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Abstract— We consider the problem of autonomously estimat-
ing position and orientation of an object from tactile data.
When initial uncertainty is high, estimation of all six parameters
precisely is computationally expensive. We propose an efficient
Bayesian approach that is able to estimate all six parameters
in both unimodal and multimodal scenarios. The approach is
termed Scaling Series sampling as it estimates the solution region
by samples. It performs the search using a series of successive
refinements, gradually scaling the precision from low to high.
Our approach can be applied to a wide range of manipulation
tasks. We demonstrate its portability on two applications: (1)
manipulating a box and (2) grasping a door handle.

I. INTRODUCTION

Today most robots operate in structured environments built
specifically with the robot in mind. Precise position control
and pre-defined trajectories can be used in these environments
as all parameters are known in advance. The challenge of
bringing robots into environments built for humans is in mak-
ing robots act autonomously when environment parameters are
uncertain. Thus robots need to estimate these parameters from
sensory information. A variety of sensors can be used to obtain
sensory information, including laser, vision, sonar, and tactile.
In this paper, we focus on the use of tactile sensors to estimate
parameters for an object to be manipulated in a process called
localization. While these sensors have received relatively little
attention in the literature as means of localizing objects, they
have certain advantages over other types of sensors. Tactile
sensors tend to provide better precision (up to sub millimeter).
They behave well in all lighting conditions and regardless
of object material. They are able to provide additional infor-
mation such as surface normals, object stiffness, texture, and
friction. In contrast, vision and lasers are influenced by lighting
and shadows, and do not perform well with glass objects for
example. Sonar sensors tend to be considerably less precise
than tactile.

Bayesian techniques are the state of the art for acting
under uncertainty. These techniques are widely used in mobile
robotics [1-3], visual feature tracking [4, 5], and speech recog-
nition [6]. Recently some work has been done in application of
Bayesian techniques to tactile perception. In [7], authors have
developed a variant of Kalman filter to estimate environment
parameters during compliant motions. In [8], histogram filters
were used for haptic mapping and localization. They sited that
computational costs forced them to restrict the problem to

Fig. 1. We used this 6 DOF PUMA robotic manipulator in our box grasping
experiments. The manipulator is equipped with (a) 6D JR3 force/torque sensor,
(b) robotic finger with a spherical end, and (c) gripper. We used the robotic
finger for sensing tasks and the gripper for grasping tasks. The spherical end
on the robotic finger simplified contact point estimation during sensing.

a small 20 x 20 grid. The closest prior art to the problem
we are approaching in this paper is [9], where authors have
advocated the use of particle filters for object localization
using tactile sensors. The localization was restricted to 3
degrees of freedom (DOF), due to computational costs. Using
2 million particles they were able to perform the search in
about 1 second. The authors pointed out that the approach
would need to be significantly modified to be feasible for 6
DOF localization (i.e. 3 for position and 3 for orientation of
the object). This is because the size of search space goes
up exponentially with dimensionality. Thus simple-minded
extrapolation of the same approach to 6 DOF, would require
roughly (2 million)-squared, i.e. 4 trillion particles. Even
assuming memory was available to perform operations with
that many particles, running time of particle filter is linear in
the number of samples. Hence one could expect to accomplish
localization in 2 million seconds, i.e. approximately 23 days.

In this paper we consider object localization in 6 DOF.
We divide the problem into two cases: over-constrained and
under-constrained. In the over-constrained case, the measure-



ments are sufficient to uniquely identify the solution. In this
case, optimization search techniques are applicable and we
demonstrate the use of gradient descent for object localization.
In under-constrained cases, the measurements do not yield a
unique solution. Solutions may form entire regions of non-
zero dimensionality. In these cases we explore the use of
sampling techniques (such as particle filters and importance
sampling) for search. Given high computational costs of search
using standard sampling techniques in 6 DOF, we propose a
modified sampling technique, we call Scaling Series approach.
The search approximates the solution regions by samples and
performs a series of successive refinements, scaling granularity
from low to high. The technique allows efficient estimation of
solution regions in 6 DOF. In addition it estimates the posterior
within a small neighborhood of the solution region.

The approaches presented here are easily applicable to
any object represented as a poly-mesh. We demonstrate the
portability of our techniques by applying them to two different
applications. In the first, we localize and manipulate a box. In
the second, done as part of the STAIR (STanford AI Robot)
project, we localize a door handle, so as to turn the handle
and open the door.

In the following section we provide the necessary back-
ground. In section III, we address the use of optimization
search techniques for over-constrained cases. In section IV,
we consider under-constrained cases and present our modified
sampling approach. Experimental results are discussed in
section V.

II. BACKGROUND

Consider a simple example of having measurements from
5 different sides of a rectangular box (see Fig. 2). Let us
assume that each measurement contains contact position and
surface normal. How to best estimate position and orientation
of the box from these measurements? A simple approach
would be to take averages of normals on opposing sides, then
fit orthogonal basis to the resulting normals, then perform best
fit of corresponding box faces. This approach will work for a
box with 6 sides, but will not generalize to arbitrary polygonal
meshes of complex objects or even datasets of larger size taken
from the same object.

Bayesian approach provides means of parameter estima-
tion for arbitrary objects and datasets. The measurements
are considered as being caused by the world with certain
probability, called measurement model p(Y |X, m). Here Y is
a measurement consisting of contact position Yp = (xp, yp, zp)
and surface normal Yn = (nx, ny, nz), X is position and
orientation (x, y, z, α, β, γ) of the object and m is the model
of the object (i.e. poly-mesh). Given a set of measurements, D,
the goal is to find the most likely state given the measurements
and the model. In other words find the maximum likelihood of
p(X |D, m) (also known as posterior distribution). In the rest
of this paper, we will drop the model m from equations for
the sake of brevity, although conditioning on the model will
be always assumed.

Fig. 2. To estimate position and orientation of a box we take 5 measurements
from different sides.

There is a simple relationship between the measurement
model and posterior. Applying Bayes rule to the posterior, we
obtain:

p(X |D) = p(D|X)
p(X)
p(D)

Here p(X) and p(D) are prior probabilities of state and
measurements, that we assume to be uniform. Thus the pos-
terior is proportionate to p(D|X). Furthermore, we assume
the measurements to be independent of each other. Hence, if
D = {Y (j)}, the posterior can be written as a product of
measurement likelihoods:

p(X |D) = η
∏

j

p(Y (j)|X) (1)

This equation is often utilized in localization algorithms.

III. OVER-CONSTRAINED LOCALIZATION

First let us consider the case when our dataset, D, is large
enough so that only one solution to the localization problem
is possible. In this case the posterior is unimodal as it has
only one well-defined maximum. For example, if we take 5
measurements from 5 different sides of a rectangular box, then
the posterior will be unimodal. In this case, localization is a
search problem that can be solved using optimization search
techniques. We solve this problem using gradient descent.

A. Measurement Model

Since our object model is represented by a polygonal mesh
consisting of faces {fi}, we model the measurement likelihood
as follows. For each face, fi, we compute the likelihood
of the measurement being caused by that face (and a given
state X). Then we take maximum likelihood over all faces
as the likelihood of the measurement. For convenience, let us
introduce correspondence variables {c i}. We will assume that
ci = 1 when face fi has caused the measurement, and ci = 0
otherwise. When conditioning, we will write ci as a shorthand
for ci = 1. Thus our measurement model is defined by

p(Y |X) = λmax
i

{p(Y |X, ci)}, (2)



where λ is the normalizing factor given by

λ =
1∫

maxi{p(Y |X, ci)}dY
.

Since we do not impose any limitations on the measurement
space, λ is independent of the state X . In practice we never
need to compute numeric value of this factor as it is taken
care of during normalization step.

Recall that each measurement, Y , consists of two parts:
contact position, Yp, and surface normal, Yn. When computing
how likely a measurement to be caused by a face f i, we
consider the two parts of measurement to be independent. We
use state parameters X to transform the measurement into
the coordinate system of the object and denote transformed
measurement components Y X

p and Y X
n respectively. Thus

equation 2 becomes:

p(Y |X) = λmax
i

{p(Y X
p |ci) p(Y X

n |ci)}
We assume Gaussian distribution for the two likelihoods,

with variance err2
p and err2

n respectively. Thus, the likelihoods
can be computed as follows:

p(Y X
p |ci) =

1√
2π errp

exp {−1
2

d(Y X
p , fi)2

err2
p

}

p(Y X
n |ci) =

1√
2π errn

exp {−1
2
||Y X

n − normal(fi)||2
err2

n

}

Here d(Y X
p , f) is the shortest Euclidean distance from Y X

p

to face fi.

B. Cost Function

Due to the negative exponentiation involved in the mea-
surement model, it is convenient to optimize negative log of
the posterior. Thus we search for the global minimum of the
following cost function:

F = − log(p(X |D))

Substituting from equation 1 we obtain:

F = − log η
∏

j

p(Y (j)|X) = C −
∑

j

log p(Y (j)|X)

For a given state X , let τj be the index of the face
that is most likely to cause measurement Y (j). From our
measurement model equations we obtain

F = C −
∑

j

log λp(Y (j)X
p |cτj ) p(Y (j)X

n |cτj )

Substituting in definitions for Hp and Hn and subsuming
constants into C, we obtain:

F = C +
1
2

∑

j

d(Y (j)X
p , fτj)2

err2
p

+
||Y (j)X

n − normal(fτj )||2
err2

n

Fig. 3. Possible solutions form several intersecting rims for a dataset
consisting of two measurements taken from two non-parallel sides of the
box.

Finally, we remove uninteresting constants and obtain the
following cost function:

F =
∑

j

d(Y (j)X
p , fτj)2

err2
p

+
||Y (j)X

n − normal(fτj )||2
err2

n

It is difficult to differentiate F in closed form because of
argmax involved for computation of τj and dependence on
the shape of object faces. Therefore we performed numerical
differentiation for the purposes of gradient descent.

Optimization search is prone to local minima. In order to
find global minimum, we run gradient descent many times
from random starting points until we obtain a sufficiently low
value. We discuss performance and estimation precision in the
experimental results section.

IV. UNDER-CONSTRAINED LOCALIZATION

So far we have considered the case where there is a unique
solution to the localization problem. However, often there are
many placements of the object that fit the dataset. In some
cases there could be several solutions, in others there could
be infinitely many solutions. For example, figure 3 shows the
set of possible solutions for the case when two measurements
were collected from two non-parallel sides of a rectangular
box. In this case the set of solutions is a one dimensional
region (a collection of intersecting rims).

In these cases it is useful to estimate the solution region,
because this information can be used to make decisions on
where to sense next. Sampling and gridding techniques have
been widely used for estimation in multi-modal scenarios. For
example in [9], the authors used a particle filtering technique
for a similar box localization problem. Since the problem is
static (i.e. the object does not move), importance sampling is
another viable alternative. Splitting up the search space into
grids deterministically or semi-deterministically is also possi-
ble, although gridding methods tend to have more implemen-
tation overhead. In this paper we present our methods based
on particle filters, however we have also implemented Scaling
Series with importance sampling and found the performance
to be comparable. Gridding methods could also be substituted
in even though we have not tried to implement that variation.



As we pointed out earlier, the main difficulty with sampling
techniques in 6 DOF search space is that the number of
samples required for precise estimation explodes exponentially
with the space dimensionality. Large numbers of particles
lead to computation times that are unacceptable. On the other
hand the problem with using fewer particles is that uniform
sampling is extremely unlikely to produce any samples near
the actual solution. For example, suppose we are performing
localization in 40 cm x 40 cm x 40 cm x 360 degrees x
360 degrees x 360 degrees space, with desired deviation of
1mm and 1 degree respectively. If we consider the 6-D sphere
around the solution with radius of 1 desired deviation, the
volume of this sphere is 3 quadrillion times smaller than the
volume of the search space. If we utilize 1,000 particles, we
are very unlikely to sample one within desired deviation of
the solution.

A. Representing Regions of Space with Particles

Usually each particle is seen as a point in search space,
but let us consider what happens if each particle represents
a region of search space. For a parameter δ, we will call the
6-D sphere with radius δ around a particle a δ-sphere. We will
think of each particle as representing the entire region within
its δ-sphere. If δ is large, it is clearly easy to cover the search
space with even a small number of particles. For example, if
δ is larger than the diameter of the search space, one particle
would suffice.

Now that our particles are regions of space, we need to
understand how to apply the measurement model to compute
particle likelihood weights. To parameterize the measurement
model relative to δ, we simply update the measurement error
based on δ. We set:

(errp, errn) ← (δ, rδ),

where r is the ratio between actual position and normal
measurement errors.

The above equations amount to “pretending” that measure-
ment noise is inflated to be δ. Artificially inflating measure-
ment noise is not an uncommon practice in application of
particle filters, see for example [1]. This technique allows for
particles to survive better by making the likelihood weights
less discriminative.

B. Scaling Series Approach

We explore the performance of particle filters depending on
the value of δ on simulated datasets. For a spectrum of values
for δ, we ran 100 particle filters with 1,000 samples each. The
results are presented in Fig. 4. As we can see, when δ is small
(less than 1 cm), the precision of estimates falls drastically and
variance rises. Thus in effect we are getting random guesses of
the correct state. We did not include results for δ settings below
4 mm, because at these settings many experiments fail as all
particles end up with zero likelihood weights. When δ is 1 mm,
the variance used in the measurement model corresponds to
the actual noise variance. At this setting all 100 experiments
failed. On the other side of the spectrum, for large values of
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Fig. 4. Performance of standard particle filter for varying settings of δ.
Standard particle filter was ran 100 times for each setting of δ on simulated
dataset. The resulting position estimation error is plotted in the graph. The
vertical bars represent absolute min/max values during all 100 experiments.

δ precision gradually falls as the measurement model is not
discriminative enough to distinguish between good and bad
guesses effectively. We note that even for the best settings (of
1 to 5 cm), the estimates were 4 cm off on average, which
is not an acceptable precision of estimation for manipulation
tasks.

Since no one setting of δ gives good results, we propose to
run a series of successive particle filters, reducing the value
of δ from one filter to the next. The intuition behind this
approach is that the first filter in the series finds regions of high
likelihood at a very coarse resolution. The next filter focuses
the search in the smaller subspace found by the previous
filter, but at a finer resolution. In this manner, we can keep
reducing δ until it corresponds to the actual noise variance.
Thus, the last filter will approximate true posterior although
over a small subspace of the initial search space. This intuition
is formalized in the next subsection into an algorithm we call
Scaling Series Particle Filter.

An illustration of the approach is given in Fig. 5. It repre-
sents results of 100 runs of the Scaling Series algorithm on
realistic simulated data for box localization. The progression
of the series is from left to right, with corresponding δ values
noted on the horizontal axis (in log scale). It clearly shows
how the volume of the search space shrinks drastically as the
series progresses. At the same time estimation errors fall with
the series progression. The number of samples remained small
throughout all of the experiments, with the absolute maximum
being below 600. The number of particles is highest for δ
values between 5 and 10 cm. At these settings the distribution
is multi-modal, corresponding to 6 possible sides of the box.
As these possibilities are ruled out, the number of particles
goes down.

We note that gradually reducing the value of δ during the
series progression, changes the measurement model from less
discriminative initially to more discriminative towards the end
of the series. This technique is a variant of annealing, which
has been used in other settings for particle filters. See for
example [10], where the authors applied an annealing filter to
articulated motion capture from vision data.
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(c) Error of position estimate.

Fig. 5. Performance of Scaling Series Particle Filter on simulated dataset during 100 experiments. Each graph shows progression of the series from left to
right. Corresponding value of δ is noted on the horizontal axis. Vertical bars represent absolute min/max values during all 100 runs.

C. Algorithm Details

The algorithm consists of a series of particle filters. We
start by running a filter with a large value of δ (i.e. radius
of initial search space V ). After a complete pass over the
dataset D, the filter produces a set of particles concentrated
in the region of high likelihood. This region, denoted V 1, is
the union of δ-spheres around the particle set. Since V1 is
smaller than the original search space, we can cover it with
smaller particles. Thus we reduce the value of δ and run a
second particle filter, but this time restrict our search to V1.
The second particle filter produces a new search space, V2,
that represents region of highest likelihood for this setting of
δ. We repeat the process until we reach the desired value for
δ, corresponding to desired precision. Refer to Alg. 1 for a
complete listing of the algorithm.

We select the scaling factor, zoom, so that the volume of
δ-sphere is halved during scaling (line 2). We also take care
to maintain a healthy density of particles in each search space.
This is controlled by desired number of particles per δ-sphere,
M .

Scaling Series PF(V0, M, D, δdesired)
1: δ ← radius(V0)
2: zoom ← 1/ n

√
2

3: T ← log2(V ol(V0)/V ol(Sδdesired
))

4: for t = 1 to T do
5: {Xi} ← Uniform Sample From Subspace(Vt−1, M )
6: {Xi} ← Standard PF({Xi}, D)
7: Vt ← Union Delta Spheres({Xi}, δ)
8: δ ← zoom· δ
9: end for

Alg. 1: Scaling Series Particle Filter

During each run of the standard particle filter, the likelihood
weights are parameterized by δ as described above. Since
the process is stationary, we add random white noise during
mutation step in standard particle filter. We set the mutation

parameter to be δ/
√|D|. This is because each standard PF

invocation performs a total of |D| mutations. This way the
cumulative mutation distribution has a deviation of δ.

At each iteration t we consider our search space Vt to be
the union of δ-spheres centered around the current particle set
{Xi}. Thus, we need an algorithm for sampling uniformly
from Vt at the start of each standard filter run. It is important
for each particle filter in the series to be initialized with
a uniform spread of particles over its search space. This
prevents from compounding the error from one filter to the
next and allows for better tracking of multi-modal solutions.
Many implementations of uniform sampling are possible. For
example one could approximate Vt with small grids and
sample directly from the grids. Alternatively one could sample
from existing particles in inverse proportion to local particle
density (this was the method we used in our implementation).
One version of uniform sampling algorithm was suggested by
an anonymous reviewer. Since it is the simplest algorithm we
have come across, we provide its listing here (Alg. 2). It is
based on rejection sampling.

Uniform Sample From Subspace(V, M )
1: // space V is represented as union of spheres {Si}
2: X ← {}
3: for i = 1 to |{Si}| do
4: for j = 1 to M do
5: sample point x from Si

6: reject x if it is in union of S1 . . . Si−1

7: otherwise add x to X
8: end for
9: end for

Alg. 2: Uniform Sampling from Subspace

V. EXPERIMENTAL RESULTS

We utilized polygonal models of objects. These models were
constructed by hand from measurements taken with a ruler, but
they could be obtained by other means. For example one could



use tri-meshes from stereo vision or other range sensors. Each
model also included optimal grasping points determined by a
human. Once localization is performed, grasping configuration
is derived from the estimated parameters.

We implemented our localization techniques in Java running
on 1.2GHz laptop computer. We then applied our approach to
two different problems: locating and picking up a box and
manipulating a door handle.

A. Application 1: Locating and picking up a box

We applied our approach to the task of localizing, grasping
and picking up a rectangular box (see Fig. 6). The manipulator
used was a 6 DOF PUMA robot, equipped with a 6D JR3
force/torque sensor (see Fig. 1). Its end-effector included a
gripper and robotic finger configuration. To simplify con-
tact point estimation, tactile sensing was performed with the
robotic finger that had a spherical end.

For the over-constrained scenario, a simple active sensing
procedure (specific to the box) probed 5 different sides of the
box recording contact position and surface normal for each
data point. Care was taken to make sure the box did not move
during sensing as it would introduce considerable noise into
measurements.

The model of the box was constructed by hand from
measurements taken with a ruler. Two grasp points were
manually defined on the model. Each grasp point consisted
of 3 points: one for each side of the gripper and one for
wrist position. Thus each grasp point fully defined position and
orientation of the gripper. After localization, the grasp point
with the highest Z-coordinate was selected (Z-coordinates
increase vertically upwards). The gripper orientation, position
and approach vector were derived from the selected grasp point
and estimated parameters. Note the precise fit required for
grasping in Fig. 6(b).

The localization was performed in a 40cm x 40cm x
40cm area with unrestricted orientation (i.e. 360 x 360 x 360
degrees). Desired precision was set to 1 mm for position and
2 degrees for orientation. Sensing procedure took 30 seconds.
Localization was performed in less than 1 second on our
laptop computer with a 1.2GHz processor. We performed 30
trials on the real robot. In our experiments, localization and
grasping had 100% success ratio on completed datasets. The
active sensing strategy had a 70% success ratio. Failures during
sensing were due to hardware issues and motion of the object.
We performed localization using SSPF during real robot trials.

We also performed a number of simulated trials, where
ground truth was easily available for evaluation of localization
success and precision. We performed 1,000 simulated trials
using gradient descent and 1,000 trials using SSPF. As de-
scribed before, we run gradient descent multiple times from
random starting locations until we obtain a solution with cost
function below a threshold. Our threshold corresponded to cost
of a solution that placed all measurements within 3 standard
deviations of measurement noise. Only 16% of gradient de-
scent runs found the global minimum, while the rest settled in
local minima. On average 5 seconds of gradient descent runs

resulted in a solution with cost below the threshold. 99.8%
of simulated SSPF trials found the solution successfully and
had an average running time of about 1 second. Since the
object to be localized was symmetric, we added symmetry
compensation to rule out symmetric solutions. This allowed
for easy automatic identification of correct localization results.
Gradient descent gave slightly more precise results. Average
precision of gradient descent was 1.9mm, while average pre-
cision of SSPF was 2.1mm over the 1000 simulated trials.

We note that our experiments were performed on a relatively
simple object, consisting of only 6 faces. For more complex
meshes, measurement likelihood evaluation will be linear in
the number of faces. However, it is possible to implement
efficiency improvements that only consider a subset of faces
during measurement likelihood evaluation. Additionally, we
expect that gradient descent will have lower percentage of
success on more complex objects, as there will be more
local minima in the cost function. Experimentation with more
complex objects is a possible direction for future work.

We also performed experiments for under-constrained sce-
narios. In this case the datasets consisted of 2 - 3 mea-
surements from different sides of the box. For real robot
experiments, we took subsets of measurements from our com-
pleted real robot trials. We verified that the estimated region
included the true state of the object, as it was estimated from
complete datasets. We also examined the estimated region
visually to make sure it corresponded to the correct solution
region in each under-constrained scenario (Fig. 7). In addition,
we performed 100 simulated trials where ground truth was
available. The true state was included in resulting solution set
in all 100 trials.

Since the solution region is broad, high precision settings
result in large numbers of particles. For example for a dataset
consisting of two measurements, SSPF generated 1,000 parti-
cles for δ setting of 5cm, 7,000 particles for δ setting of 6mm
and 21,000 particles for δ setting of 2mm. The running time
increases with the number of particles generated. Operations
with a few thousand particles take a few seconds, but 20,000
particles take 40-50 seconds to process. Thus it is possible to
trade off precision of estimation for running time. As more
measurements arrive, the solution region shrinks and higher
precision can be achieved with fewer particles.

B. Application 2: Manipulating door handles for building
navigation

In a second application, we carried out experiments with
door handle manipulation as part of the STanford AI Robot
(STAIR) project. The goal of the STAIR project is to build a
robot capable of performing a broad range of tasks in home
and office environments. Over the long term, the envisioned
tasks include fetching a book from an office, showing guests
around a research lab, tidying up after a party, and using tools
to assemble a bookshelf. In order to carry out these tasks,
STAIR will need to navigate home and office environments,
which means being able to open doors. We will do this by
accurately localizing, and then manipulating, the door handle.



(a) sensing (b) grasping

Fig. 6. The stages of our box manipulation experiment. (a) Sensing the box with a robotic finger. (b) Grasping the box using grasping configuration defined
as part of the box model. Note the precise fit required to perform the grasp.

(a) 11mm precision (b) 1mm precision

Fig. 7. Examples of under-constrained solution estimation for datasets consisting of 2 measurements (includes symmetry compensation). (a) With δ setting
of 11mm, 4,000 particles were generated by SSPF (b) With δ setting of 1mm 29,000 particles were generated.

(a) (b)

Fig. 8. (a) A 5 DOF Harmonic Arm 6M manipulator performing one of our door handle grasping experiments. (b) The 2D model of a door handle
was constructed from depth measurements made with a ruler every 1cm along the length of the handle. The squares represent data points from one of our
experiments.



Once the robot navigates to the area in front of a door (using
its laser sensors for approximate localization), we use tactile
feedback to accurately estimate the position and orientation
of the door handle. We performed experiments on a 5 DOF
Harmonic Arm 6M manipulator, which has about 1mm end-
effector positioning precision. (See Fig. 8(a).) The height
of the handle as well as 2 orientation angles were fixed,
which reduces the localization task to a 3 DOF problem. Our
algorithm used a 2D model of the door that was constructed
by hand using ruler measurements. Specifically, we took door
handle depth measurements every 1cm along its length in a
horizontal plane through the center of the handle. This gave
a 2D model consisting of line segments (see Fig. 8(b)). For
the door used in these experiments, we decided to grasp the
handle at the endpoint of one of the line segments in the
model. The sensing used in this experiment gave only position
measurements, and did not include surface normals.

For each experimental trial, the STAIR robot takes 6 mea-
surements in a 30 degree span (at 0◦, 6◦, . . . , 30◦). Each data
point thus consisted of range to the contact point and an
orientation angle. The sensing procedure took between 1 and 2
minutes; using these six measurements, our algorithm is then
able to localize the door handle in a fraction of a second. In
these experiments, we restricted the dimensions of the search
space (to 6cm x 6cm x 30 degrees) because of the limited
operational range of the manipulator. Out of 100 independent
trials, our algorithm successfully completed the sensing in 98
trials. In all of these 98 trials, our algorithm then successfully
localized, grasped, and turned the door handle, and opened
the door. The two failures during sensing were caused by a
hardware glitch in communication with the robot.

VI. CONCLUSIONS

Sensory perception is vital for robots performing au-
tonomous object manipulation in uncertain environments.
Bayesian estimation of all six parameters for position and
orientation of objects from tactile data has been known to
be computationally expensive ([9]). We split the problem
into two cases: over-constrained and under-constrained. In
the over-constrained case, measurements identify the solution
uniquely. In the under-constrained case, multiple solutions are
possible up to entire regions of non-zero dimensionality. We
solved over-constrained cases using optimization search. We
also proposed an efficient sampling approach, termed Scaling
Series Particle Filter, which works in both over-constrained
and under-constrained cases. SSPF approximates the solution
region by samples. It performs search by successively refining
the search region and scaling granularity of search from low
to high.

Our approach does not utilize any special properties of the
manipulated objects and can be easily applied to any object
represented as a polygonal mesh. We have demonstrated its
portability by applying it to two different tasks: manipulating
a box and grasping a door handle.

For over-constrained cases, real time performance has been
achieved in our experiments. For under-constrained cases,

running time depends on the precision desired and size of the
solution region. However, it is possible to trade off precision
of estimation for running time. Coarse estimates can be
obtained quickly when few measurements are available. As
more measurements arrive, the solution region shrinks and so
more precise estimates can be obtained in a timely fashion.

We note that running time depends linearly on the complex-
ity of objects (i.e. number of faces in the mesh model). It is
possible however, to implement efficiency improvements that
only consider a small subset of faces during each measurement
evaluation. In addition, we expect that average running time
of optimization search will go up for more complex objects,
due to the fact that cost function will have more local minima.

In future we would like to work with more complex objects
and develop a generic active sensing procedure that is capable
of collecting datasets with high efficiency and reliability.
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