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Bayesian Estimation of Human Impedance and

Motion Intention for Human-Robot Collaboration
Xinbo Yu, Student Member, IEEE, Wei He, Senior Member, IEEE, Yanan Li, Member, IEEE, Chengqian Xue,

Jianqiang Li, Jianxiao Zou, Member, IEEE and Chenguang Yang, Senior Member, IEEE

Abstract—This paper proposes a Bayesian method to acquire
the estimation of human impedance and motion intention in a
human-robot collaborative task. Combining with prior knowl-
edge of human stiffness, estimated stiffness obeying Gaussian
distribution is obtained by Bayesian estimation and human
motion intention can be also estimated. An adaptive impedance
control strategy is employed to track a target impedance model
and neural networks are used to compensate for uncertainties in
robotic dynamics. Comparative simulation results are carried out
to verify the effectiveness of estimation method and emphasize
the advantages of the proposed control strategy. The experiment,
performed on Baxterr robot platform, illustrate a good system
performance.

Index Terms—neural networks, adaptive impedance control,
human impedance, human motion intention estimation, Bayesian
estimation.

I. INTRODUCTION

Service robots are becoming more significant in our daily

lives and help human partners at home or in social environ-

ments [1]–[4]. Considering many tasks that need at least two

persons to complete, such as moving a table, one person finds

difficulties due to limits of the maximum extension of human

arm and human load ability, so it needs another person (“co-

operator”) to cooperate with him/her (“initiator”). To ensure

finishing the task successfully, the “initiator” should perceive

a precise ordered location and know prior task processes, but

more than that, the movement of this “cooperator” should be

compliant to the motion of “initiator” completely. It means that

“cooperator” will need to know motion intention of “initiator”

and adapt to movement and interaction force of ”initiator”.

Obviously, collaborative robots, which are centered on human

task requirement, have the ability to assist human partner and

supersede “cooperator” work in such kind of tasks [5]–[8].

This work was supported in part by the National Natural Science Foundation
of China under Grant 61933001, Grant 61873298, Grant 61622308, Grant
61873206, in part by the Natural Science Foundation of Beijing Municipality
under Grant 4172041, and in part by the Joint Fund of Equipment Pre-
Research and Ministry of Education under Grant 6141A02033339.

X. Yu, W. He and C. Xue are with the School of Automation and Electrical
Engineering, Institute of Artificial Intelligence, University of Science and
Technology Beijing, Beijing 100083, China. The corresponding author is W.
He, Email: weihe@ieee.org.

Y. Li is with the Department of Engineering and Design, University of
Sussex, Brighton, BN1 9RH, UK.

J. Li is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518060, China.

J. Zou is with the School of Automation Engineering, University of
Electronic Science and Technology of China, Chengdu 611731, China.

C. Yang is with the College of Automation Science and Engineering, South
China University of Technology, Guangzhou 510641, China.

Let us consider a classical physical human-robot interaction

(pHRI) scenario as in Fig. 1. Abundant control strategies

are developed for pHRI [9], [10] and various adaptive or

learning control strategies also draw much attention from

scholars [11]–[16]. Impedance control, firstly proposed by

Hogan [17], is used to relate interactive force with deviations

from desired states. Adaptive impedance control methods

are proposed subsequently, e.g., [18]–[21]. Compared with

hybrid force/position control, impedance control shows better

robustness and does not need transitions between contact and

non-contact situations. Although traditional impedance control

has shown good performance in pHRI [22], it only enables

human to change the robot’s actual trajectory but not the

robot’s desired trajectory [23]. If robot has knowledge of

human motion intention [24], it can regard human motion

intention as its own desired trajectory and human will cost less

effort to accomplish the task. In [25], human motion intention

has been estimated by online neural networks (NNs) based

on available sensory information, an updating law is designed

and the robot moves to time-varying human’s intended position

actively. In [26], an inversion-based approach is proposed to

estimate the human intent by demonstration and it is used in

input updating for improving trajectory tracking accuracy. The

effectiveness of human guided iterative learning control has

been proven by human-in-loop trajectory tracking experiment.

[27] proposes a method to predict the next movement of the

human partner who is collaborating with robot by applying

inverse optimal control and goal set iterative replanning. In

[28], human motion intention is identified to enable the robot

to follow human compliantly in fast point-to-point tasks.

When robot interacts with human in a constrained motion

form, an estimation method of human impedance should be

considered for improving the system stability during pHRI

[29]–[32]. By tuning a target impedance based on human

impedance estimation, variable target impedance parameters

extend the robot learning skills beyond trajectory tracking, in

which robot is gifted with submissive performance and more

advanced skills that involve, among others, contacting with

human partner. Some common contact impedance estimation

methods are analyzed in [33], which include recursive least

squares method, model reference and indirect adaptive method

and signal processing method. Using information extracted

from programming by human demonstration, [34] proposes a

method to estimate environmental stiffness which is obtained

according to covariance of Gaussian mixture model. In [35],

the tutor transfers a specific sawing skill to the robot success-

fully, by using electromyography (EMG) signals to estimate
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tutor stiffness in pHRI. In [36], desired impedance parame-

ters are obtained based on gradient-following and betterment

methods. In [37], the optimal desired stiffness is designed by

using human operator’s electromyography (EMG) signals in

an upper limb robotic exoskeleton application. In [38], [39],

in order to estimate human impedance characteristics, a small

external perturbation to the human arm is required in the

cooperative task.

Abundant control strageties of nonlinear systems are pro-

posed in recent years [40]–[44]. Model-based control strategies

have more precise tracking capacities than classical PID con-

trol. In addition it can avoid spending time finding proper PID

values of gains. The researches on adaptive control also draw

much attention [45]–[47]. However, uncertainties in model

dynamics are ubiquitous [48], [49] and have attracted attention

of researchers [50]–[54]. In [55], radial basis function neural

networks (RBFNN) are used to handle uncertainties in robotic

dynamics, and the back-stepping method is used to design

a stable controller. This RBFNN method has been used in

applications of robotic flexible joints [56], output and input

constraints [57]–[62] and teleoperation [63]. In [64], NN are

employed to compensate for uncertainties in the presence

of unknown dynamics of both the grasped object and dual

robotic manipulators. A switching method is integrated into

controller to achieve global stability. In [65], an adaptive robust

control design is proposed for multiple mobile manipulators,

a common object in contact with a rigid surface is grasped by

multiple mobile manipulators and they show robustness not

only to parametric uncertainties but also to external distur-

bances. Some observer-based adaptive control strategies are

also proposed for solving unknown disturbance or unknown

states [66]–[71].

Bayesian estimated methods are widely utilized in dealing

with uncertainties in robot motion planning [72] and robot

visual tracking [73]. Some works have been done about tactile

perception in recent years [74]. In this paper, a Bayesian

method is proposed for human impedance and motion inten-

tion estimation, and neural impedance control strategy is used

to achieve efficient human-robot cooperation.

The construction of this paper is described as follows: in

Section II, the dynamics of human and robot are presented

and the task objective is introduced; in Section III, a Bayesian

estimation method is employed in human stiffness estimation,

and the human motion intention is estimated according to

the dynamic relationship between human stiffness and motion

intention; in Section IV, impedance control is analyzed, NNs

are used to handle model uncertainties in control design,

and stability analysis is proved by constructing Lyapunov

function candidates; in Section V, comparative simulations

are carried out to show the advancement of our proposed

method; in Section VI, an experiment is designed to evaluate

the performance of our controller design on Baxterr robot

platform; in Section VII, conclusion is presented.

II. PROBLEM FORMULATION

In this paper, we consider an object transporting task as

shown in Fig. 1. In this task, human will lead by applying an

Human Robot

Human-robot cooperative object transporting task

Human target position

object

Robot desired position

Fig. 1: A scenario where human and robot collaborate to

perform an object transporting task. Human is an “initiator” of

the task, i.e., human will lead the task and he/she knows the

task target position, and robot will be obedient completely to

help human to finish the task, i.e., robot will be a “cooperator”.

interaction force to the object and robot will cooperate with

human to lift the object on the other side.

A. Dynamics

I. Robot’s Dynamic Model

We consider the robot as an m-DOF rigid manipulator, so

the robotic dynamics in joint space can be described as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) = JT (q)fr + τ, (1)

where q, q̇, q̈ ∈ R
m are the joint angle, velocity and acceler-

ation vectors, respectively. M(q) ∈ R
m×m is the symmetric

and positive definite inertia matrix, C(q, q̇)q̇ ∈ R
m is Coriolis

and centripetal vector, G(q) ∈ R
m denotes gravity vector,

τ ∈ R
m denotes control input vector, fr ∈ R

h is the vector

of the interaction force between the robot and the transferred

object, J(q) ∈ R
h×m is the Jacobian matrix, where h denotes

the dimension in Cartesian space. The forward kinematics of

the robot is given by x = Φ(q), differentiating x with respect

to time we get ẋ = J(q)q̇. Based on inverse kinematics, q̇ and

q̈ in joint space can be described as

q̇ = J−1(q)ẋ

q̈ = J̇−1(q)ẋ+ J−1(q)ẍ, (2)

where J−1(q) denotes the inverse of J(q), x, ẋ, ẍ ∈ R
h denote

the position, velocity and acceleration vectors in Cartesian

space, respectively. By substituting (2) into (1), we obtain

robot’s dynamic model in Cartesian space as follows

Mr(x)ẍ+ Cr(x, ẋ)ẋ+Gr(x) = u+ fr, (3)

where the inertia matrix Mr(x) ∈ R
h×h, the Coriolis and

centripetal force vector Cr(x, ẋ)ẋ ∈ R
h, the gravitational

force vector Gr(x) ∈ R
h and the control force vector u ∈ R

h

in the Cartesian space in (3) can be calculated as

Mr(x) = J−T (q)M(q)J−1(q)

Cr(x, ẋ) = J−T (q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q)

Gr(x) = J−T (q)G(q)

u = J−T (q)τ. (4)

II. Human’s Dynamic Model
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In pHRI, the dynamic model of human in Cartesian space

in h dimension can be simply described as a spring model

fh = Kh(xh − x), (5)

where Kh ∈ R
h×h denotes human’s stiffness matrix, xh ∈ R

h

denotes human’s target position vector in h dimension, i.e.,

human motion intention, x ∈ R
h denotes actual position, and

fh ∈ R
h denotes the interaction force vector between human

and transferred object.

B. Task objective

In this task, the most important problems are how to acquire

human stiffness and how to obtain human motion intention

in (5). If robot knows human motion intention and human

stiffness, it will be convenient to design impedance controller

for efficient human-robot interaction. In our task, we want

to make human and robot act with a same behavior for

performing tasks successfully. If they have different behaviors

during a cooperative task, the task will be inefficient or

unsuccessful. The same behavior means that the robot and

human have a same initial position and a same moving target

position, and the human’s stiffness matrix Kh should be same

as the robot’s stiffness matrix Kd. Therefore, we firstly design

a target impedance model for the robot, which is described as

below:

−fr = Λd(ẍd − ẍ) +Dd(ẋd − ẋ) +Kd(xd − x). (6)

where Λd is the desired inertia matrix, Dd is the desired

damper matrix, Kd is the desired stiffness matrix, and xd

denotes the robot’s desired target position. Considering a slow

speed human-robot interactive process, (6) can be simplified

as

−fr = Kd(xd − x), (7)

because ẋ and ẍ are close to zero. The simplified target

impedance model (7) shows dynamic relationship between

displacement and interaction force clearly. As it can be seen

from (5), in this cooperative object transporting task, we

should design the robot desired target position xd as human

motion intention xh and design Kd as human stiffness Kh.

However, human motion intention xh and human stiffness

Kh are unknown to robot. Therefore, we need to propose

an estimation method to obtain an estimate of human motion

intention x̂h and an estimate of human stiffness K̂h. We can

write the estimate of (5) in one dimension as below

f̂h1 = K̂h1(x̂h1 − x1), (8)

where K̂h1, x̂h1 and f̂h1 denote the estimates of human

stiffness parameter, human target position and interaction force

between human and object in one dimension, respectively.

In this paper, we regard the transporting object as a mass

point of which the tiny mass and volume can be ignored.

Therefore, the interaction force between human and transferred

object fh is the same as the interaction force between robot and

transferred object fr. This leads to a scenario where human

and robot has a direct physical contact. When we measure fr

-

Human motion 

intention 

estimation
 Target 

impedance 

model

Neural Network 

Impedance Control

Robot 

Dynamics

Impedance 

learning

x

ˆxd hx=

ˆ
d hK K=

fr

+

Fig. 2: Control Architecture

by the force sensor mounted on the end-effector of robot, fh
can be obtained.

The control architecture is shown in Fig. 2. In the following

two sections, we first explain how to estimate human’s target

position and stiffness, and then design a controller to achieve

desired robot’s impedance.

III. HUMAN STIFFNESS LEARNING AND MOTION

INTENTION ESTIMATION

Bayesian parameter estimation method is an important

method to estimate unknown parameters. We use this method

to get the estimation of Kh1 and xh1.

First, we establish a quadratic cost function to evaluate the

estimation accuracy as below:

λ = (
f̂h1(t− 1)− f̂h1(t)

ẋ1(t)
− fh1(t− 1)− fh1(t)

ẋ1(t)
)2. (9)

Remark 1:
fh1(t−1)−fh1(t)

ẋ1(t)
can be regarded as Kh accord-

ing to (5), so we can use (9) to evaluate the estimation accuracy

of Kh. fh1 and ẋ1 can be measured by force and velocity

sensors, respectively.

Remark 2: Similar idea has been used in [75] for estimating

human stiffness in real-time. The estimated stiffness of the

human operator’s arm has been calculated from the equation:

△Fest(t) = KH △ pest(t), where △pest(t) = pR(t)− pR(t−
tS) and △Fest(t) = FR(t)− FR(t− tS). FR(t) is measured

force and pR(t) is the position of the end-effector, △Fest(t)
and △pest(t) denote difference of force and position, and tS
is the time step. A recursive identification method using digital

filter has been utilized to estimate stiffness parameters in real-

time.

We assume that
fh1(t−1)−fh1(t)

ẋ1(t)
follows the Gaussian distribu-

tion, so the random variable set κ1 of
fh1(t−1)−fh1(t)

ẋ1(t)
obeys

the following distribution:

κ1 ∼ N(µ, σ2), (10)

where N(∗) denotes the Gaussian distribution function, µ
denotes the mathematical expectation, and σ2 denotes the

variance of random variable set κ1. Regarding that the actual

human stiffness parameter Kh1 can be deemed as µ, we

can estimate Kh1 according to Bayesian parameter estimation

method if σ2 is known to the control designer. We rewrite the

cost function (9) as follows

λ = (µ̂− µ)2, (11)



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , 2019 4

where µ̂ is the estimate of µ. We can obtain the predictor

probability distribution of stiffness parameter p(µ) as follows

p(µ) ∼ N(µ0, σ
2
0), (12)

where µ0, σ2
0 denote predictor expectation and variance of µ,

and their values can be found based on the literature about

human stiffness measurement [76]. We can obtian the updater

probability distribution p(µ | κ) as follows

p(µ | κ) = p(κ | µ)p(µ)
∫

p(κ | µ)p(µ)dµ, (13)

where p(κ | µ) denotes the joint probability distribution, and

it can be calculated as

p(κ | µ) =
n
∏

i=1

p(
fh1i(t− 1)− fh1i(t)

ẋ1i(t)
| µ), (14)

where
fh1i(t−1)−fh1i(t)

ẋ1i(t)
is the i-th element of a set κ. Substi-

tuting (12), (14) to (13), we can obtain the updater probability

distribution p(µ | κ) as follows

p(µ | κ) = αp(κ | µ)p(µ), (15)

where α is introduced to absorb the irrelevant terms about

µ. Considering that p(κ | µ) and p(µ) follow the Gaussian

distribution, we can rewrite (15) as

p(µ | κ) = α
n
∏

i=1

1√
2πσ

exp(−1

2

( fh1i(t−1)−fh1i(t)
ẋ1i(t)

− µ)2

σ2
)

1√
2πσ0

exp(−1

2

(µ− µ0)
2

σ2
0

)

= α1exp(−
1

2
(

n
∑

i=1

( fh1i(t−1)−fh1i(t)
ẋ1i(t)

− µ)2

σ2

+
(µ− µ0)

2

σ2
0

))

= α2exp(−
1

2
((

n

σ2
+

1

σ2
0

)µ2

−2(
1

σ2

n
∑

i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
+

µ0

σ2
0

)µ)

(16)

where α1 and α2 are parameters used to absorb the irrelevant

items of µ. Note that p(µ | κ) follows the Gaussian distribu-

tion, so we can conclude that

p(µ | κ) = 1√
2πσn

exp(−1

2

(µ− µn)
2

σ2
n

) ∼ N(µn, σ
2
n). (17)

Because the coefficient in exponential term in (17) equals its

counterpart in (16), we can obtain

1

σ2
n

=
n

σ2
+

1

σ2
0

µn

σ2
n

=
n

σ2
µ̂n +

µ0

σ2
0

, (18)

where

µ̂n =
1

n

n
∑

i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
. (19)

We can conclude that

µn =
nσ2

0

nσ2
0 + σ2

µ̂n +
σ2

nσ2
0 + σ2

µ0

σ2
n =

σ2σ2
0

nσ2
0 + σ2

. (20)

If we use the quadratic cost function like (9), the Bayesian

parameter estimation µ̂ can be described as the conditional

expectation when κ is given and µ can be estimated as follows

µ̂ =

∫

µp(µ | κ)dµ =

∫

µ
1√
2πσn

exp(−1

2

(µ− µn)
2

σ2
n

)dµ

= µn. (21)

Thus, the Bayesian estimation of µ can be rewritten as:

µ̂ =
nσ2

0

nσ2
0 + σ2

µ̂n +
σ2

nσ2
0 + σ2

µ0

(µ̂n =
1

n

n
∑

i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
),

σ̂2 = σ2
n =

σ2σ2
0

nσ2
0 + σ2

. (22)

From (22) we can conclude that the estimate of human

stiffness parameter K̂h1 remains in the interval from (µ̂− σ̂)
to (µ̂+ σ̂), i.e.,

Kh1min = µ̂− σ̂,

Kh1max = µ̂+ σ̂. (23)

Then, we can obtain the corresponding human motion inten-

tion estimate x̂h1 as follows

x̂h1 ∈ (
fh1

Kh1max
+ x1,

fh1
Kh1min

+ x1). (24)

Since K̂h1 obeys Gausian distribution, the corresponding

human motion intention estimate x̂h1 also obeys Gausian

distribution, i.e.,

x̂h1 ∼ N(µx, σ
2
x), (25)

where µx and σx are the expectation and the variance of x̂h1,

respectively. They can be described as

µx =
fh1

Kh1max
+ x1 +

fh1

Kh1min

− fh1

Kh1max

2
,

σx =

fh1

Kh1min

− fh1

Kh1max

2
, (26)

where x1 denotes the position in one dimension.

Along with increasing n, σ̂ converges to a small value, and

µ̂ converges to µ̂n. µx converges to fh1

µ̂n

+x1 and σx converges

to zero. Using this method we can estimate Kh1 and xh1 in

one dimension. In a similar way, human stiffness matrix K̂h

and motion intention vector x̂h can be obtained by Bayesian

parameter estimation.

IV. CONTROL DESIGN

After x̂h and K̂h are obtained, we set xd as x̂h, and set

Kd as K̂h to achieve the task objective. We set Dd as Dd =
diag[ℓ

√
Kd1, ℓ

√
Kd2, ..., ℓ

√
Kdn], where ℓ denotes a proper
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coefficient between 0 and 1. We set inertia matrix Λd close to

the robot’s inertia matrix Mr. According to (6), we construct

the error signal ϖ as

ϖ = Λd(ẍd − ẍ) +Dd(ẋd − ẋ) +Kd(xd − x) + fr

= Λdë+Ddė+Kde+ fr, (27)

where e = xd−x, and if we want to achieve the relationship in

(6), we should make ϖ converge to zero. To facilitate analysis,

we define another impedance error ω as

ω = Kfϖ = ë+Kcė+Kke+Kffr (28)

where Kf = Λ−1
d , Kc = Λ−1

d Dd, Kk = Λ−1
d Kd. We choose

two positive-definite matrices A and B as

A+B = Kc

Ȧ+BA = Kk. (29)

And we define

ḟrl +Bfrl = Kffr. (30)

According to (29) and (30), we rewrite (28) as

ω = ë+ (A+B)ė+ (Ȧ+AB)e+ ḟrl +Bfrl. (31)

Similar in [77], we define an auxiliary variable z as

z = ė+Ae+ frl, (32)

so we can rewrite (31) as

ω = ż +Bz. (33)

When z converges to zero, we can conclude that ż → 0 if its

limit exists. We define a virtual state variable vector xr as

ẋr = ẋd +Ae+ frl, (34)

so z can be rewritten as

z = ẋr − ẋ, (35)

In the following, we employ z to design an impedance

controller and analyze control stability.

Consider the following Lyapunov function candidate as

V1 =
1

2
zTMr(x)z. (36)

Differentiating V1 with respect to time, we have

V̇1 =
1

2
zT Ṁr(x)z + zTMr(x)ż, (37)

matrix θT (2Cr(x, ẋ) − Ṁr(x))θ = 0, ∀θ ∈ Rn, where

(2Cr(x, ẋ)−Ṁr(x)) is skew-symmetric. Thus, we can rewrite

V̇1 as

V̇1 = zTCr(x, ẋ)z + zTMr(x)ż. (38)

Considering (35), we rewrite (1) as

Mr(x)ż + Cr(x, ẋ)z = −u− fr +Mrẍr + Crẋr +Gr, (39)

so V̇1 can be written as

V̇1 = zT (−u− fr +Mrẍr + Crẋr +Gr), (40)

and the model-based impedance controller u can be designed

as

u = Kgz +Mrẍr + Crẋr +Gr − fr. (41)

Where Kg is a positive definite matrix, when u is designed as

(41), we can obtain

V̇1 = −zTKgz < 0. (42)

To address uncertainties in robot’s dynamic model, i.e.,

Mr(x), Cr(x, ẋ) and Gr(x) are unknown in practical situ-

ations, an adaptive impedance control is designed in this part.

The adaptive law is designed as

˙̂
Wi = −Γi[Si(Zi)zi + δiŴi], i = 1, 2, ..., n, (43)

where Ŵi is the weight estimate of NN, Γi = ΓT
i is a positive

gain matrix and δi is a small positive constant which is used

to improve the system robustness. Zi=[xT , ẋT , ẋT
r , ẍT

r ] is

the input of NN. ŴTS(Z) is used to estimate W ∗TS(Z) as

below

W ∗TS(Z) = Mrẍr + Crẋr +Gr − ϵ(Z), (44)

where W ∗

i is the actual weight of NN, S(Z) denotes the basis

function, the estimation error ϵ(Z) stays in bounds over the

compact set Ω, ∀Z ∈ Ω, ||ϵ(Z)|| < ϵ̄, with ϵ̄ as a positive

constant.

Assumption 1 [78]: There exist ideal weight vectors W ∗

such that |ϵ(Z)| ≤ ϵ̄ with constant ϵ̄ > 0 for all Z ∈ ΩZ .

The NN impedance controller can be designed as

u = Kgz + ŴTS(Z)− fr. (45)

We consider another Lyapunov function V2 candidate as

V2 =
1

2
zTMr(x)z +

1

2

n
∑

i=1

W̃i

T
Γ−1
i W̃i. (46)

We define the weight error W̃i = Ŵi − W ∗

i . Differentiating

V2 with respect to time, we have

V̇2 = zT (u+ fr − (Mrẍr + Crẋr +Gr))

+
n
∑

i=1

W̃T
i Γ−1

i
˙̂
Wi. (47)

Substituting (45) to (47), we can obtain

V̇2 = zT (−Kgz + ŴTS(Z)− fr + fr − (Mrẍr

+Crẋr +Gr)) +
n
∑

i=1

W̃T
i Γ−1

i
˙̂
Wi, (48)

Substituting (43) to (48), we have

V̇2 = zT (−Kgz + ŴTS(Z)−W ∗TS(Z)− ϵ(Z))

+
n
∑

i=1

W̃T
i Γ−1

i {−Γi[Si(Zi)zi + δiŴi]}

= −zTKgz + zT ŴTS(Z)− zTW ∗TS(Z)− zT ϵ(Z)

−
n
∑

i=1

ziW̃
T
i Si(Zi) +

n
∑

i=1

W̃T
i δiŴi. (49)
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Fig. 3: A two-link revolute joint robot: human partner is

holding the handle on its end-effector, and an interaction force

is applied to the force sensor.

We can obtain

V̇2 ≤ −zT (Kg −
1

2
In×n)z +

1

2
||ϵ(Z)||2

+

n
∑

i=1

δi
2
(||W ∗

i ||2 − ||W̃i||2)

≤ −ρV2 + C, (50)

where

ρ = min(min(
2ςmin(Kg − 1

2I)

ςmax(Mr(x))
,min(

δi

ςmax(Γ
−1
i )

)),

C =
1

2
||ϵ̄||2 +

n
∑

i=1

δi
2
||W ∗

i ||2. (51)

where ς denotes the eigenvalue of a matrix, ϵ̄ denotes the

bound of ϵ. For ensuring ρ > 0, we should make ςmin(Kg −
1
2I) > 0, ςmax(Γ

−1
i ) > 0.

Theorem 1: For each compact set Ω0, the initial conditions

z0 and Ŵ0 are in bounds, the controller (45) guarantees that

the closed-loop error signal z remains in the compact set Ωz ,

and the weight error W̃ remains in the compact set ΩW̃ , i.e.,

Ωz = {zϵRn| ||z|| ≤
√

D

ςmin(Mr(x))
}

ΩW = {W̃ ϵRl×n| ||W̃ || ≤
√

D

ςmin(Γ−1)
}, (52)

where D = 2(V2(0) + C)/ρ with positive constants C and ρ
is given in (51).

V. SIMULATION

In this section, we consider a scenario where a human

partner is holding hand grasp on robotic end-effector with a

force sensor. A two-link revolute joint robot shown in Fig. 3

is considered and an interaction force is applied to the end-

effector by the human partner.

In Fig. 3, m1, m2 and l1, l2 denote the mass and length of

link 1, 2, respectively. lc1, lc2 denotes the distance from joint 1,

2 to the mass center of link 1, 2, and I1, I2 denotes the moment

of Inertia of link 1, 2. The simulation parameter values

are chosen as: m1=2.0kg, m2=0.85kg, l1=1.40m, l2=1.24m,

lc1=0.70m, lc2=0.62m, I1=0.980kgm2, I2=0.953kgm2.

In simulations, robot’s dynamic model parameter matrices

M(q), C(q, q̇), G(q) in the joint space in (1) can be calculated

as

M(q) =

[

mt1 mt2

mt3 r(2)

]

(53)

C(q, q̇) =

[

ct1 ct2
ct3 0

]

(54)

G(q) =

[

gt1
gt2

]

, (55)

where mt1 = r(1) + r(2) + 2r(3)cos(q(3)), mt2 =
r(2) + r(3)cos(q(3)), mt3 = r(2) + r(3)cos(q(3)), ct1 =
−r(3)q(4)sin(q(3)), ct2 = −r(3)(q(2)+q(4))sin(q(3)), ct3 =
r(3)q(2)sin(q(3)), gt1 = r(4)gcos(q(1)) + r(5)gcos(q(1) +
q(3)), gt2 = r(5)gcos(q(1) + q(3)).

The system state variables q = [q(1); q(3)], q̇ = [q(2); q(4)],
q(1) and q(3) denote first and second joint angle, respectively,

q(2) and q(4) denote first and second joint angular velocity,

respectively. The variables r(1) = m1l
2
c1 +m2l

2
1 + I1, r(2) =

m2l
2
c2+I2, r(3) = m2l1lc2, r(4) = m1lc2+m2l1 and r(5) =

m2lc2. The Jacobian matrix in (1) can be obtained according

to l1, l2 and q as follow

J =

[

J11 J12
J21 J22

]

, (56)

where J11 = −l1sin(q(1)) − l2sin(q(1) + q(3)), J12 =
−l2sin(q(1) + q(3)), J21 = l1cos(q(1)) + l2cos(q(1) + q(3)),
J22 = l2cos(q(1) + q(3)).

If M(q), C(q, q), G(q) and J are obtained, we can calculate

robot’s dynamic parameter matrices in the Cartesian space

Mr(x), Cr(x, ẋ) and Gr(x) in (4).

We consider that a human partner applies interaction force

to the hand grasp on the end-effector from initial position

[0.85m, 1.05m] at the initial velocity [0m/s, 0m/s] to the target

position [0.75m, 0.75m].

A. The estimation of human stiffness and motion intention

We suppose that human’s real dynamic model in X-direction

can be described as fh1 = −300(x(1) − 0.75), where the

actual human stiffness in X-direction Kh1 = 300Nm, and

human motion intention in X-direction xd1 = 0.75m. We

use Bayesian method to estimate human stiffness Kh1 in X-

direction, and the same method is used for estimating Kh2 in

Y-direction. Firstly, we set a predictor probability distribution

of human stiffness parameter p(µ1) as follows

p(µ1) ∼ N(200, 102),

p(µ1) ∼ N(200, 152),

p(µ1) ∼ N(100, 102),

p(µ1) ∼ N(400, 102). (57)

In the random variable set κ1 that obeys the distribution

κ1 ∼ N(µ, 102), using the proposed method in Section III,

different predictor probability distributions of human stiffness

parameter Kh1 can be estimated as shown in Fig. 4(a). From
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Fig. 4: human stiffness estimation and standard deviation in

X-direction.
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Fig. 5: human motion intention estimation in X-direction.

this figure, we can conclude that Kh1 can be estimated with

different mathematical expectations or different variances of

p(µ1). In Fig. 4(b), we can see that by setting different stiffness

parameters 200N/m, 300N/m, 400N/m, respectively, Kh1

can be successfully estimated by our proposed method in

the same predictor probability distribution of human stiffness

parameter.

In Fig. 5(a), human motion intention estimation x̂d1 and

variance of x̂d1 have been obtained by dynamic relationship

between xd1 and Kh1. Different human motion intentions

have been set as 0.45m, 0.75m and 0.90m when p(µ1) ∼
N(200, 102). We can see that with the proposed method,

different human motion intention can be estimated.

B. Impedance control with neural networks

As discussed in Section II, we set the target impedance

model as a simplified spring model fr1 = −Kr1(x(1)−xd1),
fr2 = −Kr2(x(3) − xd2) for convenient analysis, where

Kr1 = K̂h1, xd1 = x̂h1, Kr2 = K̂h2, xd2 = x̂h2. We use

NN to compensate for uncertainties in control design. The

RBFNN centers are chosen in the region of [−1, 1]× [−1, 1]×
[−1, 1] × [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], the

number of NN nodes is chosen as 28, and the initial value of

NN weight is set as 0. Γ1 and Γ2 are selected as 100I, and

δi=0.002. And two important matrices A and B are calcu-

lated based on (29). In this human-robot interactive process,

human’s real model is described as fr1 = −300(x(1)−0.75),
fr2 = −300(x(3) − 0.75), human partner applies interaction

force fh = [fh1, fh2] to the hand grasp on the end-effector

from initial position [0.85m, 1.05m] at the initial velocity

[0m/s, 0m/s] to the target position [0.75m, 0.75m].
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Fig. 6: position and velocity value and error in X-direction.
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Fig. 7: position and velocity value and error in Y-direction.

Fig. 6(a) shows the position and the position error in X-

direction between x(1) and xd1, Fig. 6(b) shows the velocity

and velocity error in X-direction between x(2) and ẋd1. Note

that when there exists no interaction force, the position error

and velocity error will converge to zero according to the

dynamical relationship in (6). Fig. 7(a) and Fig. 7(b) show the

position and position error, the velocity and velocity error in

Y-direction, respectively. Fig. 8(a) shows the tracking perfor-

mance of velocity x(2) in X-direction, and Fig. 8(b) shows the

tracking performance of auxiliary variable z1 in X-direction.

We can conclude that under the proposed method, the error

signal ϖ converges to zero. Fig. 9 shows the interaction force

between human and object fr1 in X-direction.

VI. EXPERIMENT

In this section, we consider a scenario where an interaction

force is applied to the arm of a robotic manipulator by a human

partner. We use the S0 shoulder joint on the right arm of dual-
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Fig. 8: tracking performance in X-direction.
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Fig. 9: interaction force in X-direction.

Fig. 10: Baxterr robot experimental platform: there are two

computers and one Baxterr robot.

arm humanoid robot Baxterr in our experiment. A human

robot interactive experiment is developed to prove the validity

of our proposed control method.

A. Experiment settings

Baxterr robot has torque sensors in every joint of both two

arms. Angle, angle velocity and torque information can be read

from its dedicated controller. Seen from Fig. 10, there are two

(a) the experimental results of impedance control without estimation: seen
from A-a to A-e, a human partner operates the robot to the target position 1;
seen from A-f to A-j, the interaction torque disappears and the robot moves
back to the initial position.

(b) the experimental results of impedance control with human motion intention
estimation: seen from B-a to B-e, a human partner operates the robot to the
target position 1; seen from B-f to B-j, the interaction torque disappears and
the robot still remains in the current position.

Fig. 11: the experimental results.

(a) angle with a target angle of 0.2rad. (b) interaction torque with a target angle
of 0.2rad.

(c) angle with a target angle of 0.8rad. (d) interaction torque with a target angle
of 0.8rad.

Fig. 12: angle and interaction torque when human moves the

robot to 0.2rad and 0.8rad considering that the human motion

intention and stiffness estimation are not involved.

computers (A and B) for controlling robot and calculation in

this experiment. Computer A is used to calculate the neural

network compensation by Matlab Simulinkr and transform

the compensation value to the computer B by UDP. Computer

B is used to receive the robot state signals and generate control

signal to control the robot by Baxter Robot Operating System

SDK (RSDK) in Ubuntu 14.04 LTS. We rewrite the target

impedance model in joint space as τfr = KS0
(x − xd), and

we consider human impedance model in joint space as τfh =
Kh(x − xh). KS0

, Kh denote S0 and human joint stiffness

parameter, respectively and xh denotes the human target angle,

x denotes the current angle, and τfh denotes the interaction

torque.

B. Case 1. No estimation

In this part, we consider a scenario that a human partner

operates S0 shoulder joint of Baxterr robot’s right arm to the

human target angle. We design robot target impedance stiffness

parameter KS0
as 3Nm/rad, but different human target angles

xh: 0.2rad and 0.8rad. Fixed desired angle xd of robot is

considered in this experiment and the robot initial position

is set as 0rad. An interaction force is applied to the robot arm

from 3s to 13s. Seen from Fig. 11(a), the robot moves from

0rad to 0.5rad driven by human partner and back to 0rad under

the impedance control method. Fig. 12 shows that when KS0

is fixed, the interaction torques have proportional relationships

with the error between current angle x and desired angle xd.

Larger error between current position and xd will generate

greater interaction torque.
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(a) angle with a target angle of 0.2rad. (b) interaction torque with a target angle
of 0.2rad.

(c) angle with a target angle of 0.8rad. (d) interaction torque with a target angle
of 0.8rad.

Fig. 13: angle and interaction torque when human moves the

robot to 0.2rad and 0.8rad considering that the human motion

intention estimation is involved.

C. Case 2. Motion intention estimation

Motion intention estimation x̂d is involved in this part.

In Fig. 11(b), the robot moves from initial angle 0rad to

target angle of 0.5rad driven by human partner, an interaction

torque is applied to the robot arm from 3s to 8s, and the

robot will remain the current angle after 8s when motion

intention estimation based on Bayesian esitmated method is

involved. Fig. 13 shows relationships between the interaction

torques and x − xd when human moves robot to 0.2rad

and 0.8rad. As can be seen from Fig. 14(b) and 14(d), we

can conclude that the interaction torque under our proposed

method is smaller than the torque under impedance control

when motion intention estimation is not involved. And the

robot will remain in the position when interaction torque

disappears as can be seen Fig. 14(c). In this part, we also

utilize NN method to estimate human motion intention for

comparison with our proposed method. Indicated from Fig.

14(e), the convergence of NN estimation method is slower than

our proposed Bayesian estimation method. NNs rely on on-

line sensor information which will bring heavy computational

burden to influence convergence.

D. Case 3. Impedance estimation

In this part, the target angle impedance stiffness value is

set as 3Nm/rad and 15Nm/rad, respectively. The experiment

process is same as the process in Case 1. Indicated from Fig.

15, we can see the proportional relationships with K̂h and

interaction torque, i.e., larger stiffness will generate greater

interaction torque at the same angle displacement. We also

consider the human stiffness estimation based on Bayesian

(a) angle without human motion inten-
tion estimation.

(b) interaction torque without human
motion intention estimation.

(c) angle with Bayesian estimation
method.

(d) interaction torque with Bayesian es-
timation method.

(e) angle with NN estimation method. (f) interaction torque with NN estima-
tion method.

Fig. 14: angle and interaction torque when human moves the

robot to 0.5rad.

method in Fig. 16, from which we can conclude that the

joint stiffness can be estimated by our proposed method.

In Fig. 17, we set the predictor probability distribution of

joint stiffness parameter as p(µ) ∼ N(1, 0.12), N(5, 0.12),
respectively. Joint stiffness can be estimated successfully con-

sidering different probability distributions of human stiffness

parameter.

E. Case 4. Simultaneous estimations

In this part, we use Bayesian method to estimate joint

stiffness and human target angle simultaneously, where the

predictor probability distribution of stiffness parameter p(µ) is

set as p(µ) ∼ N(1, 0.12). The experiment process is divided

into two phases. In the first phase it is the same as the process

(S0 joint) in Case 2, where human partner moves the robot to

the target position 1. In the second phase, we utilize the joint

S1 to lift the robot to the target position 2. The mean and

standard deviation of the above measures are computed using

50 data points (10 human subjects × 5 repetitions). Each of

10 human subjects (P1, P2, ..., and P10) repeats the task for

5 times (T1, T2, T3, T4 and T5). Indicated from Fig. 18, we
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(a) angle when K=3Nm/rad. (b) interaction torque when K=3Nm/rad.

(c) angle with when K=15Nm/rad. (d) interaction torque when
K=15Nm/rad.

Fig. 15: angle and interaction torque when K=3Nm/rad, 15N-

m/rad, respectively.

(a) angle when K is estimated. (b) interaction torque when K is estimat-
ed.

(c) K estimation.

Fig. 16: angle, interaction torque and stiffness estimation when

K is estimated.

(a) angle when predictor probability dis-
tribution p(µ) ∼ N(1, 0.12).

(b) angle when predictor probability dis-
tribution p(µ) ∼ N(5, 0.12).

(c) interaction torque when predic-
tor probability distribution p(µ) ∼

N(1, 0.12).

(d) interaction torque when predic-
tor probability distribution p(µ) ∼

N(5, 0.12).

(e) estimated stiffness when predic-
tor probability distribution p(µ) ∼

N(1, 0.12).

(f) estimated stiffness when predic-
tor probability distribution p(µ) ∼

N(5, 0.12).

Fig. 17: angle, interaction torque and estimated stiff-

ness when predictor probability distribution p(µ) ∼
N(1, 0.12), N(5, 0.12), respectively.

can see that both human motion intention and joint stiffness

can be estimated successfully, which show the robustness

of the proposed method. We provide statistical analysis of

estimated stiffness of one human subject for 5 repetitions

when interacting with the robot’s S0 and S1 joints. Indicated

from Figs. 18(b) and 18(d), we can see that all estimated

stiffness parameters converge to a constant value. Table 1

shows that the convergence values are ”8.78± 0.13Nm/rad”

and ”9.33 ± 0.11Nm/rad” in S0 and S1 joints, respectively.

In Table 2, we can find that the stiffness of 10 human subjects

can be estimated successfully, and all estimated parameters

converge to constant values in reasonable times.

And the experimental results in a 7-degree-of-freedom are

shown in Fig. 19, the proposed controller and Bayesian

estimation method are utilized in this task. Experiment results

on a Baxterr robot platform illustrate good performance.
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TABLE I: estimated stiffness value for human subject P1 when

interacting with robotic joints S0 and S1 for 5 repetitions (T1-

T5).

repetition S0 value (Nm/rad) S1 value (Nm/rad)

T1 8.67 9.33

T2 8.71 9.21

T3 8.78 9.19

T4 9.02 9.46

T5 8.70 9.45

mean 8.78 9.33

standard deviation 0.13 0.11

TABLE II: convergence mean time (within the 10 percent

range of convergence value) and stiffness value when human

subjects (P1-P10) interacting with robotic joint S0.

human subject mean time (s) stiffness (Nm/rad)

P1 15.10 8.78± 0.13
P2 6.28 6.47± 0.16
P3 7.50 10.19± 0.23
P4 11.25 13.23± 0.26
P5 5.25 5.78± 0.14
P6 4.50 7.92± 0.21
P7 10.25 15.32± 0.26
P8 9.75 8.32± 0.12
P9 5.75 9.93± 0.20
P10 6.08 7.28± 0.18

(a) interaction torques in joint S0. (b) estimated stiffness in joint S0.

(c) interaction torques in joint S1. (d) estimated stiffness in joint S1.

Fig. 18: interaction torque and estimated stiffness when human

subject P1 interacting with robotic joint S0 and S1 for 5

repetitions when predictor probability distribution p(µ) ∼
N(1, 0.12).

Fig. 19: 7-degree-of-freedom experiment.

VII. CONCLUSION

In this paper, a Bayesian method has been proposed to

estimate human impedance and motion intention in a human-

robot collaborative task. Estimated stiffness obeying Gaussian

distribution has been obtained by Bayesian estimation com-

bining with prior knowledge of human stiffness. According

to the dynamic relationship, human motion intention can

be also estimated. NNs have been used to compensate for

uncertainties in robotic dynamics and an adaptive impedance

control strategy has been employed to track a target impedance

model. Comparative simulation and experimental results have

been carried out to verify advantages of the proposed control

strategy and the effectiveness of estimation method.
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