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Bayesian Estimation of Intensity Surfaces on

the Sphere via Needlet Shrinkage and Selection

James G. Scott∗

Abstract. This paper describes an approach for Bayesian modeling in spherical
data sets. Our method is based upon a recent construction called the needlet,
which is a particular form of spherical wavelet with many favorable statistical
and computational properties. We perform shrinkage and selection of needlet
coefficients, focusing on two main alternatives: empirical-Bayes thresholding, and
Bayesian local shrinkage rules. We study the performance of the proposed method-
ology both on simulated data and on two real data sets: one involving the cosmic
microwave background radiation, and one involving the reconstruction of a global
news intensity surface inferred from published Reuters articles in August, 1996.
The fully Bayesian approach based on robust, sparse shrinkage priors seems to
outperform other alternatives.
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1 Introduction

Wavelets are one of the most widely used tools in modern statistics. They have many
useful properties that make them appropriate for multiscale analysis and signal pro-
cessing, and they have also seen broad application in a variety of other contexts, from
computer vision to nonparametric function estimation.

The goal of this paper is to explore a set of tools for robust Bayesian modeling on the
sphere using needlets, which are a generalization of wavelets to the unit sphere. Spher-
ical data sets arise in astrophysics, cell biology, ecology, geophysical science, medical
imaging, and three-dimensional shape recognition. A particularly important applica-
tion occurs in the analysis of data from NASA’s Wilkinson Microwave Anisotropy Probe,
whose goal is to investigate the character of the cosmic microwave background (CMB)
radiation. Section 4.2 contains an application of Bayesian needlet modeling to a publicly
available CMB data set.

Needlets, which were introduced to the mathematical community by Narcowich et al.
(2006), have many of the same advantages over spherical harmonics that wavelets enjoy
over conventional Fourier series. Like spherical harmonics, needlets have bounded sup-
port in the frequency domain. Unlike spherical harmonics, however, needlets also have
highly localized support in the spatial domain, decaying quasi-exponentially fast away
from their global maximum. As a result, they can easily and parsimoniously represent
random fields over the sphere that exhibit sharp local peaks or valleys.
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These features are shared by other forms of spherical wavelets. Needlets, however,
have some uniquely advantageous statistical and computational properties. First, a re-
cent result from Baldi et al. (2009b) shows that needlets separated by a fixed geodesic
distance have coefficients that are asymptotically uncorrelated, and therefore indepen-
dent under the assumption of Gaussianity, as resolution increases. This result implies
that needlets make an excellent choice of basis for statistical estimation of intensity sur-
faces on the sphere. The usual practice in wavelet shrinkage, after all, involves treating
empirical wavelet coefficients as though they were observed data arising from a statis-
tical error model, rather than treating the wavelet basis elements themselves as inputs
to a regression problem. (See, for example, Clyde and George (2000).) This is sensible
because wavelets, unlike needlets, are orthogonal. But the above result, while asymp-
totic in character, can be thought of as a loose justification for approaching needlet
shrinkage in much the same way—in essence, to place the likelihood in the multipole
domain, rather than the spatial domain.

This assumption is highly nontrivial, since there is undoubtedly overlap in the needlet
kernels themselves. But it greatly simplifies matters computationally. In particular, it
avoids the difficulty of working with the large matrices that would otherwise be needed
in order to represent the needlet basis elements, which are not orthogonal. For further
discussion of the issues of asymptotic uncorrelation and coefficient dependence structure
in the context of needlet analysis, see Mayeli (2010) and Lan and Marinucci (2009).

A second useful feature of needlets is that the same batch of needlet functions appears
in both the forward and reverse needlet transform. This computationally attractive
property is surprisingly nontrivial to ensure. It results from the careful mathematical
construction of a “window function” used to define needlets, and is not shared by other
commonly used forms of spherical wavelets.

Further investigations of the theoretical properties of needlets can be found in Baldi
et al. (2009c) and Baldi et al. (2009a). An application of needlets to CMB data analysis
appears in Marinucci et al. (2008), while a Bayesian treatment of other kinds of spherical
wavelets for shape recognition is in Faucheur et al. (2007).

This paper makes the following contributions to this very recent literature:

1. We describe a Bayesian modeling approach for robust shrinkage and selection of
needlet coefficients. This method is derived from the horseshoe prior of Carvalho
et al. (2010), and differs both from existing needlet methods based on thresholding,
and from existing Bayesian methods for conventional wavelets.

2. We propose two algorithms for fitting models of this form, which are of general
utility in Bayes-type shrinkage rules.

3. We investigate the need to properly scale the empirical needlet coefficients before
any shrinkage procedure is applied, which can dramatically affect performance.

4. We study the problem of sparsity in the multipole domain.
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2 Spherical Needlets

2.1 The mathematical construction

The following construction of needlets is due to Narcowich et al. (2006), and reflects the
same normalization described by Baldi et al. (2009b). Needlets are based on two com-
plementary ideas familiar from conventional wavelets: the discretization of the sphere
into successively finer meshes of basis elements, and the construction of a “window”
operator whose convolution with a periodic function can yield spatial localization.

Let S
2 denote the unit sphere, with coordinates indexed by longitude φ and latitude

θ. Suppose we have pixelized the sphere using a mesh Ξj = {ξjk}Mj

k=1
, where ξjk is the

kth pixel center at resolution level j. Associated with each point ξjk is a weight λjk,
chosen so that functions f over the sphere can be integrated using the cubature formula

∫

S2

f(x) dx ≈
Mj∑

k=1

λjk f(ξjk) .

In practice, the pixels are often chosen to have equal areas, in which case λjk = 4π/Mj

(recalling that the sphere has total Lebesgue measure 4π).

Let {Y m
l (x) : l ≥ 0,−l ≤ m ≤ l} be the set of orthonormal spherical harmonics,

and let αm
l be their associated coefficients, so that any L2 function on the sphere can

be expanded as

f(x) =

∞∑

l=0

l∑

m=−l

αm
l Y m

l (x) (1)

αm
l =

∫

S2

f(x) Y
m

l (x) dx , (2)

where Y denotes complex conjugation.

The spherical needlet function centered at the cubature point ξjk is then defined,
for some fixed bandwidth parameter δ > 1, as

ψjk(x) =
√
λjk

⌈δj+1⌉∑

l=⌊δj−1⌋

bδ

(
l

δj

) l∑

m=−l

Y
m

l (x) Y m
l (ξjk) , (3)

where ⌊·⌋ and ⌈·⌉ denote the floor and ceiling operators, respectively.

The function bδ, meanwhile, is defined by a Littlewood–Paley decomposition. Let
µ be an even function that has continuous derivatives of all orders, that has support
on [−1, 1], that is nonincreasing away from zero, and that takes values on [0, 1], with
µ(x) = 1 whenever |x| ≤ δ−1. Then define:

bδ(x) =
√
µ(x/δ) − µ(x) .
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Figure 1: Top: spherical harmonic for l = 5, m = 2. Bottom: a needlet centered at
(θ = π/3, φ = −π/6) with j = 2 and B = 2. The sphere has been projected to R

2 using
the Mollweide projection.

The map of interest, f , is then reconstructed using the needlet expansion as an
alternative to the harmonic expansion in (1):

f(x) =
∑

j

Mj∑

k=1

βjk ψjk(x) . (4)

The coefficients βjk are given by

βjk =
√
λjk

⌈δj+1⌉∑

l=⌊δj−1⌋

bδ

(
l

δj

) l∑

m=−l

αm
l Y m

l (ξjk) . (5)

This reconstruction formula appears simple on its face, and indeed is quite straight-
forward to implement in practice. It is, however, a profound consequence of the carefully
chosen properties required of bδ. Intuitively, bδ operates as a “window” function, one
that is convolved with the spherical harmonics across a bounded set of frequencies
l = ⌊δj−1⌋, . . . , ⌈δj+1⌉ to produce a needlet. (The authors of Marinucci et al. (2008)
show how an example of such a µ can be explicitly defined using elementary functions,
though any µ satisfying the Littlewood–Paley construction will suffice.) Figure 1 shows
examples of a single spherical harmonic and a single needlet projected onto the plane.
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2.2 Constructing random fields using needlets

Suppose that we wish to estimate a random field f over the sphere on the basis of a
noisy realization y(x) for x = {xi = (θi, φi)}N

i=1. The needlet estimation procedure
begins by reconstructing the set of empirical harmonic coefficients via cubature, up to
some maximum resolution ℓmax:

α̂m
l =

N∑

i=1

wi y(xi) Y
m

l (xi) ,

with wi an appropriate cubature weight reflecting the surface area associated with pixel
xi. Once the meshes Ξj are chosen, the needlet coefficients β̂jk are then computed by
plugging the harmonic coefficients α̂m

l into (5), yielding

f̂Q =
∑

j

Mj∑

k=1

β̂jkψjk .

The focus of this paper is on improving the straight cubature estimator through
shrinkage and selection of the empirical needlet coefficients β̂jk. The quality of the
resulting reconstruction can be measured by standard loss functions, either in the spatial
domain or the needlet domain. This paper will use quadratic loss,

ℓ2(f, f̂) =

N∑

i=1

{f(xi) − f̂(xi)}2 and ℓ2(β, β̂) =
∑

j

Mj∑

k=1

(βjk − β̂jk)2 ,

though other loss functions involving functions of the β̂jk’s, such as those for the angular
power spectrum of f , are easy to use as well.

2.3 Heteroskedasticity in the multipole domain likelihood

Statistical learning of needlet coefficients must confront the issue of scaling, which can
dramatically affect the performance of any shrinkage procedure. Essentially, there is a
factor of λjk that must appear in the product of the needlet coefficient and the needlet
function in order for the reconstruction in (4) to be valid. This factor is a cubature
weight associated with each basis element, thereby ensuring that the total surface area
of the sphere normalizes to 4π.

But from a pure estimation standpoint, it is not obvious how much of this factor
to attribute to the function ψjk, and how much to the coefficient βjk, since only the
product of these two quantities is statistically identifiable. A similar issue appears in
wavelet shrinkage; see, for example, Vidakovic and Müller (1999). In needlet modeling,
however, the scale is much harder to determine, because needlets are not constructed
in the same “dilate and shift” manner as wavelets. This operation creates a natural
hierarchy of scales, and therefore a natural set of variances associated with each term
in the wavelet-domain likelihood.
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It is therefore important to account for heteroskedasticity in the multipole domain
(the βjk’s), where the likelihood is defined. The authors of Marinucci et al. (2008)
observe that the normalization of βjk by

√
λjk in (5) is the correct constant for re-

constructing the properly normalized angular power spectrum of f . Unfortunately, it
is not clear that this scale is also appropriate for performing statistical estimation and
thresholding of the βjk’s. The issue is that the coefficients normalized according to (5)
cannot be treated as though they are on the same scale. Nor is it appropriate to simply
rescale each Mj-sized block of coefficients associated with resolution-level j to have unit
variance. The spatially localized behavior of needlets, after all, means that the average
needlet loading at level j + 1 should be smaller than at level j, even accounting for dif-
ferences of scale introduced by (5). It is unclear whether the correct rate of this decay,
however, is the simple

√
1/Mj rate.

From a statistical-modeling point of view, a better normalization seems to be

β̃jk = (λjk)−1/2 η−1

j β̂jk (6)

ηj =

⌈δj+1⌉∑

l=⌊δj−1⌋

(2l + 1) .

The intuition here is the following. After the original normalization by
√
λjk is un-

done, the factor ηj simply renormalizes by the number of random terms in the sum that

contribute to β̂jk at level j. These terms are on a unit scale due to the orthonormality
of the Y m

l ’s, and so each one represents, in some sense, an independent random contri-

bution to β̂jk. This suggests that all terms be rescaled by η−1

j rather than
√
λjk. The

“natural” rate of decay in scale as a function of j will then be encoded by the window
function bδ. This is the scale, therefore, that will be adopted throughout the rest of
the paper, though it remains an open question whether there is any more fundamental
sense in which (6) gives the correct scaling.

An important caveat here is that we are essentially describing a pre-processing step
that ensures the assumption of a homoskedastic likelihood is statistically sensible. This
pre-processing generates a set of rescaled needlet coefficients, to which a shrinkage pro-
cedure can then be applied. This re-scaling can then be reversed easily prior to applying
the reverse needlet transform, which is needed to reconstruct the function. This is an
important point, since the standard normalization of needlet coefficients ensures some
important mathematical features of the resulting random field (most especially, finite
variance). We do not propose that this fundamental scale of normalization be modified,
except merely as an intermediate and easily undone step prior to the application of a
thresholding or shinkage rule.
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3 Statistical Modeling of Needlet Coefficients

3.1 Benchmark thresholding procedure

The existing literature on needlets focuses chiefly on estimating random fields using
the empirical coefficients from the discrete wavelet transform (see the introduction for
references to much of this literature). Yet there is a large body of complementary
work on wavelets suggesting that shrinkage or thresholding of empirical coefficients can
offer substantial gains in performance. We now demonstrate that the same is true of
needlets. Moreover, the potential gains on realistic problems can often be dramatic,
while the computational costs are quite low. This fact should be of great interest to
practitioners who work with random fields on the sphere, such as the WMAP data
considered in the next section.

Let β̃j be the vector of Mj needlet coefficients for level j, and stack these rescaled

coefficients into a single p-dimensional column vector z = (β̃1, . . . , β̃jmax
)′. We will treat

the vector z as raw data observed with Gaussian error, z ∼ N(β, σ2I). This assumption
of homoskedasticity in the multipole domain is only reasonable if careful attention is
paid to the proper scaling of the empirical needlet coefficients.

As a benchmark procedure, we use the empirical-Bayes thresholding rule from John-
stone and Silverman (2004). Their recommended model can be expressed as

βi ∼ w · DE(βi | 0, 1) + (1 − w) · δ0 ,

a discrete mixture of a standard double-exponential prior and a point mass at zero,
where the mixing weight w ∈ [0, 1] is unknown and estimated by marginal maximum
likelihood. The coefficients βi are then estimated by the posterior median, which is a
“soft” thresholding rule and will zero out any coefficients whose posterior probability of
being zero is greater than 50%.

Johnstone and Silverman (2004) demonstrate that this highly adaptive estimator
does very well at reconstructing sparse signals, proving that it achieves “near minimax-
ity” across a wide range of sparsity classes. These theoretical results, coupled with the
estimator’s impressive performance on a wide variety of real and realistic data sets,
make it an excellent benchmark for the Bayesian needlet shrinkage procedure proposed
here.

3.2 Shrinkage with the horseshoe prior

We now develop a Bayesian approach for estimating the needlet coefficients based on
the horseshoe estimator of Carvalho et al. (2010).

Specifically, we reconstruct the underlying coefficients β = (β1, . . . , βp) using the
posterior mean under the horseshoe prior. The horseshoe prior assumes that each βi
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Figure 2: The horseshoe prior and two common priors: Normal and Cauchy.

has density πHS(βi | τ), with πHS expressible as a scale mixture of normals:

(βi|λi, τ) ∼ N(0, λ2
i τ

2σ2) (7)

λi ∼ C+(0, 1)

τ ∼ C+(0, 1) ,

where C+(0, 1) is a half-Cauchy distribution.

Figure 2 plots the densities of the horseshoe, Cauchy and standard normal priors.
The horseshoe density πHS(βi|τ) has no closed-form representation, but it obeys very
tight upper and lower bounds that are expressible in terms of elementary functions, as
detailed in Theorem 1 of Carvalho et al. (2010). Essentially, it behaves like πHS(β) ≈
log(1+1/β2) (up to a constant). The distribution is absolutely continuous with respect
to Lebesgue measure, while the density function has an infinitely tall spike at zero and
heavy tails that decay like β−2.

The horseshoe prior is in the well-studied family of multivariate scale mixtures of
normals. Examples of this family are both common and quite familiar. Choosing λ2

i ∼
Exp(2), for instance, implies independent double-exponential priors for each βi; inverse-
gamma mixing, with λ2

i ∼ IG(a, b), leads to Student-t priors. The former represents
the underlying stochastic model for the LASSO of Tibshirani (1996), while the latter is
associated with the relevance vector machine (RVM) of Tipping (2001).

The authors in Carvalho et al. (2009) study the horseshoe prior in traditional prob-
lems of regression and function estimation, and find that it has a number of advantages
over common alternatives:



J. G. Scott 315

❼ It is highly adaptive to different patterns of sparsity. Similar concerns are iden-
tified by Scott and Berger (2006); these concerns about multiplicity arise when
basis elements are tested indiscriminately, and the fact that they are handled
automatically through data-based adaptation of τ is a big advantage.

❼ It is tail-robust, in the sense that large deviations from zero will remain unshrunk
regardless of how small τ is estimated to be by the data.

❼ It is highly computationally efficient, since the prior admits closed-form expres-
sions for posterior moments when τ is fixed.

❼ It performs very similarly to the gold standard of Bayesian model averaging over
different combinations of βi being in or out of the model. It does so, however,
while avoiding the computational difficulties associated with calculating marginal
likelihoods and exploring an enormous discrete model space.

❼ It is proper, and therefore ensures a proper posterior.

One approach that resembles the horseshoe is the normal–Jeffreys prior used by
Figueiredo (2003) and Bae and Mallick (2004), where each local variance term has
the improper Jeffreys prior, π(λi) ∝ 1/λi. The normal–Jeffreys mixture is the improper
limit of a proper Beta(ǫ, ǫ) prior for κi as ǫ→ 0, and therefore also produces a horseshoe-
like shape for π(κi). But this prior leads to an improper joint posterior for β, meaning
that the posterior mean—the Bayes estimator under quadratric loss—is undefined. It
also does not allow adaptivity through the global parameter τ , since it is explicitly
constructed to be free of hyperparameters. This additional aspect of “global shrinkage”
distinguishes the horseshoe estimator from the approaches described in Tipping (2001)
and Figueiredo (2003).

3.3 The score function and overshrinkage of exceptional observations

This section summarizes the theoretical argument as to why priors of the form described
above exhibit the desirable property of “Bayesian robustness.” We recall the following
theorem from Carvalho et al. (2010).

Theorem 3. Let p(|y − β|) be the likelihood, and suppose that p(β) is a mean-zero

scale mixture of normals: (β | λ) ∼ N(0, λ2), with λ having proper prior p(λ). Assume

further that the likelihood and p(β) are such that the marginal density m(y) <∞ for all

y. Define the following three pseudo-densities, which may be improper:

m⋆(y) =

∫

R

p(|y − β|) p⋆(β) dβ ,

p⋆(β) =

∫

R+

p(β | λ) p⋆(λ) dλ ,

p⋆(λ) = λ2p(λ) .
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Then

E(β | y) =
m⋆(y)

m(y)

d

dy
logm⋆(y)

=
1

m(y)

d

dy
m⋆(y) . (8)

Versions of this representation theorem appear in Masreliez (1975), Polson (1991),
and Pericchi and Smith (1992). Theorem 3 relaxes a specific regularity condition having
to do with the boundedness of p(β), and extends the usual result to situations where
p(β) is a scale mixture of normals with proper mixing density and finite marginal m(y).

The theorem characterizes the behavior of an estimator in the presence of large sig-
nals. Specifically, it says that we can achieve inherent Bayesian robustness by choosing a
prior for β such that the derivative of the log predictive density is bounded as a function
of y. Ideally, of course, this bound should converge to 0 for large |y|, and will lead to
E(β | y) ≈ y for large |y|. This will avoid the overshrinkage of exceptional observations,
such as those that might arise from the highly localized character of the functions which
needlet expansions are designed to describe.

The following result demonstrates that the horseshoe prior is a member of a broader
class of priors with redescending score functions, and is therefore tail robust. It is a
broader result than Theorem 3 of Carvalho et al. (2010), in that it explicitly characterizes
the tail weight of the marginal density in terms of the tail weight of the prior for the
variance λ2.

Theorem 4. Suppose that (y | β) ∼ N(β, 1), and that the prior for β is a scale mixture:

π(β) =
∫

N(β | 0, λ2)π(λ2)dλ2. Suppose that π(λ2) is of asymptotic order (λ2)a−1 as

λ2 → ∞. Then as y → ∞, the predictive density m(y) =
∫

N(y | β, 1)π(β)dβ) is of

asymptotic order (a− 1)/y.

Proof

Write the likelihood as (y | z) ∼ N(0, z), where z = 1 + λ2 with induced prior π(z).
If π(λ2) satisfies the tail condition of the theorem, then clearly so will π(z):

π(z) = Cza−1 as z → ∞ ,

for some constant C. The marginal likelihood is therefore also a scale mixture of normals,

m(y) =

∫ ∞

1

1√
2πz

e−
y2

2z π(z)dz .

Following Theorem 6.1 of Barndorff-Nielsen et al. (1982), this expression’s asymptotic
order can be related to the tail weight of π(z), and will simply be |y|2a−1 as |y| → ∞.
The form of the score function then follows.

The immediate corollary is that any scale-mixture prior where p(λ2) has polynomial
tails leads to a redescending score function.
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3.4 Model fitting

Two computational strategies for fitting this model are available: importance sampling
and a hybrid slice-sampling/Gibbs sampling approach. The first approach has the ad-
vantage that posterior moments can be computed without having to worry about poten-
tial MCMC convergence issues. The second has the advantage that it generates draws
from the full posterior distribution of all model parameters, and so allows straightfor-
ward assessments of uncertainty with respect to features of the underlying random field.
In practice, we have found that the proposed slice-sampler provides stable results with
no readily apparent MCMC convergence problems, and this is the algorithm we have
used to compute the results of the next section. Throughout, we use Jeffreys’ prior for
the sampling variance σ2.

Importance sampling

Given the global scale parameter τ , the posterior moments for βi under the horseshoe
prior can be expressed in terms of hypergeometric functions. After a change of variables
to κi = 1/(1 + λ2

i ) and some straightforward algebra, the posterior mean is

E(βi | zi, τ) =

{
1 − 2

3

Φ1(1/2, 1, 5/2, z
2
i /2σ

2, 1 − 1/τ2)

Φ1(1/2, 1, 3/2, z2
i /2σ

2, 1 − 1/τ2)

}
zi ,

where Φ1 is the degenerate hypergeometric function of two variables (Gradshteyn and
Ryzhik 1965, 9.261). And by the law of total variance,

Var(βi | zi, τ) = E{Var(θi | zi, λ
2
i , τ)} + Var{E(θi | zi, λ

2
i , τ)} (9)

= σ2

{
1 − 2

3

Φ1(1/2, 1, 5/2, z
2
i /2σ

2, 1 − 1/τ2)

Φ1(1/2, 1, 3/2, z2
i /2σ

2, 1 − 1/τ2)

}

+ z2
i

8

15

Φ1(1/2, 1, 7/2, z
2
i /2σ

2, 1 − 1/τ2)

Φ1(1/2, 1, 3/2, z2
i /2σ

2, 1 − 1/τ2)
,

with all other posterior moments for θi following similar expressions. See Gordy (1998)
for details of computations involving the Φ1 function.

The computation of posterior means and variances of the needlet coefficients under
the horseshoe prior can therefore be reduced to a simple one-dimensional integral. Im-
portance sampling is a natural approach. This requires one final ingredient, namely the
marginal density of the data z given τ . Luckily this is readily computed:

p(z | τ) =

n∏

i=1

1√
2πσ2

exp

(
− z2

i

2σ2

)
Be(1, 1/2)

Be(1/2, 1/2)

Φ1(1/2, 1, 3/2, z
2
i /2σ

2, 1 − 1/τ2)

Φ1(1/2, 1, 1, 0, 1 − 1/τ2)
.

(10)

After making the transformation ξ = log τ to remove the domain restriction, the
marginal posterior for ξ is

p(z) =

∫
p(z | ξ) 2eξ

π(1 + e2ξ)
dξ ,
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recalling that a half-Cauchy prior has been assumed for τ .

Importance sampling proceeds by first computing ξ̂ and ŝ2ξ , the posterior mode and
inverse second derivative at the mode, using a numerical optimization routine. Then a
Student-t distribution with 4 degrees of freedom, centered at ξ̂ and with scale parameter
aŝξ, is used to generate proposals ξm=1, . . . , ξm=T . Here a is a tuning parameter used to
control the scale of the proposal distribution. In repeated applications of the method,
values of a ≈ 3 generally provided sufficient coverage of the posterior distribution so
that no small group of importance weights dominated the calculation.

Posterior moments are then estimated as

ĥ ≈ 1

T

T∑

m=1

h(ξm) · p(z | ξm) π(ξm)

t3(ξm | ξ̂, ŝξ)
,

where h is the posterior quantity of interest, such as a mean or a variance.

This approach is appealing in that the same set of importance samples can be used
for computing the posterior means and variances for all empirical needlet coefficients in
parallel. This greatly streamlines the computation. One difficulty that sometimes arises
is that, for extreme values of ξ = log τ , the Φ1 function may become slow to evaluate.
The issue seems to be particularly acute when τ is very close to zero. This difficulty
can be alleviated, however, using the approximations to hypergeometric functions to be
found in Butler and Wood (2002).

We have sketched out the approach for the case of unknown τ , but typically σ2

(which represents “noise variance” in the multipole domain) is also unknown. The
method given above is easily modified to incorporate a bivariate importance function in
ξ and φ = log σ2. In this case, a multivariate-t or other similarly heavy-tailed density can
be used as a proposal distribution for the importance sampler, with the inverse Hessian
matrix at the mode specifying the covariance structure. This can be implemented
using a package routine for numerical optimization that is capable of returning gradient
information.

Markov-chain Monte Carlo

As a second option, Markov-chain Monte Carlo may be used to generate draws from
the full joint posterior distribution of all model parameters. Simple Gibbs updates are
available for the global variance components σ2 and τ2, and are discussed in Gelman
(2006). Also, it is clear that (βi | τ, λi, zi) ∼ N(m,V ), where

V = σ2

{
τ2λ2

i

1 + τ2λ2
i

}

m = V zi/σ
2 .

The chief difficulty is in efficiently sampling the local variance components λ2
i , given

all other model parameters. We use the following slice-sampling approach, adapting an
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algorithm described by Damien et al. (1999). Define ηi = 1/λ2
i , and define µi = βi/(στ).

Then the conditional posterior distribution of ηi, given all other model parameters, is

p(ηi | τ, σ, µi) ∝ exp

{
−µ

2
i

2
ηi

}
1

1 + ηi
.

Therefore, the following two steps are sufficient to sample λi:

1. Sample (ui | ηi) uniformly on the interval (0, 1/(1 + ηi).

2. Sample (ηi | µi, ui) ∼ Exp(2/µ2
i ) from an exponential density, truncated to have

zero probability outside the interval [0, (1 − ui)/ui].

Transforming back to the λ-scale will yield a draw from the desired conditional dis-
tribution. Ergodic averages of the draws for βi are then used to estimate posterior
means.

4 Performance on benchmark examples

4.1 Simulated data

The above features make the horseshoe estimator an attractive choice for de-noising
empirical needlet coefficients. We now describe a set of experiments that benchmark
its performance on simulated data spanning a range of different sparsity patterns in
the needlet domain. It should be emphasized that the goal here is not merely the
reconstruction of isotropic random fields, which has been the focus in much of the
previous literature. Rather, we are interested in the use of needlets as a set of basis
functions for reconstructing any form of spatial intensity surface on the sphere, where
only noisy observations are available.

First, we pixelized the sphere into 768 equal-area pixels with pixel centers xi where
observations yi will be located. We then chose needlet meshes Ξj for j = 0, . . . , 4 of
sizes Mj = (12, 48, 192, 768, 3072), following NASA’s standard hierarchical equal-area
pixelization scheme for CMB data. The coefficients βjk were simulated according to

βjk ∼ w · t1.5

(√
9/Mj

)
+ (1 − w)δ0 ,

a sparse mixture of a point mass at zero and a Student-t density with 1.5 degrees of
freedom and scale parameter

√
9/Mj , which puts the coefficients on the same scale

as (5). The mixing ratio w encodes the signal density in the needlet domain. The
target random field at points xi was then calculated as f(xi) =

∑
j

∑
k βjkψjk(xi), and

yi = f(xi) + ǫi for ǫi ∼ N(0, σ2), σ2 = 9.

The simulated observations y(xi) were then used to reconstruct f using five alter-
natives:
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Table 1: Simulated data. Sum of squared errors in reconstructing the needlet coeffi-
cients, ℓ2(β, β̂), and average squared error per pixel in reconstructing the true random

field, ℓ2(f, f̂)/N , for the five different procedures. The different values of w reflect the
different sparsity patterns studied.

w = 0.25 w = 0.50 w = 0.75

Procedure ℓ2(β, β̂) ℓ2(f, f̂)/N ℓ2(β, β̂) ℓ2(f, f̂)/N ℓ2(β, β̂) ℓ2(f, f̂)/N

Straight needlet estimator 629 6.7 1682 7.4 1723 7.3
E-Bayes threshold 545 1.7 1596 3.0 1635 3.9
Horseshoe estimator 555 1.9 1610 3.1 1650 3.6
Thresholded horseshoe 563 1.7 1768 3.9 1661 3.6

Harmonic estimator — 21.0 — 26.0 — 26.2

1. The straight harmonic estimator in (1) using cubature-based estimates α̂m
l .

2. The straight needlet estimator using the α̂m
l ’s plugged into (4).

3. The empirical-Bayes thresholding procedure described in Johnstone and Silverman
(2004), which uses a mixture of a Laplace prior and a point mass at zero to model

the rescaled coefficients β̃jk.

4. The horseshoe estimator on the β̃jk’s, as described in the previous section.

5. The horseshoe estimator as above, but with the result thresholded to zero if the
posterior mean of the shrinkage coefficient κi is larger than 0.5 (which is highly
suggestive of noise).

Procedure 3, the empirical-Bayes thresholding estimator, makes for a state-of-the-
art benchmark. While this procedure has not previously been applied in the needlet
literature, it has been used with great success for shrinkage and selection of conventional
wavelets. Indeed, a similar procedure was shown by Johnstone and Silverman (2005)
to have many of the same properties of the horseshoe estimator for wavelet denoising,
namely robustness and adaptivity to a wide range of sparsity patterns.

Table 1 shows these results on 100 simulated data sets for each of three different
sparsity patterns.

4.2 Reconstruction of Noisy CMB Radiation Data

For a second experiment, we used publicly available temperature data on the cosmic
microwave background radiation collected by NASA’s Wilkinson Microwave Anisotropy
Probe.1 The full data set maps temperature at over 3 million pixels covering the entire

1http://lambda.gsfc.nasa.gov
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Table 2: Real data. Sum of squared errors in reconstructing the needlet coefficients,
ℓ2(β, β̂), and average squared error per pixel in reconstructing the true CMB tempera-

ture map, ℓ2(f, f̂)/N , for the four different procedures. The two values of σ reflect the
two signal-to-noise ratios studied.

σ = 2 σ = 4

Procedure ℓ2(β, β̂) ℓ2(f, f̂)/N ℓ2(β, β̂) ℓ2(f, f̂)/N

Straight needlet estimator 40 3.4 157 12.1
E-Bayes threshold 64 5.0 91 6.7
Horseshoe estimator 31 2.8 76 6.0

Harmonic estimator — 11.0 — 37.9

sky. For the purpose of testing different methods for needlet shrinkage, we constructed
a reduced data set of 3072 equal-area pixels, each of which encodes the average temper-
ature for an area comprising 1024 nearby pixels from the full data set. A heatmap of
this data is in Figure 3.

We used this temperature map as the true f , and its corresponding discrete needlet
transform as the true set of βjk’s. We then simulated 50 noisy data sets for two different
signal-to-noise ratios. This was done by drawing ǫi ∼ N(0, σ2), and setting yi = fi + ǫi
for each grid point, i = 1, . . . , 3072. The standard deviation of the data was about 5,
so in our two experiments, we set σ = 2 and σ = 4.

We again benchmarked the horseshoe estimator against the harmonic estimator, the
straight needlet estimator, and empirical-Bayes thresholding. Table 2 summarizes these
results.

4.3 Summary of simulation results

From these results, the following conclusions about needlet shrinkage can be observed:

❼ All needlet-based estimators are a drastic improvement upon the harmonic esti-
mator. The harmonic estimator performs so poorly, even worse than the MLE,
because the finest-resolution harmonics cannot be reliably reconstructed from the
data. These noisy harmonics affect the needlet estimator much less drastically.

❼ Horseshoe shrinkage and selection of needlet coefficients offers further substantial
improvements upon the straight needlet estimator, often by a factor of three of
more. This happens regardless of the pattern of sparsity and signal-to-noise ratio.
Even when the straight estimator performs almost as well in the needlet domain, it
does much worse in the spatial domain, suggesting that the shrinkage procedures
are better at reconstructing the coefficients with the most important contributions
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Figure 3: CMB temperature data (Mollweide projection).

to the topography of f .

❼ On simulated random fields, the horseshoe estimator quite closely matches the
performance of empirical-Bayes thresholding based on point-mass mixture priors.
When noise is added to a real field, however, the horseshoe does much better at re-
constructing the ground truth. In the “low-noise” version of the CMB experiment,
the empirical-Bayes procedure is even beaten by the straight needlet estimator,
which is itself beaten by the horseshoe.

❼ The thresholded version of the horseshoe rarely beats the unthresholded version,
even when the true signal has zeros. This is consistent with the intuition that the
horseshoe estimator behaves like model averaging, which is typically better than
selecting a single model.

One point worth emphasizing is that, in principle, the discrete needlet transform
and the spherical harmonic expansion should be identical. We would indeed see such
behavior in the limiting case of infinite resolution—that is, if we were able to fit the
function as a convergent weighted sum of all spherical harmonics Yl

m, l ∈ N. Any
differences arise only due to truncation errors. But such errors are impossible to avoid
in practice: one must inevitably choose a maximum resolution for the purpose of fitting
a particular data set, and extra resolution is computationally expensive.
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4.4 Estimating a news intensity surface over the globe

As a final illustration of the proposed methodology, we estimated a set of needlet co-
efficients that depict a news intensity surface over the globe. The data set is referred
to as TR-CoNLL, and is a standard reference corpus in natural language processing.
TR-CoNLL contains all 946 news articles filed anywhere in the world by the Reuters
news-wire service for the period spanning August 22–31, 1996. From these 946 articles,
6,980 place-names have been annotated using the toponym-resolution algorithms of Lei-
dner (2008). Toponym resolution is the task of mapping a set of ambiguous place names
to the actual physical coordinates of the places they refer to—for example, determining
automatically from context whether a reference to London refers to Ontario or England.

The spatial distribution of place-names mentioned by news articles in a given week
can be thought of as a global news intensity surface, depicting where important and
newsworthy events were happening. For example, here is an excerpt from one of the
news stories, dated 24 August 1996 and filed in Islamabad, describing devastating floods
in Pakistan:

At least 30 people have been killed and about 100 injured in the flood-hit
Pakistani city of Lahore, newspapers reported on Saturday. They said 461
mm (18 inches) of rain had drenched the Punjab provincial capital in 36
hours, turning streets into rivers, knocking out power, water and telephone
services, disrupting air and rail traffic, and sweeping away houses and cars.

Both “Lahore” and “Punjab” appear as entries in the data set, associated with specific
latitude/longitude coordinates.

Figure 4 shows the raw data, where each dot represents a single disambiguated
toponym. A group of 20 news stories all describing the same location—suggesting a
spate of interesting news—would show up as a single dot, obfuscating the importance of
that area. But by estimating a news intensity surface, we allow nearby dots to mutually
amplify the visual importance of a given region.

Figure 5 shows the results of fitting the harmonic estimator and the needlet shrinkage
estimator proposed in this paper. As the figures show, the harmonic estimator exhibits a
highly spurious non-locality, in the form of mild undulations in the estimated field. (This
is represented by the alternating blue and white regions, and can most easily be seen in
the middle of the oceans.) This behavior arises from the spatially non-local character of
spherical harmonics, and makes it clear why this set of basis functions is inappropriate
for describing surfaces whose behavior is highly localized in space. Intuitively, in order
to get zeros out in the oceans (where there is rarely any news) using a harmonic basis,
one needs a large sum of harmonics to cancel to exactly zero. This happens in the
limit of infinite resolution, but not in practice where estimates are subject to truncation
error.

No such nonlocalities exist in the fitted intensity surface corresponding to the shrink-
age estimator. In essence, the needlet coefficients loading in these areas are treated as
noise, and are shrunk almost completely to zero. This example conveys the intuition of
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Figure 4: The disambiguated physical coordinates associated with place names in the
TR-CoNLL reference corpus, comprising Reuters news filings in late August, 1996.

why needlet-based shrinkage rules may perform better for many spherical data sets, and
why much attention needs to be paid to the character and performance of the shrinkage
rule itself.

One caveat is that the needlet estimator, while clearly superior to the harmonic
estimator, still resulted in a noticeable degree of overshrinkage, with many smaller
features (e.g. those in South America and the Carribean) shrunk by a considerable
factor. This is likely due to the highly localized nature of the intensity surface—many
essentially zero areas, and many areas of highly concentrated newsworthy events—
coupled with the fact that needlet basis functions are not orthogonal. One alternative
approach, not explored here, would involve orthogonalizing the design matrix using a
singular value decomposition, and applying the shrinkage estimator in the orthogonal
space instead.
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