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Bayesian Estimation of Disease Prevalence and the Parameters of
Diagnostic Tests in the Absence of a Gold Standard
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It is common in population screening surveys or in the investigation of new diagnostic tests to have results

from one or more tests investigating the same condition or disease, none of which can be considered a gold

standard. For example, two methods often used in population-based surveys for estimating the prevalence of

a parasitic or other infection are stool examinations and serologic testing. However, it is known that results

from stool examinations generally underestimate the prevalence, while serology generally results in overesti-

matJon. Using a Bayesian approach, simultaneous inferences about the population prevalence and the

sensitivity, specificity, and positive and negative predictive values of each diagnostic test are possible. The

methods presented here can be applied to each test separately or to two or more tests combined. Marginal

posterior densities of all parameters are estimated using the Gibbs sampler. The techniques are applied to the

estimation of the prevalence of Strongyloides infection and to the investigation of the diagnostic test properties

of stool examinations and serologic testing, using data from a survey of all Cambodian refugees who arrived

in Montreal, Canada, during an 8-month period. Am J Epidemiol 1995;141:263-72.

Bayes theorem; diagnostic tests, routine; epidemiologic methods; models, statistical; Monte Carlo method;

prevalence; sensitivity and specificity

It is often the case when determining the prevalence
of a medical condition through population screening or
when evaluating a new medical diagnostic test that
data are available on one or more tests, none of which
can be considered a gold standard. In fact, one may
argue that this is virtually always the situation, since
few tests are considered to be 100 percent accurate.
Despite these limitations, it is important for clinical
and public health practices to have the best possible
estimates of disease prevalence and test parameters,
such as the sensitivity, specificity, and positive and
negative predictive values.

For example, the data in table 1 were obtained from
a survey of all Cambodian refugees who arrived in
Montreal, Canada, between July 1982 and February
1983 (1, 2). The observed sample prevalence using the
information from stool examinations alone is 24.7
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percent, while the prevalence from serology alone is
77.2 percent, an absolute difference of more than 50
percent. In fact, the situation is even less certain than
these values indicate, since the above estimates do not
take into account sampling variability or the likelihood
that several of the subjects may be false positives or
false negatives, as neither test has perfect sensitivity or
specificity. For the same reasons, inferences about the
test parameters are equally contentious in the absence
of a gold standard.

This problem arises from the misclassification of
data. A review of frequentist (non-Bayesian) ap-
proaches to inference from data in the presence of
misclassification is given by Walter and Irwig (3). In
general, one can observe P different populations, each
subject in each population receiving D different diag-
nostic tests. Here the term "diagnostic test" is used
generically to denote any method of disease detection.
For example, different observers of the same test or
two applications of the same test on a subject over
time are considered as different tests. It is of interest to
estimate parameters belonging to each population, typ-
ically the prevalence of disease, as well as the param-
eters of each diagnostic test.

Two of the most common situations occur when
P = 1 and D = 1 or D = 2. In the case when P = D =
1, there are three parameters to be estimated: the
population prevalence and the sensitivity and specific-
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TABLE 1. Results of serologlc and stool testing for

Strongyfoides Infection on 162 Cambodian refugees arriving In

Montreal, Canada, between July 1982 and February 1983

Stool examination

Serology
38

2

87

35

40 122

125

37

162

ity of the test. The data possess only 1 df since, given
the total sample size, the number of subjects testing
positively fixes the number of subjects with negative
tests. In the case of two diagnostic tests, P = 1, D =
2, there are five unknown parameters, since each test
will in general have unknown sensitivities and speci-
ficities, in addition to the population prevalence. How-
ever, there are only 3 df, since knowing the total
sample size and any three of four cells in the 2 X 2
table fixes the number in the fourth cell.

Having more parameters to estimate than degrees of
freedom means that constraints have to be imposed on
a subset of the parameters in order to carry out esti-
mation procedures, such as maximum likelihood. For
the case P = D = 1, both Quade et al. (4) and Rogan
and Gladen (5) assumed that the sensitivity and spec-
ificity of the test are exactly known. When P — 1 and
D = 2, estimation procedures have been described
under a variety of different constraints. These have
included assuming that the sensitivity and specificity
of one of the two tests are completely known (6) and
that the specificities, but not the sensitivities, of both
tests are known (7). Estimates of the remaining un-
constrained parameters are calculated, conditional on
the assumed known values of the constrained param-
eters. However, this procedure neither estimates these
latter values, which are almost always truly unknown,
nor is able to account for the uncertainty in their
assumed values, for example, when deriving confi-
dence intervals for the unconstrained parameters. In
fact, since all parameters are typically unknown, the
division into constrained and unconstrained sets is
often quite arbitrary.

The basic idea behind the Bayesian approach pre-
sented here is to eliminate the need for these con-
straints by first constructing a prior distribution over
all unknown quantities. The data, through the like-
lihood function, are then combined with the prior
distribution to derive posterior distributions using
Bayes' theorem. This allows simultaneous inferences
to be made on all parameters. The posterior distribu-
tions contain updated beliefs about the values of the
model parameters, after taking into account the in-

formation provided by the data. This procedure can
be viewed as a generalization of the frequentist ap-
proach, since the latter's constrained parameters can
be considered to have degenerate marginal prior dis-
tributions with probability mass equal to one on
their constrained values, while the lack of prior in-
formation assumed for the unconstrained parameters
can be represented by a uniform or other noninfor-
mative prior distribution. Using the Bayesian ap-
proach with these prior distributions will provide
numerically nearly identical point and interval esti-
mates as the frequentist approach. However, the
Bayesian approach also allows for a wide variety of
other prior distributions. Since exact values for the
constrained parameters are seldom if ever known,
the consideration of nondegenerate prior distribu-
tions covering a range of values is more realistic.

Another advantage is that normal distribution ap-
proximations, commonly used to derive confidence
intervals around unknown parameters from estimated
standard errors, are not required. Since posterior dis-
tributions can be highly skewed, the use of the exact
posterior marginal distributions can result in substan-
tial improvements in the validity of interval estimates.

Direct calculation of the posterior distributions can
be difficult. The Gibbs sampler (8-10) is an iterative
Markov-chain Monte Carlo technique for approxi-
mating analytically intractable posterior densities. Re-
cently, it has been used to estimate parameters in a
wide variety of problems in health research (11-13). It
is the goal here to demonstrate how approximate mar-
ginal posterior densities of all parameters of interest in
the case of one or two diagnostic tests in the absence
of a gold standard can be calculated using the Gibbs
sampler.

ONE DIAGNOSTIC TEST

The problem considered in this section can be de-
scribed as follows. The results of a single diagnostic
test for a certain disease are available on a random
sample of subjects. No gold standard test is available,
either because none exists, because of measurement
error, or because it cannot practically be performed.
The latter situation often occurs when costs are pro-
hibitive. The object is to draw inferences about the
prevalence, IT, of the disease in the population from
which the sample was drawn, as well as the sensitivity,
5, and specificity, C, of the test, along with the positive
and negative predictive values for the population.

Let a and b be the observed number of positive and
negative test results, respectively, in the sample of a +
b = N subjects. Let Y1 and Y2 be the information that
is missing when there is no gold standard, that is, the
number of true positive test results out of a and b,
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respectively. Thus, Y1 is the number of true positives,
and Y2 is the number of false negatives. See table 2.
Such missing information has been termed "latent
data" by Tanner and Wong (14), and analyses using
such data have been referred to as "latent class anal-
ysis" by Kaldor and Clayton (15) and Walter and
Irwig (3).

The likelihood function of the observed and latent
data shown in table 2 is given by

the prior distribution, it is given by

IT™

(1 - S)
Yl

C
b
~

Y2
{\ - C)

a
~

Y
\

Prior information in the form of a beta density will
be assumed. A random variable, 6, has a beta distri-
bution with parameters (a,/3) if it has a probability
density given by

f(8) =

1
ea-\i-

B (a,

0 < d < 1, a,0 > 0, and

0, otherwise,

where B(a,/3), the beta function evaluated at (a,/3), is
the normalizing constant. This family of distributions
was selected since its region of positive density, from
0 to 1, matches the range of all parameters of interest
in this study, and because it is a flexible family, in that
a wide variety of density shapes can be derived by
selecting different choices of a and /3 (16). It also has
the advantage of being the conjugate prior distribution
for the binomial likelihood, a property that simplifies
the derivation of the posterior distributions. Let
(a^PJ, (as,fSs), and (ao /3 c) represent the prior beta
parameters for TT, S and C, respectively. Since by
Bayes' theorem the joint posterior distribution is pro-
portional to the product of the likelihood function and

TABLE 2. Observed and latent data in the case of one

diagnostic test In the absence of a gold standard, presented

in a 2 x 2 table

Truth

Test

Y2

a-Y,

b-Y2 b

N

- C)a~Yi+Pc, (1)

up to a normalizing constant. Of course, the latent
data, Y1 and Y2, are not observed, impeding direct use
of equation 1 in calculating the marginal posterior
densities of TT, 5, and C. However, inference is possi-
ble using a Gibbs sampler algorithm. The basic idea is
as follows. Conditional on knowing the exact values of
the prevalence and all diagnostic test parameters, it is
possible to derive posterior distributions of the latent
data yx and Y2. Conversely, if Y1 and Y2 are known,
then deriving posterior distributions of the prevalence
and diagnostic test parameters given the prior distri-
butions requires only a straightforward application of
Bayes' theorem. An algorithm that alternates between
these two steps can thus be devised, similar in spirit to
the expectation maximization algorithm that is com-
monly used in latent class analysis (3). The Gibbs
sampler algorithm, described in the Appendix, pro-
vides random samples from the marginal posterior
densities of each parameter of interest. These random
samples can then be used to reconstruct the marginal
posterior densities, or summaries of these densities,
such as their means, medians, or standard deviations,
as well as probability interval summaries.

TWO DIAGNOSTIC TESTS

The methods of the previous section can be ex-
tended to the situation where results of two diagnostic
tests for the same disease are available on a randomly
selected sample of subjects, where neither test can be
considered a gold standard. Of interest are the mar-
ginal posterior densities of the prevalence of the dis-
ease in the population from which the sample was
drawn, TT, as well as the sensitivities, S1 and S^ spec-
ificities, C1 and C2, and positive and negative predic-
tive values of each test, given the data and any avail-
able prior information. Data are collected as shown in
table 3.

Let the unobserved latent data Yx, Y2, Y3, and Y4

represent the number of true positive subjects out of
the observed cell values u, v, w and x, respectively, in
the 2 X 2 data of table 3. Since any subject, whether
truly possessing the disease in question or not, can test
positively or negatively on each test, there are eight
possible combinations. The situation is summarized in
table 4.

The likelihood function can be derived directly from
the information in table 4, and the joint posterior
density is proportional to this likelihood times the
prior distribution as in the previous section. The Gibbs
sampler can again be used to construct the marginal
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TABLE 3. Observed data from two diagnostic tests, In the

absence of a gold standard

Test 2

Test 1

u

w

V

X

(u+w) (v+x)

(u+v)

(w+x)

N

posterior densities of all parameters of interest. See the
Appendix for details.

PRIOR DISTRIBUTIONS

An important step in any Bayesian analysis is to
obtain a prior distribution over all model parameters.
This can be accomplished using past data, if available,
or by drawing upon expert knowledge, or a combina-
tion of both. There is a large literature on the elicita-
tion of prior distributions. Proposed methods have
included directly matching percentiles (17) or means
and standard deviations (18) to a member of a prese-
lected family of distributions, as well as methods that
use the predictive distribution of the data (19). The
predictive distribution is the marginal distribution of
the observable data, which is found by integrating the
likelihood of the data over the prior distribution of the
unknown parameters (18).

For the present problem, model parameters include
the sensitivity and specificity of each diagnostic test,
as well as the population prevalence. Both the stool
examination and serology test are standard diagnostic
tools in parasitology. It is expected that stool exami-
nations generally underestimate population prevalence
(20), while serology generally results in overestima-
tion due to cross-reactivity (21) or persistence of re-
activity following parasite cure (22). Nevertheless, the
lack of a gold standard for the detection of most
parasitic infections means that the properties of these
tests are not known with high accuracy. In consulta-
tion with a panel of experts from the McGill Centre for
Tropical Diseases, we determined equally tailed 95
percent probability intervals (i.e., 2.5 percent in each
tail) for the sensitivity and specificity of each test (see
table 5). These were derived from a review of the
relevant literature and clinical opinion (21-28).

The particular beta prior density for each test pa-
rameter was selected by matching the center of the
range with the mean of the beta distribution, given by
a/(a+/3), and matching the standard deviation of the
beta distribution, given by

(a + jS)\a + (1 + 1)'

TABLE 4. Likelihood contributions of all possible

combinations of observed and latent data for the case of

two diagnostic tests*

No. of subjects Truth
Test 1 Test 2
result result

Likelihood
contribution

y\

u-V,
v-Y2

w-Y3

x-Y<

+ TT$<\S2

+ IT(1-S,)S2

+ (1 —n)(1 -C,)(1 - C J

+ (1-ir)C,(1-cJ

- (1-ir)C,C2

* The likelihood is proportional to the product of each entry In the
last column of the table raised to the power of the corresponding
entry In the first column of the table.

TABLE 5. Equally tailed 95% probability ranges and

coefficients of the beta prior densities for the test parameters

In the diagnosis of Strongytoldos Infection*

Stool examination Serology

Range
Beta

coefficients Range
Beta

coefficients

Sensitivity 5-45 4.44 13.31 65-95 21.96 5.49
Specificity 90-100 71.25 3.75 35-100 4.1 1.76
* A uniform density over the range [0,1] (a=1, 0=1) was used for

the prior distribution for the prevalence of Strongyloides In the
refugee population.

with one quarter of the total range. These two condi-
tions uniquely define a and /3. An alternative approach
is to match the end points of the given ranges to beta
distributions with similar 95 percent probability inter-
vals. The coefficients obtained from these two ap-
proaches usually give very similar prior distributions.
One way to consider a beta(a,/3) distribution is to
equate it with the information contained in a prior
sample of (a + /3) subjects, a of whom were positive.
The sum (a + /3) is often referred to as the "sample
size equivalent" of the prior information (18).

A priori, very little was known about the prevalence
of Strongyloides infection among the Cambodian ref-
ugees. To approximate this uncertainty, a uniform
prior distribution on the range from 0 to 1 was used.
While independence was assumed for all parameters a
priori, this does not ensure independence of the pos-
terior distributions.

While it is possible to use noninformative or uni-
form prior distributions for all test parameters, this is
not necessarily desirable. In cases where there are
relatively few data per parameter, drawing useful in-
ferences may require substantive prior information.
For example, if the prevalence in the population is
high (low), then the data will contain relatively little
information on specificity (sensitivity), since there
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will not be many negative (positive) subjects on which
to base estimates. However, previous information may
indicate, for example, a high specificity, as was the
case here for the stool examination. Not using this
information can result in much wider interval esti-
mates for all parameters.

STRONGYLOIDES INFECTION IN
CAMBODIAN REFUGEES

The methods presented above will now be applied to
the data given in table 1. Analyses were run using data
from each diagnostic test alone, as well as from their
combination. The prior parameters presented in table 5
were used. The results in the form of posterior medi-
ans and 95 percent equally tailed posterior credible
intervals appear in table 6. Credible intervals are the
Bayesian analogs of confidence intervals. Plots of the
prior and marginal posterior densities for the preva-
lence of Strongyloides infection appear in figure 1.
These densities were obtained by smoothing the output
from the Gibbs sampler with a normal kernel (29).
Similarly constructed posterior densities for the sensi-
tivities and specificities of each test, based on the
output from the Gibbs sampler using the data from
both tests combined, appear in figure 2. Other tech-
niques for density estimation in the context of the
Gibbs sampler have been discussed by Gelfand and
Smith (8).

As is evident from both table 6 and figure 1, the
densities can be highly skewed. For example, the
median of the marginal posterior distribution of the
prevalence using data from serologic testing alone was
0.80, although the 95 percent credible interval was
0.23—0.99. (For nonsymmetric posterior densities, the
highest posterior density (17) intervals could be used
in place of equally tailed posterior credible intervals.
The highest posterior density intervals result in the

narrowest possible intervals with the same probability
content. The 95 percent highest posterior density in-
terval for the prevalence using data from serologic
testing alone is 0.34-1.00, which is 0.10 shorter in
length than the symmetric interval with the same prob-
ability content.)

Sharper inference about the prevalence of Strongy-
loides infection is gained from the combined results
compared with that from stool examinations or sero-
logic testing alone. Figure 1 supports the assertion that
stool examinations underestimate and serologic testing
overestimates the population prevalence, in that the
posterior density from stool examinations lies more to
the left than that obtained from serology, with the
density from both tests combined located in between.
Overall, the 95 percent posterior credible interval for
the population prevalence from both tests combined
was 0.52-0.91. The results confirm the low sensitivity
of stool examinations (95 percent credible interval
0.22-0.44) and indicate a very high specificity (0.91-
0.99). The sensitivity of serologic testing appears to be
in the higher portion of the range of its prior distribu-
tion (0.80-0.95), while the posterior distribution of
the specificity of serology closely matched the prior
information (0.36-0.96). The latter result is partly due
to the fact that the median prevalence was 76 percent,
and with only 162 X 0.24 «* 39 subjects typically
classified as not having disease, there were limited
data with which to update the prior distributions for
the test specificities. The prior sample size equivalent
for the specificity of stool examination was 75 sub-
jects, about twice as large as the average number of
subjects contributing to updating this parameter. Since
a stool examination is positive only when the Strongy-
loides parasite is directly viewed under a microscope,
false positives are rare, and the lower limit of the prior
range of 90 percent was even thought by some to be

TABLE 6. Marginal prior and posterior medians and lower and upper limits of the posterior equally tailed 95% credible Intervats

for the prevalence (-n) and sensitivities (S1t SJ, specificities (C\, CJ, and positive and negative predictive values (PPV,, PPV*

NPV1F NPV2) for each screening test alone and for the combination of the two tests

Stool

examination

Serology

* Cl, credible

IT

s,
c.
PPV,

NPV,

S2

C2

PPV2

NPV2

interval.

Prior Information

Median

0.50

0.24

0.95

0.84

0.56

0.81

0.72

0.76

0.78

95% Cl"

0.03-0.98

0.07-0.47
0.89-0.99
0.10-1.00
0.03-0.98

0.63-0.92
0.31-0.96
0.07-1.00
0.08-1.00

Stool examination alone

Median

0.74

0.30

0.95

0.95

0.33

95% Cl

0.41 -0.98

0.21-0.47
0.88-0.99
0.74-1.00
0.02-0.73

Serology alone

Median

0.80

0.83
0.58
0.91
0.44

95% a

0.23-0.99

0.73-0.92
0.22-0.94
0.18-1.00
0.03-0.94

Both tests combined

Median

0.76

0.31

0.96

0.98

0.30

0.89

0.67

0.90

0.70

95% Cl

0.52-0.91

0.22-0.44
0.91-0.99
0.88-1.00
0.11-0.63

0.80-0.95
0.36-0.95
0.62-1.00
0.28-0.92
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FIGURE 1. Prior density and marginal posterior density for the prevalence of Strongyloides infection in Cambodian refugees, using data
from stool examinations and seroiogic tests alone, and from the two tests combined: Montreal, Canada, July 1982 to February 1983.
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FIGURE 2. Marginal posterior density for the sensitivities and specificities of stool examinations and seroiogic tests for the presence of
Strongyloides infection in Cambodian refugees, using data from both tests combined: Montreal, Canada, July 1982 to February 1983.

conservative. Of course, different posterior inferences
would be drawn by anyone with less confidence in the
specificity of stool examinations.

Figure 3 summarizes the marginal posterior proba-
bility functions for the latent data using the informa-
tion from both tests combined. Most of the persons

testing positively on stool examinations are likely to
be true positives, as indicated by the histograms for Y1

and y3, where high proportions of the iterations placed
all such subjects as positive. It is highly likely that at
least 50 of the 125 subjects testing positively on se-
rology but negatively on stool examinations are posi-
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FIGURE 3. Histograms of the output from the Gibbs sampler for the number of truly positive subjects in each cell of table 1. V, (Y1)isthe
number of truly positive subjects out of 38 with positive results on both tests, Y2 (Y2) Is the number of truly positive subjects out of 125 with
positive serology but negative stool examinations, Y3 (Y3) is the number of truly positive subjects out of two with positive stool examinations
but negative serology, and V4 (Y4) is the number of truly positive subjects out of 35 with negative results on both tests. Data from survey of
Cambodian refugees: Montreal, Canada, July 1982 to February 1983.

tive and that the number could be as high as 90, as
evidenced by the histogram for Y2. Finally, from the
histogram for Y4, it seems likely that approximately 10
subjects with negative results on both tests are, in fact,
truly positive.

In general, different prior information about the
parameters will lead to different posterior distribu-
tions. If there is considerable controversy, and espe-
cially if very narrow prior distributions are used, re-
sults from a range of prior distributions should be
reported. An investigator may have more diffuse prior
distributions, for example, with wider prior intervals
by 0.10 for all parameters than those shown in table 5.
In this case, the final 95 percent posterior credible
interval for the prevalence is 0.41-0.91, a decreased
lower interval limit compared with that resulting from
the priors in table 2. The decrease in the lower limit of
the latter interval is partially due to the fact that, in
order to widen the prior interval for the specificities of

stool examinations and serologic testing, the mean
values must be lowered, since one cannot go above
100 percent. Lower specificities result in more false
positives and, thus, lower numbers of true positives,
given the same data. Conversely, an investigator with
prior intervals narrower by 0.10 for all parameters will
derive a posterior 95 percent posterior credible interval
for the prevalence of 0.58-0.94, an interval that is
narrower by 0.03.

DISCUSSION

The methods presented here can easily be extended
to the case of three or more diagnostic tests when there
is no gold standard. In this case, all parameters can be
estimated by maximum likelihood without imposing
constraints (30), but the Bayesian approach can still
provide improved inference if there is substantive
prior information or if posterior distributions are not
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normal. An example of this occurs in population
screening for asthma, where exercise tests, metacho-
line challenge, and a previous physician diagnosis of
asthma are all in common use. Three tests result in 16
possible outcomes of the type listed in table 5, and in
general, n different diagnostic tests used in combina-
tion will result in 2" + 1 outcomes to consider. Exten-
sions to other misclassified or latent data situations,
such as those reviewed by Walter and Irwig (3), are
also possible, including extensions to tests that classify
individuals into more than two categories or provide
continuous outcomes.

It can be argued that a subject with a greater degree
of infection would be more likely to test positively on
each test, so that the test sensitivities and specificities
may be functions of individual subject characteristics.
If this is the case, an approach in which test parameters
are functions of patient characteristics may be desir-
able. Of course, more detailed data than those pre-
sented in table 1 would be required.

In the screening for Strongyloides infection, some
information was obtained from either the stool exam-
ination or serologic testing used alone, but the combi-
nation of tests allowed for sharper inferences to be
drawn. In general, the amount of information about
population prevalences and test parameters contained
in the data from any experiment is a complex function
of the data and the available prior information. Not
accounting for uncertainties in all parameters simulta-
neously can substantially affect final inferences. For
example, if serology is assumed to have exactly
known sensitivity and specificity values of 80 percent
and 70 percent, respectively, then the final 95 percent
interval for the prevalence is 78-99 percent. This total
width of 21 percent can be compared with the width
for prevalence from serology alone in table 6 of 76
percent, which is almost four times as wide. To recap-
ture this uncertainty, it has been suggested that several
analyses using different sets of point estimates for the
sensitivity and specificity can be performed. However,
this conventional sensitivity analysis is still unsatis-
factory, since it provides no guidance as to how to
combine the different results into overall final esti-
mates. The methods presented here are useful in draw-
ing the best possible inferences from diagnostic tests
in the absence of a gold standard.
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APPENDIX

Implementation of the Gibbs sampler requires the specification of the full conditional distributions of the
parameters, i.e., the conditional distributions of each parameter given the values of all of the other parameters.
As is often the case, the full conditional distribution of each parameter does not always depend on all of the other
parameters, which leads to some further simplifications. It is straightforward to show from equation 1 that the
following conditional distributions must hold:

a, TT,5, C ~ Binomial I a,
TTS

TTS + (1 - 77) ( 1 - C)J'
(Al)

Y2 | b,TT,S,C ~ Binomial b,

77

Y'77(l - 5) + (1 ~ 77)C/'

Y2 + am a + b - Yl - Y2

as, Y2 + ft),

and

C | a,b,Yx,Y2,ac#c ~ Beta(& -

(A2)

(A3)

(A4)

(A5)

The Gibbs sampler operates as follows. Arbitrary starting values (see paragraph on convergence below) are
chosen for each parameter. A sample of size m is then drawn from each full conditional distribution, in turn. The
sampled values from the previous iterations are used in the conditional distributions for subsequent iterations. A
cycle of the algorithm is completed when all conditional distributions have been sampled at least once. The entire
cycle is repeated a large number of times. The random samples thus generated for each parameter can be regarded
as a random sample from the correct posterior marginal distribution (8).

For the above model, Y1 and Y2 are generated from expressions Al and A2, respectively, given the starting
values of the other parameters. Then, TT is generated from equation A3 conditional on the Yx and Y2 variates just
sampled. Drawing 5 and C from densities given in expressions A4 and A5, respectively, using the same values
of Y1 and Y2 completes the first cycle. Positive and negative predictive values can be computed after each cycle
from Y-Ja and (b—Y^yb, respectively. The random samples generated by repeating the above cycle the desired
number of times are then used to reconstruct the marginal posterior densities of each parameter and to find
credible sets, marginal posterior means or medians, or other inferences.

For two diagnostic tests, the full conditional distributions are as follows:

Y, I U,TT^SI,CI,S2,C2 ~ Binomial «,-
\ 1

F2 | V,TT£I,CIJS2,C2 ~ Binomial! v,-
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- 52) + (1 - 77)(1 -

(A6)
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( A 8 )

/ ir(l 50(1 5a) \
y4 j:,ir,51,C1,52,C2 ~ Binomial A: ,— — — — — — , (A9)

\ TT(1 - Si)(l - SJ + (1 - TT)C1C2J

+ y2 + y3 + y4 + <*m N - (y, + y2 + y3 + y4) + /3W), (AIO)

+ y2 + a51, y3 + y4 + fa, (All)

Cj I u,v,w,*,y1>y2,y3,y4,aci,/3ci ~ Beta(w + A: - (Y3 + YA) + a a , u + v - (yx + Yj + ^ a ) , (A12)

S2 I yi,y2,y3,y4,as2,/3s2 ~ Beta(y! + y3 + as2, Y2+Y, + fa, (A13)

and

Beta(v + x - (Y2 + YA) + aa, u + w - (ya + y3) + ^C 7) . (A14)

Gibbs sampling is used to sample in turn from distribution A6 to distribution A14 in a similar fashion to the
procedure used for the case of one diagnostic test outlined previously. The positive and negative predictive values
for each cycle of the Gibbs algorithm are again obtained directly from the relevant fractions of the true positive
or negative subjects in each cell of the 2 X 2 table to the total observed number of subjects in that cell.

Throughout, the Gibbs sampler was run for 20,500 cycles, the first 500 to assess convergence and the last
20,000 for inference. Each analysis was repeated from several different starting values, and convergence was
assumed only if all runs provided very similar posterior distributions. Convergence of the algorithm here
appeared to occur within the first 100-200 cycles, as evidenced by the monitoring of selected percentiles of the
posterior samples. In general, the rate of convergence will depend on the starting values and the particulars of
the data set and prior distributions.

A computer program written in S-PLUS implementing all of the methods described in this paper is available
from the first author (E-mail address: joseph@binky.epi.mcgill.ca).
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