sample (of size m) from the same distribution. Our aim is 

to predict a statistic in the future sample based on the informative sample [see Kaminsky and Rhodin [24], 

Valiollahi et al. [25], Abushal and AL-Zaydi [16], Ateya and Mohammed [26] and Raqab et al. [27]]. 

 

For the future sample of size m, let      denotes the     order statistic,      , then he pdf of       is given by 

 

                                   
   

             
   

              , 

       
 
,      

 

          
                                                                                             (30) 

 

using the binomial expansion theorem for              
   

, yields 

 

                                 
  

    
             

      
,                                                                 (31) 

 

and substituting (6) and (8) into (31), then one can obtain the pdf of      order statistic for an item tested at 

accelerated conditions: 

 

                        
             

      
  

 
     

          
     

 
     

 
   

                      
 
     

 
 
         

                                                                          (32) 

 

where 

 

     
                

  
    

                 and   
 
                

  
                                (33) 

 

Assuming that the parameters   are unknown and independent, then the Bayesian predictive density (BPD) of 

      given      ; based on the informative prior, can be obtained, as follows: 

 

             
 

                   ,                                                                                           (34) 

 

where 

 

          
 

    and           are given by (17), (19) and  (32), respectively. 

 

Substituting (17) and (32) into (34), then the BPD of       given      is given by 
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                                                                              (35) 

 

where      ,      ,        and        are given by (15),  
 
                  and      

     are defined in 

(19), (30) and (33), respectively, and      
 are the hyper-parameters of the prior distribution for          A is 

the normalizing constant which is given by (18). 

 

4.1 Point predictor 

 
Based on Type II censoring, the Bayes point predictor is considered under two types of loss functions BSEL 

function, as a symmetric loss function and BLL loss function, as an asymmetric loss function. 

 

(a) Balanced squared error loss function 

 

The Bayes predictor (BP) for the future observation        under BSEL function can be derived using the 

following equation 

 

                                                                                                                              (36) 

 

where          is the ML predictor for the future observation      and              can be obtained using 

 

               
  

                        

                
     

  
  

        
 
                            

      
  

   
 
     

          
     

 
     

 
      

 
     

 
 
         

 

           
   

     
 
    

    
     

 
    

 
      

 
    

 
 
   

                                    

      
 
    

  
     

 
    

 
 
 

 
  

           
       

     
 
     

    

  

      
 
     

 

      
 
     

 

 
   

  

      
 
     

  
     

 
     

 
 
 

 
  

                                                                             (37) 

 

where 

 

 
  

  
    

 
 
 

 
 

 
 

  
and                        .                                                                       (38) 

 

(b) Balanced linear exponential loss function 
 

The BP for the future observation        under BLL function can be obtained using the following equation: 

 

           
  

 
                                                                                          (39) 
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where           is the ML predictor for the future observation       and 

 

                     can be obtained as given below 

 

                      
    

                               

 

             

   

    

 
  
  

                   
 
            

          
      

  
 
     

          
     

 
     

 
  

      
 
     

 
 
         

          
  

 

   

  
 
    

    
 

       
 
    

 
      

 
    

 
 
   

  

      
 
    

  
     

 
    

 
 
 

 
  

           
      

 

   

 

   
 
     

    

     
 
     

 

      
 
     

 

 
   

  

      
 
     

  
     

 
     

 
 
 

 
  

                                                    (40) 

 

where 

 

  
  

          are defined in (38),   = 1, 2, 3, … ,  ,  and      
 are the hyper-parameters of the prior distribution 

for          
 

4.2 Bayesian predictive bounds 

 

In general                                     is a 100(1- ) % Bayesian predictive bounds (BPB) for any 

future observation     , can be obtained by 

 

                                                       

       

       

      

 

A 100(1- ) % BPB lower limit (LL) and upper limit (UL)  for the future observation      is obtained by solving 

the following two nonlinear equations, 

 

                        
 

 
       and                             

 

 
 .                                         (41) 

 

Then the BPB for      can be derived as follows: 

 

                                   

 

  

  

 

Using (35), and substituting    by            and            then solving two nonlinear equations 

simultaneously, one obtains 
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                                                        (42) 

 

where               
 

Remark 

 

If     ,     and   
   

 
 in (36) and (39), one can predict the minimum observable;     , the maximum 

observable;     , and the median observable if   is odd;  
 
   

 
 
, under BSEL and BLL functions, respectively. 

5 Numerical Illustration 

 
This section aims to investigate the precision of the theoretical results of estimation and prediction on the basis 

of the simulated and real data. 

 

5.1 Simulation algorithm 

 
In this subsection, a simulation study is conducted to illustrate the performance of the presented Bayes estimates 

on the basis of the generated data from the TL-IK         distribution considering the CS-PALT. The estimated 

risks (ERs) and CIs for the parameters, rf and hrf under Type II censoring are computed. Also, the Bayes two-

sample predictors (point and bounds) are calculated. Simulation studies are performed using R programming 

language for illustrating the obtained results. 

 

The steps of the simulation procedure based on Type II censored data are as follows: 

 

a. For given values of    , random samples of size   are generated from the TL-IK         distribution. 

b. For given values of    , random samples of size   are generated from the TL-IK         distribution. 

 

 The transformation between the uniform distribution and TL-IK distribution is obtained as follows: 

 

         
 

  
 

 

 
            

 

            . 

 

c. For each sample size    
  , are sorted, such that                . 

d. For each sample size    
  , are sorted, such that            . 

e. Considering two different proportions   of the sample items allocated to accelerated conditions, 

       and        under Type-II censored data. 

f. The number of failures   are chosen to be less than        and   . 

g. All the previous steps are repeated N times, where N represents a fixed number of simulated samples, 

where N =10000 is the number of repetitions. 
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 Simulation studies have been performed using (R programming language) for illustrating the 

theoretical results of estimation problem. The performance of the resulting estimators of the 

acceleration, shape parameters and acceleration factor have been considered in terms of their averages 

and ERs, where 

    
    

  
   

 
 ,           and     and   ER 

                        
   

 
  

 The Bayes predictors (point and bound) for a future observation from the TL-IK distribution based on 

Type II censored data are computed for the two-sample case. 

 Simulation results of the Bayes estimates under SEL function and LINEX loss function are displayed in 

Tables 1-4, where the samples of size (n=30, 60, 100), are used. For each sample size, the censoring 

level is 10% and the chosen parameters value are selected as (Case 1                     
                            , (Case 2,                                  
      and (Case 3,                                        

 The set of hyper parameters is (                                  ), for         respectively. 

 Gamma distribution is used as informative prior. 

 

h. Simulation results of the Bayes estimates for the parameters and acceleration factor under BSEL and 

BLL functions are computed, from (36) and (39), according to the MCMC method, and presented in 

Table 5, where the samples of size (n=30,        and      ). 

 

i. The Bayes two-sample point predictors for the future observation      , under SEL and LINEX loss 

functions are computed using (37) and (40). Also, by solving (41) one can get the 95% BPB for the     

order statistics in a future Type-II censored sample. 

 

 Bayes predictive points and bounds for some order statistics of future sample based on informative 

prior are displayed in Table 7. 

 

5.2 Some applications 

 
This subsection aims to demonstrate how the proposed method can be used in practice. Two real lifetime data 

sets are used for this purpose. The TL-IK         distribution is fitted to the two real data using Kolmogorov-

Smirnov goodness of fit test through the R programming language. 

 

Application 1 

 

The data is given by Murthy et al. [28] which refers to the time between failures for a repairable item: 1.43, 

0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 

0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86 and 1.17. 

 

Application 2 

 

The second application is given by Dumonceaux and Antle [29]. With respect to the maximum flood level (in 

millions of cubic feet per second) for the Susquehanna River at Harrisburg, Pennsylvania. Each number is the 

maximum flood level for a four year period, the first, 0.654, being for the period 1890-1893, and the last, 0.265, 

being for the period 1966-1969. The data is 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235 

0.269, 0.740, 0.418, 0.412 0.494, 0.416, 0.338, 0.392, 0.484, 0.265. 

 

The Kolmogorov–Smirnov goodness of fit test is applied to check the validity of the fitted model. The p values 

are given, respectively, by 0.5860 and 0.6465. The p value given in each case showed that the model fits the 

data very well. 

 

Table 6 indicates that the Bayes estimates and standard errors (SEs) based on informative prior. Also, Bayes 

point predictors and bounds of some order statistics for future sample based on informative prior are displayed 

in Table 8. 
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5.3 Concluding remarks 
 

a. It is observed from Tables 1-4 that the ERs perform better when the sample size increases. 

b. Tables 1-4 indicate that the intervals of the parameters become narrower as the sample size increases. 

c. It is noticed from Table 5, that the Bayes estimates under the BSEL and BLL functions have the smallest 

ERs regard to their corresponding ML estimates. 

d. From Table 7 and 8, one can observe that the length of the interval of the first order statistic is smaller 

than the length of the interval of the last order statistic. Also, the BPB include the predictive values 

(between the LL and UL). 

e. From the results of Tables 1-4, one can notice that the acceleration factor when   increases, ERs decrease. 

f. Tables 1 and 2 show that when the proportion   of the sample items allocated to accelerated conditions 

decreases, the ERs of the parameters and acceleration factor, perform better. 

 

6 General Conclusion 

 
For products having a high reliability, the test of product life under usual conditions often requires a long period 

of time. So ALT or PALT is used to facilitate estimating the reliability of the unit in a short period of time.  In 

ALT test items are run only at accelerated conditions, in some cases, such relationship cannot be known or 

assumed. Therefore, PALT are often used in such cases, in PALT they are run at both usual and accelerated 

conditions. This study proposed a CS-PALT in the case of Type II censoring, where each test item is run at a 

constant stress under either usual use condition or accelerated condition until the test is terminated. It is assumed 

that the lifetime of test units has the TL-IK distribution. The results of the Bayes estimators are presented based 

on Type II censored sample for the shape parameters, the acceleration factor, rf and hrf of TL-IK distribution. 

The Bayes estimators are derived under BSEL and BLL functions. The BLF is a mixture of Bayesian and non-

Bayesian estimates. Bayes point and bound prediction for a new observation of CS-PALT from TL-IK 

distribution, based on Type II censored sample are derived. Informative prior are obtained. The numerical 

computations are carried out to illustrate the performance of the procedure. Moreover, the results are applied on 

real data sets. 

 

In general, it is noticed that the ERs perform better when the weight   decreases. It appears using informative 

prior, the ERs of the estimated parameters, the acceleration factor and the interval length decrease when the 

sample size increases. The length of the interval of the first order statistic is smaller than the length of the 

interval of the last order statistic. 

 

Bayesian estimation under different types of loss functions such as general entropy and precautionary loss 

functions for estimating the parameters of TL-IK distribution would be useful as a basis for further research in 

distribution theory. 
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Appendix 
 

Table 1. The averages, ERs, and 95% CIs for the parameters          rf and hrf, 

using informative prior under SEL function based on Type II censoring 

 (N=10000,               and r=0.1n)          

(Case 1,                                 

 

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

 

 

 

30 

 

 

 

 

 

3 

 

 

0.20 

  

  

  

  

      

      

1.20069 

0.90029 

0.79869 

1.10187 

0.66750 

5.56872 

1.71573E-6 

1.23862E-6 

2.39626E-6 

4.25719E-6 

1.86108E-6 

2.19477E-6 

1.20309 

0.90214 

0.80056 

1.10300 

0.66887 

5.57002 

1.19896 

0.89808 

0.79806 

0.79658 

0.66581 

5.56720 

0.00413 

0.00406 

0.00399 

0.00346 

0.00306 

0.00281 

 

 

 

 

 

 

 

 

0.30 

  

  

  

  

      

      

1.20253 

0.89940 

0.79878 

1.09671 

0.66635 

5.56500 

7.46159E-6 

4.89754E-6 

8.91100E-6 

1.25554E-5 

2.44978E-6 

9.34675E-6 

1.204179 

0.90092 

0.80042 

1.09956 

0.66832 

5.56739 

1.19984 

0.89678 

0.79615 

1.09509 

0.66418 

5.56138 

0.00434 

0.00414 

0.00427 

0.00447 

0.00415 

0.00601 

 

 

 

 

 

60 

 

 

 

 

 

6 

 

 

0.20 

  

  

  

  

      

      

1.19948 

0.90004 

0.79924 

1.10008 

0.66775 

5.56697 

5.75155E-7 

4.79194E-7 

8.60564E-7 

4.49504E-7 

5.35514E-7 

5.16821E-7 

1.20019 

0.90149 

0.80013 

1.10105 

0.66842 

5..56790 

1.19815 

0.89896 

0.79799 

1.09828 

0.66586 

5.56567 

0.00204 

0.00254 

0.00213 

0.00278 

0.00256 

0.00223 

 

 

 

 

 

 

 

 

0.30 

  

  

  

  

      

      

1.20205 

0.89823 

0.80214 

1.09791 

0.66751 

5.56512 

4.89366E-6 

3.84152E-6 

6.06279E-6 

3.27049E-6 

2.33865E-6 

6.78460E-6 

1.20310 

0.90009 

0.80348 

1.10017 

0.66902 

5.56725 

1.19992 

0.89661 

0.99472 

1.09636 

0.66555 

5.56326 

0.00318 

0.00348 

0.00401 

0.00381 

0.00347 

0.00399 

 

 

 

 

100 

 

 

 

 

 

10 

 

 

0.20 

    

  

  

  

      

      

1.19943 

0.89977 

0.79993 

1.09957 

0.66821 

5.5674 

4.15306E-7 

2.23804E-7 

3.44116E-7 

3.13264E-7 

3.06646E-7 

2.89840E-7 

1.19996 

0.90036 

0.80098 

1.10018 

0.66912 

5.56833 

1.19879 

0.89862 

0.79860 

1.09881 

0.66694 

5.56615 

0.00117 

0.00174 

0.00238 

0.00137 

0.00219 

0.00218 

 

 

 

 

 

 

 

 

0.30 

  

  

  

  

      

      

1.20119 

0.89861 

0.80145 

1.10093 

0.66705 

5.56963 

2.08919E-6 

3.24453E-6 

3.04991E-6 

1.50486E-6 

2.20431E-6 

4.89307E-6 

1.20271 

0.90013 

0.80255 

1.10199 

0.66837 

5.57042 

1.19964 

0.89616 

0.79911 

1.09919 

0.66508 

5.56754 

0.00307 

0.00397 

0.00344 

0.00280 

0.00329 

0.00288 
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Table 2. The averages, ERs, and 95% CIs for the parameters          rf and hrf, 

using informative prior under LINEX loss function based on Type II censoring 

 (N=10000,               and r=0.1n)          

(Case 1,                                      

 

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

 

 

 

30 

 

 

 

 

 

3 

 

 

 

     

  

  

  

  

      

      

1.19925 

0.89843 

0.79887 

1.10076 

0.66736 

5.5666 

1.91903E-6 

3.03733E-6 

2.22817E-6 

1.07387E-6 

1.42236E-6 

1.80872E-6 

1.20126 

0.89989 

0.80035 

1.10154 

0.66845 

5.56791 

1.19731 

0.89725 

0.79723 

1.09908 

0.66572 

5.56446 

0.00396 

0.00263 

0.00311 

0.00245 

0.00273 

0.00345 

 

 

 

 

 

 

 

 

 

     

  

  

  

  

      

      

1.19660 

0.89752 

0.80246 

1.09766 

0.67091 

5.56741 

1.36493E-5 

4.45489E-6 

7.14589E-6 

6.62505E-6 

7.93992E-6 

3.14186E-6 

1.19906 

0.90005 

0.80395 

1.09985 

0.67212 

5.56549 

1.19379 

0.89427 

0.79972 

1.09956 

0.66814 

5.56929 

0.00526 

0.00578 

0.00405 

0.00401 

0.00397 

0.00379 

 

 

 

 

 

60 

 

 

 

 

 

6 

 

 

 

     

  

  

  

  

      

      

1.19922 

0.90068 

0.80035 

1.09931 

0.66790 

5.56781 

9.13066E-7 

7.01373E-7 

5.62288E-7 

8.53230E-7 

4.30056E-7 

9.28006E-7 

1.20005 

0.90132 

0.80149 

1.10029 

0.66858 

5.56963 

1.19764 

0.89931 

0.79914 

1.09789 

0.66657 

5.56642 

0.00241 

0.00201 

0.00235 

0.00231 

0.00201 

0.00321 

 

 

 

 

 

 

 

 

 

     

  

  

  

  

      

      

1.19942 

0.90131 

0.79839 

1.10239 

0.66689 

5.56599 

7.34786E-6 

2.54556E-6 

3.27576E-6 

6.46466E-6 

5.22675E-6 

2.33193E-6 

1.20106 

0.90279 

0.79980 

1.10345 

0.66891 

5.56775 

1.19733 

0.89954 

0.79705 

1.09979 

0.66535 

5.56434 

0.00373 

0.00326 

0.00276 

0.00366 

0.00355 

0.00341 

 

 

 

 

 

100 

 

 

 

 

 

10 

 

 

 

     

 

  

  

  

  

      

      

1.19985 

0.90028 

0.79969 

1.09971 

0.66830 

5.56788 

4.39619E-7 

3.43473E-7 

3.52695E-7 

2.21895E-7 

3.88078E-7 

5.39676E-7 

1.20108 

0.90135 

0.80055 

1.10027 

0.66922 

5.56888 

 1.19848 

0.89863 

0.79861 

1.09875 

0.66712 

5.56629 

0.00259 

0.00272 

0.00193 

0.00151 

0.00209 

0.00259 

 

 

 

 

 

 

 

 

 

     

  

  

  

  

      

      

1.20185 

0.89828 

0.80097 

1.10148 

0.66715 

5.56647 

4.25730E-6 

1.78002E-6 

1.23511E-6 

3.55717E-6 

2.13786E-6 

1.51223E-6 

1.20351 

0.89985 

0.80176 

1.10272 

0.66854 

5.56786 

1.19978 

0.89675 

0.79975 

1.09992 

0.66505 

5.56521 

0.00372 

0.00308 

0.00201 

0.00351 

0.00349 

0.00265 
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Table 3. The averages, ERs, and 95% CIs for the parameters          rf and hrf, 

using informative prior under SEL and LINEX loss functions based on Type II censoring 

 (N=10000        and r=0.1n)          

(Case 2,                                 

 

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

30 

 

 

3 

 

 

     

  

  

  

  

      

      

1.20185 

0.89884 

0.80229 

1.59694 

0.66687 

5.56548 

4.19554E-6 

2.95029E-6 

6.38164E-6 

1.11331E-5 

3.37533E-6 

4.67443E-6 

1.20308 

0.90072 

0.80367 

1.59964 

0.66869 

5.56678 

1.19994 

0.89668 

0.79984 

1.59481 

0.66513 

5.56374 

0.00315 

0.00404 

0.00383 

0.00483 

0.00356 

0.00304 

 

 

60 

 

 

6 

 

 

     

  

  

  

  

      

      

1.19946 

0.90092 

0.79898 

1.59828 

0.66929 

5.56899 

3.92873E-6 

1.42068E-6 

6.30215E-6 

3.76032E-6 

1.78518E-6 

2.53353E-6 

1.20047 

0.90263 

0.80059 

1.60014 

0.67067 

5.56973 

1.19765 

0.89937 

0.79731 

1.59704 

0.66761 

5.56758 

0.00282 

0.00326 

0.00328 

0.00309 

0.00307 

0.00215 

 

 

100 

 

 

10 

 

 

     

  

  

  

  

      

      

1.19919 

0.89935 

0.80051 

1.60088 

0.66907 

5.56804 

7.58094E-7 

7.66351E-7 

9.10878E-7 

9.90337E-7 

8.51166E-7 

9.79175E-7 

1.19979 

0.90025 

0.80159 

1.60149 

0.66968 

5.56909 

1.19832 

0.89777 

0.79898 

1.59969 

0.66812 

5.56721 

0.00148 

0.00248 

0.00261 

0.00179 

0.00156 

0.00188 

LINEX loss function ,      

 

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

30 

 

 

3 

 

 

     

  

  

  

  

      

      

1.19823 

0.90094 

0.79757 

1.60160 

0.66639 

5.56878 

3.97739E-6 

1.38509E-6 

7.04014E-6 

3.29579E-6 

4.35257E-6 

2.03036E-6 

1.20009 

0.90189 

0.79956 

1.60286 

0.66831 

5.56974 

1.19667 

0.89943 

0.79596 

1.59983 

0.66483 

5.56734 

0.00342 

0.00246 

0.00361 

0.00302 

0.00349 

0.00239 

 

 

60 

 

 

6 

 

 

     

  

  

  

  

      

      

1.19911 

0.89925 

0.80116 

1.59898 

0.66973 

5.56742 

1.30179E-6 

2.92363E-6 

2.07227E-6 

1.25002E-6 

2.56587E-6 

2.02632E-6 

1.20049 

0.90035 

0.80253 

1.59980 

0.67042 

5.56831 

1.19721 

0.89828 

0.79987 

1.59813 

0.66820 

5.56613 

0.00327 

0.00208 

0.00266 

0.00167 

0.00221 

0.00218 

 

 

100 

 

 

10 

 

 

     

  

  

  

  

      

      

1.20033 

0.89967 

0.79941 

1.60038 

0.66762 

5.56631 

7.66650E-7 

8.53064E-7 

7.99417E-7 

8.19701E-7 

8.59290E-7 

9.61814E-7 

1.20182 

0.90039 

0.80043 

1.60117 

0.66830 

5.56719 

1.19904 

0.89861 

0.79823 

1.59953 

0.66631 

5.56528 

0.00278 

0.00178 

0.00220 

0.00118 

0.00199 

0.00191 
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Table 4. The averages, ERs, and 95% CIs for the parameters          rf and hrf, 

using informative prior under SEL and LINEX loss functions based on Type II censoring 

 (N=10000        and r=0.1n)          

(Case 3,                                  

 

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

30 

 

 

3 

 

 

     

  

  

  

  

      

      

1.19828 

0.89958 

0.80212 

2.10156 

0.66741 

5.56937 

3.77733E-6 

1.18722E-6 

5.10159E-6 

3.08468E-6 

1.25416E-6 

4.28065E-6 

1.199691 

0.90147 

0.80328 

2.10296 

0.66847 

5.57053 

1.19645 

0.89791 

0.80003 

2.09969 

0.66586 

5.56724 

0.00324 

0.00357 

0.00325 

0.00327 

0.00261 

0.00328 

 

 

60 

 

 

6 

 

 

     

  

  

  

  

      

      

1.19959 

0.90079 

0.80070 

2.10021 

0.66862 

5.56827 

6.38645E-7 

9.57495E-7 

7.74498E-7 

7.74848E-7 

5.69206E-7 

9.66754E-7 

1.20040 

0.90215 

0.80186 

2.10188 

0.66966 

5.56912 

1.19812 

0.89988 

0.99976 

2.09891 

0.66724 

5.56665 

0.00228 

0.00227 

0.00210 

0.00297 

0.00241 

0.00247 

 

 

100 

 

 

10 

 

 

     

  

  

  

  

      

      

1.20042 

0.90006 

0.80030 

2.10009 

0.66828 

5.56805 

4.72605E-7 

6.08802E-7 

2.81219E-7 

2.92664E-7 

1.62255E-7 

5.25446E-7 

1.20132 

0.90089 

0.80107 

2.10097 

0.66907 

5.56876 

1.19937 

0.89887 

0.79947 

2.09888 

0.66728 

5.56702 

0.00196 

0.00202 

0.00161 

0.00209 

0.00179 

0.00174 

LINEX loss function ,      

n r   Parameters, 

rf and hrf 

Averages ERs UL LL length 

 

 

30 

 

 

3 

 

 

     

  

  

  

  

      

      

1.20183 

0.89957 

0.80116 

2.09929 

0.66966 

5.56953 

3.86056E-6 

1.06856E-6 

1.64752E-6 

1.68902E-6 

3.99184E-6 

1.10143E-6 

1.20273 

0.90069 

0.80199 

2.10104 

0.67203 

5.57138 

1.19979 

0.89739 

0.79973 

2.09739 

0.66749 

5.56752 

0.00293 

0.00329 

0.00227 

0.00364 

0.00455 

0.00386 

 

 

60 

 

 

6 

 

 

     

  

  

  

  

      

      

1.20063 

0.90056 

0.79931 

2.09926 

0.66884 

5.56765 

9.32755E-7 

9.16252E-7 

9.41378E-7 

7.69666E-7 

7.13959E-7 

6.77502E-7 

1.20183 

0.90185 

0.80029 

2.09991 

0.66967 

5.56900 

1.19932 

0.89946 

0.79774 

2.09770 

0.66705 

5.56610 

0.00252 

0.00239 

0.00256 

0.00221 

0.00262 

0.00289 

 

 

100 

 

 

10 

 

 

     

  

  

  

  

      

      

1.19983 

0.89987 

0.80031 

2.10046 

0.66858 

5.56713 

5.12842E-7 

2.27616E-7 

3.69448E-7 

3.91024E-7 

2.28936E-7 

3.63259E-7 

1.20042 

0.90059 

0.80109 

2.10122 

0.66912 

5.56789 

1.19905 

0.89881 

0.79929 

2.09963 

0.66752 

5.56617 

0.00137 

0.00178 

0.00180 

0.00160 

0.00159 

0.00172 
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Table 5. Estimates and ERs of the parameters, rf and hrf under BSEL and BLL functions based on 

informative prior (N=10000             and r=0.1n)          

(                                

 

Estimate  =0“BSEL”  =0.2  =0.4  =0.6  =0.8  =1“MLE” 

   

ER (  ) 

300..13 

1.60091E-7 

3004311 

3.88953E-7 

3008341 

5.58599E-7 

3013110 

8.75478E-7 

3011..5 

2.90848E-6 

304.... 

8.17608E-6 

   

ER (  ) 

.01.038 

2.63566E-7 

.0111.1 

3.85805E-7 

.018..5 

5.80240E-7 

30.0.10 

9.66499E-7 

30.5118 

1.67064E-6 

303.... 

5.87707E-6 

   

ER (  ) 

.08.0.4 

1.96747E-7 

.01..45 

3.00819E-7 

30...40 

6.38532E-7 

30.1117 

8.18610E-7 

30311.1 

2.60889E-6 

301.... 

3.11248E-6 

   

ER (  ) 

1.60027 

2.61161E-7 

30103.0 

3.76574E-7 

3011811 

5.14337E-7 

3015142 

8.15323E-7 

301.114 

1.07969E-6 

30..... 

7.41239E-6 

       

ER  

0.66806 

2.75752E-7 

.0.15.3 

2.85655E-6 

.08..38 

5.7897E-7 

.081..4 

8.81109E-7 

.011018 

2.09044E-6 

.011103 

5.85526E-6 

       

ER  

5.56739 

1.45967E-7 

4041.53 

3.81817E-7 

1014115 

4.39773E-7 

0004.14 

9.95013E-7 

30310.1 

1.51111E-6 

.0.0105 

7.35209E-6 

BLL function,      

Estimate  =0“BSEL”  =0.2  =0.4  =0.6  =0.8  =1“MLE” 

   

ER (  ) 

300..11 

2.00465E-7 

300110. 

3.97014E-7 

300.117 

4.33159E-7 

3010.04 

8.28531E-7 

3011.31 

1.25379E-6 

304.... 

6.99748E-6 

   

ER (  ) 

.01.300 

8.03701E-8 

.014.14 

3.23174E-7 

.01.101 

4.06385E-7 

30.0.03 

7.00235E-7 

30.1..1 

2.70726E-6 

303.... 

6.80547E-6 

   

ER (  ) 

0.80002 

2.31238E-7 

.01.311 

3.64184E-7 

.0111.5 

4.41942E-7 

303..31 

9.19464E-7 

3031140 

1.15306E-6 

301.... 

6.54806E-6 

   

ER (  ) 

301..16 

2.34321E-7 

3013.13 

3.68024E-7 

3011105 

3.92602E-7 

30151.5 

9.54879E-7 

301.184 

1.54728E-6 

30..... 

1.06934E-5 

       

ER  

0.66831 

1.93155E-7 

.0.1513 

3.00485E-7 

.08...1 

6.88979E-7 

.081.08 

6.97544E-7 

.011147 

1.07195E-6 

.011103 

7.25789E-6 

       

ER  

5.56737 

1.28345E-7 

40458.1 

3.02446E-7 

1015..3 

4.30584E-7 

000431. 

8.19115E-7 

3031032 

1.03427E-6 

.0.0105 

4.67539E-6 

 

Table 6. Bayes estimates for the parameters, rf and hrf and their standard errors for the real data sets 

based on Type II censoring (r=0.1n                    ) 

 

Application I 

 
 

 
  

 
 

n r Parameters, 

rf and hrf 

Estimates SE  Parameters, 

rf and hrf 

Estimates SE 

 

 

30 

 

 

3 

  

  

  

  

      

      

1.26989 

1.22040 

2.40068 

1.50064 

0.99033 

0.41337 

2.29675E-4 

7.89338E-5 

1.40375E-4 

1.39394E-4 

1.63626E-4 

7.57679E-5 

 
 

 
  

 
 

  

  

  

  

      

      

1.26895 

1.22034 

2.39938 

1.49970 

0.99001 

0.41243 

0.00010 

0.00012 

0.00012 

0.00010 

0.00024 

0.00019 
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Table 6. Continued 

 

LINEX loss function ,      

 
 

 
  

 
 

n r Parameters, 

rf and hrf 

Estimates SE  Parameters, 

rf and hrf 

Estimates SE 

 

 

30 

 

 

3 

  

  

  

  

      

      

1.26867 

1.22149 

2.39949 

1.49914 

0.99233 

0.41228 

1.8051E-4 

7.8722E-5 

8.1134E-5 

9.0367E-5 

8.0545E-5 

1.2035E-4 

 
 

 
  

 
 

  

  

  

  

      

      

1.26899 

1.22010 

2.39815 

1.50268 

0.99157 

0.41248 

0.00012 

0.00019 

0.00022 

0.00027 

0.00011 

0.00014 

Application II 

 
 

 
  

 
 

n r Parameters, 

rf and hrf 

Estimates SE  Parameters, 

rf and hrf 

Estimates SE 

 

 

30 

 

 

3 

  

  

  

  

      

      

0.92145 

1.40051 

1.29968 

2.08111 

0.97281 

0.87894 

3.43902E-4 

9.79770E-5 

2.27600E-4 

1.69078E-4 

9.47695E-5 

1.43772E-4 

 
 

 
  

 
 

  

  

  

  

      

      

0.92271 

1.39945 

1.29929 

2.08270 

0.97495 

0.87901 

0.00030 

0.00012 

0.00023 

0.00038 

0.00028 

0.00018 

LINEX loss function ,      

 
 

 
  

 
 

n r Parameters Estimates SE  Parameters, 

rf and hrf 

Estimates SE 

 

 

30 

 

 

3 

  

  

  

  

      

      

0.92067 

1.39971 

1.29939 

2.07985 

0.97206 

0.87775 

2.26217E-4 

9.69652E-5 

7.65505E-5 

1.49296E-4 

9.87284E-5 

1.02901E-4 

 
 

 
  

 
 

  

  

  

  

      

      

0.91900 

1.39802 

1.30019 

2.07934 

0.97237 

0.87779 

0.00019 

0.00017 

0.00016 

0.00011 

0.00010 

0.00018 

 

 

Table 7. Bayes point predictors and bounds for a new observation from a future sample based on Type II 

censoring under two-sample prediction 

 (N=10000, n=30, r=0.1n,                          

 

              

s            UL LL Length s            UL LL length 

1 

15 

25 

0.78025 

0.97961 

1.29064 

0.78145 

0.97955 

1.29264 

0.77860 

0.97612 

1.28889 

0.00285 

0.0034 

0.00375 

1 

15 

25 

0.78792 

0.99806 

1.29817 

0.79039 

1.00004 

1.30028 

0.78738 

0.99642 

1.29594 

0.00301 

0.00362 

0.00435 

LINEX loss function ,      

                

s              UL LL Length s              UL LL length 

1 

15 

25 

0.77984 

0.97960 

1.28818 

0.78095 

0.98079 

1.28982 

0.77843 

0.97776 

1.28638 

0.00252 

0.00304 

0.00344 

1 

15 

25 

0.78968 

1.00093 

1.29724 

0.79047 

1.00239 

1.29939 

0.78778 

0.99909 

1.29544 

0.00269 

0.00331 

0.00395 
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Table 8. Bayes point predictors and bounds for a future observation from a future sample for real data 

sets based on Type II censoring under two-sample prediction  

(r=0.1n,             ) 

 

Application I Application II 

s            UL LL Length s            UL LL Length 

1 

15 

25 

0.11055 

1.23264 

2.36861 

0.11173 

1.23378 

2.36986 

0.10939 

1.23137 

2.36505 

0.00234 

0.00241 

0.00482 

1 

10 

15 

0.26438 

0.39452 

0.48475 

0.26564 

0.39628 

0.48800 

0.26235 

0.39188 

0.48345 

0.00328 

0.00439 

0.00455 

Application I  Application II 

s              UL LL Length s              UL LL Length 

1 

15 

25 

0.11062 

1.23289 

2.36892 

0.11155 

1.23422 

2.37030 

0.10933 

1.23147 

2.36705 

0.00221 

0.00275 

0.00325 

1 

10 

15 

0.26419 

0.39767 

0.48359 

0.26551 

0.39914 

0.48487 

0.26283 

0.39639 

0.48165 

0.002686 

0.00274 

0.003227 
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