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ABSTRACT

The present article is concerned with the problem of estimating an unknown pop-

ulation proportion p, say, of a certain population characteristic in a dichotomous

population using the data collected through ranked set sampling (RSS) strategy.

Here, it is assumed that the proportion p is not fixed but a random quantity. A

Bayes estimator of p is proposed under squared error loss function assuming that

the prior density of p belongs to the family of Beta distributions. The performance

of the proposed RSS-based Bayes estimator is compared with that of the corre-

sponding classical version estimator based on maximum likelihood principle. The

proposed procedure is used to estimate measles vaccination coverage probability

among the children of age group 12-23 months in India using the real-life epidemi-

ological data from National Family Health Survey-III.

Key words: Bayes estimator, maximum likelihood principle, square error loss, risk

function and immunization coverage.

1. Introduction

Ranked Set Sampling (RSS) was first introduced by McIntyre (1952). This is an

alternative method of sampling procedure that is used to achieve the greater effi-

ciency in estimating the population characteristics. Generally the most appropriate

situation for employing RSS is where the exact measurement of sampling units is

expansive in time or effort; but the sample units can be readily ranked either through

subjective judgement or via the use of relevant concomitant variables. The most ba-

sic version of RSS is balanced RSS where the same number of observations is drawn

corresponding to each judgement order statistic. In order to draw a balanced ranked

set sample of size n, first an integer s is chosen such that n = ms, for some positive
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integer m. Then we select s2 units from the population at random and the units are

divided into sets of s units each. Within each set, s units are ranked according to

the characteristic of interest by judgement or with the help of one or more auxiliary

variables. From the ith set (i = 1,2, · · · ,s) we observe the actual measurement cor-

responding to only the ith ordered unit in that set. This entire procedure, which may

be called a cycle, is repeated m times independently to obtain a ranked set sample

of size n = ms.

Let X[i] j denote the quantified ith judgement order statistic from the jth cycle.

Thus, the sampling scheme yields the following ranked set sample of size n.

X[1]1, · · · ,X[1] j, · · · ,X[1]m

...
...

...

X[i]1, · · · ,X[i] j, · · · ,X[i]m (1.1)

...
...

...

X[s]1, · · · ,X[s] j, · · · ,X[s]m

It is obvious that the observations within each row of above observation matrix are

independently and identically distributed (iid), and the observations within any col-

umn are independently but not identically distributed. To acquire depth in theories

and logistics of RSS methodology one can go through the book by Chen et al.(2004).

In the present investigation we assume that the variable of interest is binary; that

is, there are only two possible outcomes, generally called success (denoted as 1) and

failure (denoted as 0). Thus, the study variable is supposed to follow Bernoulli dis-

tribution with success probability p (0 < p < 1), say. Here, the ranking of s binary

observations in each set, where there are only 0 and 1 runs in the series, is done sys-

tematically as discussed by Terpstra and Nelson (2005). For instance, suppose s = 4

and the observations are, say, X1 = 1;X2 = 0;X3 = 1, and X4 = 0. Then, a possible

ordered arrangement of the observations might be (X2,X4,X1,X3), or (X4,X2,X1,X3)

or (X2,X4,X3,X1) or (X4,X2,X3,X1). But for the sake of uniqueness we take the

arrangement (X2,X4,X1,X3) where the suffix of X in each run is in increasing or-

der and hence we get the ordered statistics as X(1) = X2; X(2) = X4; X(3) = X1 and

X(4) = X3. The same systematic rule can easily be extended in the ranking of a

polytomous variable also. For a binary population the success probability p can be

viewed as a proportion of individuals possessing certain known characteristic in the

population. In classical inference on a population proportion, the ranked set sam-

pling with binary data has already been introduced and used by many researchers

like, among others, Lacayo et al. (2002), Kvam (2003), Terpstra (2004), Terpstra
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and Liudahl (2004), Chen et al. (2005, 2006, 2007, 2009), Terpstra and Nelson

(2005), Terpstra and Miller (2006), Chen (2008), Gemayel etal.,(2012) used RSS

for auditing purpose, Wolfe (2010, 2012) and Zamanzade and Mahdizadeh (2017,

2017) discussed application of RSS to air quality monitoring. Jozani and Mirkamali

(2010, 2011) used ranked set sample for binary data in the context of control charts

for attributes. In earlier works, estimation of p using ranked set samples is based on

the assumption that the parameter p is an unknown but a fixed quantity. But there

may be situations where some prior knowledge on p may be available in terms of its

changing pattern over time or with respect to other factors, which amounts to treat

p as a random quantity. In this article a Bayesian estimation of p in the domain of

ranked set sample is considered.

We organize the paper in the following way. In section 2, a Bayes estimator

of the population proportion is proposed. As a natural competitor of the proposed

estimator, a classical version estimator based on maximum likelihood principle is

discussed in section 3. Section 4 provides an efficiency comparison of the estima-

tors in terms of risk under square error loss function. In section 5 the proposed

procedure is used to estimate measles vaccination coverage probability among the

children of age group 12-23 months in India using the real-life epidemiological data

from National Family Health Survey-III. Lastly, section 6 gives a brief concluding

remark.

2. Bayes Estimators of p

Let X be the variable of interest assumed to follow Bernoulli (p) distribution with

p being the success probability. It has been found in the literature (e.g. Stokes

(1977)) that the use of a single concomitant variable for ranking is effective re-

gardless of whether the association of the concomitant variable of interest is pos-

itive or negative. Suppose, after applying judgement ranking made on the ba-

sis of a readily available auxiliary variable, say Y , we have a ranked set sample

{X[i] j, i = 1(1)s, j = 1(1)m} of size n = ms, where X[i] j denotes the quantified ith

judgement order statistics in the jth cycle. It can easily be justified that, for each

i= 1(1)s, the observations in the ith ranking group X[i]1, · · · ,X[i] j, · · · ,X[i]m constitute

a simple random sample (SRS) of size m from Bernoulli distribution with success

probability denoted by p[i], say. So, for each i = 1(1)s, p[i] represents the probability

of assuming the value 1 (which corresponds to success) for the ith judgement order

statistic X[i]1. Immediately we get the following result.

Result 2.1: Suppose an observation with a higher judgement order is more likely to
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be a ‘success’. Then, we have

p[i] = Ip(s− i+1, i), for each i = 1,2, · · · ,s (2.1)

and
1

s

s

∑
i=1

p[i] = p, (2.2)

where Ix(a,b), x ∈ (0,1), is the standard incomplete beta integral given by

Ix(a,b) =
Γ(a+b)

Γ(a)Γ(b)

x
∫

0

ta−1(1− t)b−1dt.

The above result is standard (see Tepstra (2004)) and hence omitted.

Note 2.1: If an observation with a lower judgement order is more likely to be a

success, then, for every i = 1,2, · · · ,s, that

p[i] = Ip(i,s− i+1) (2.3)

and (2.2) also holds in this case.

In this section the proportion parameter p is assumed to be a random variable

and the randomness is quantified in terms of suitable prior density, say τ(p) of p

over the interval [0,1]. Here, we derive a Bayesian estimator of p by incorporating

the available prior information on p along with the information provided by the

ranked set sample data. By the virtue of ranked set sampling all the observations

X[i] j,∀i = 1(1)s, ∀ j = 1(1)m are independent. Let us define the variables

Zi =
m

∑
j=1

X[i] j, ∀i = 1(1)s.

Obviously, the variables Z1,Z2, · · · ,Zs are independently distributed as Zi ∼ Bino-

mial (m, p[i]). For each i, 1≤ i≤ s, p[i] is a function of the basic parameter p, so we

denote it as p[i](p). With this notation one can easily write the likelihood function

of p, given the ranked set sample data z = (z1,z2, · · · ,zs) as

L(p|z) =
s

∏
i=1

P[Zi = zi|p[i](p)]

=
s

∏
i=1

(

m

zi

)

[p[i](p)]zi [1− p[i](p)](m−zi) (2.4)
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where z is a particular realization of the random vector Z = (Z1,Z2, · · · ,Zs). Thus,

the posterior density of p, given Z = z, with respect to the prior τ(p) for p is given

by

h(p|z) =
L(p|z)τ(p)

1
∫

0

L(p|z)τ(p)d p

⇔ h(p|z) ∝ L(p|z)τ(p)

⇔ h(p|z) ∝
s

∏
i=1

[p[i](p)]zi [1− p[i](p)](m−zi)τ(p). (2.5)

The information regarding unknown parameter is upgraded in the light of the ob-

served data and is quantified through the posterior distribution h(p|z) w.r.t. the prior

τ(p) and hence any statistical inference regarding p is made on the basis of its pos-

terior distribution given the ranked set sample data. Here, the posterior distribution

does not have any standard form. In such a situation, to make any statistical infer-

ence on p one should use Monte Carlo simulation technique which provides a great

deal of computational facilities. According to this method, a sufficiently large num-

ber, say N of observations are drawn at random independently from the posterior

distribution h(p|z) and let it be denoted as p(1), p(2), · · · , p(N). Then the posterior

mean and variance of p can be approximated as

E(p|z) =

1
∫

0

ph(p|z)d p

≃
1

N

N

∑
j=1

p( j) (2.6)

and

V (p|z) =

1
∫

0

{p−E(p|z)}2h(p|z)d p

≃
1

N

N

∑
j=1

[p( j)]2−

[

1

N

N

∑
j=1

p( j)

]2

(2.7)

Thus, under square error loss function the Bayes estimate (p̂B) of p w.r.t. the prior

τ(p) is given by the mean of the posterior distribution h(p|z), that is, for sufficiently
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large N,

p̂B ≃
1

N

N

∑
j=1

p( j)
. (2.8)

Alternative Bayes Esimator of p:

An alternative Bayes estimator of p can easily be constructed as the average of the

Bayes estimators of p[i]’s by assuming that the probabilities p[1], p[2], · · · , p[s] are all

unknown parameters, although all of them are the functions of the basic parameter p,

satisfying the relation (2.2). Suppose p[1], · · · , p[s] are independently and identically

distributed with common prior density given below.

τ(θ) =
1

B(α,β )
θ α−1(1−θ)β−1

, 0 < θ < 1, α > 0, β > 0. (2.9)

Then, under squared error loss function the Bayes estimator of p[i], based on Zi, can

easily be obtained as (see Ferguson (2014))

p̂∗B[i] =
Zi +α

m+α +β
, for i = 1, ..s. (2.10)

After having the estimators p̂∗B[i]; i = 1,2, · · · ,s, we are in a position to construct, by

virtue of the relation (2.2), a Bayesian estimator of p as

p̂∗B =
1

s

s

∑
i=1

p̂∗B[i] (2.11)

which, by using (2.10), takes the form

p̂∗B =
mX̄ +α

m+α +β
, (2.12)
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where X̄

(

= 1
ms

s

∑
i=1

m

∑
j=1

X[i] j

)

is the grand mean of ms sample observations. Note

that, under square error loss, the risk function of p̂∗B is given as

Rp̂∗B
(p) = E(p̂∗B− p)2

= E

(

mX̄ +α

m+α +β
− p

)2

= (m+α +β )−2E {(mX̄−mp)+α− p(α +β )}
2

= (m+α +β )−2

[

1

s2

s

∑
i=1

mp[i](1− p[i])+{α− p(α +β )}2

]

=
m

(m+α +β )2s2

s

∑
i=1

p[i](1− p[i])+
{α− p(α +β )}2

(m+α +β )2
. (2.13)

3. Estimator of p based on Maximum Likelihood Principle

Here, we briefly describe a classical version estimator of p based on the maximum

likelihood (ML) principle. For this we first assume that the proportion parameter p

is an unknown fixed number lying between 0 and 1. Now, all the observations in the

ranked set sample are independently distributed, the likelihood function of p based

on the given ranked set sample X = x can be expressed as

L1(p|x) =
s

∏
i=1

m

∏
j=1

[p[i](p)]x[i] j [1− p[i](p)]1−x[i] j

=
s

∏
i=1

[p[i](p)]zi [1− p[i](p)]m−zi

=
s

∏
i=1

{Ip(s− i+1, i)}zi{I1−p(i,s− i+1)}m−zi . (3.1)

Equivalently, the log-likelihood function of p is given as

l(p|x) = logeL1(p|x) =
s

∑
i=1

zilogeIp(s− i+1, i)+
s

∑
i=1

(m− zi)logeI1−p(i,s− i+1),
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and hence the likelihood equation for determining MLE of p is obtained as

d

d p
l(p|x) = 0

⇔
s

∑
i=1

zib(p|s− i+1, i)

Ip(s− i+1, i)
=

s

∑
i=1

(m− zi)b(1− p|i,s− i+1)

I1−p(i,s− i+1)
(3.2)

where b(x|α,β ) represents the probability density function of Beta(α,β ) distribu-

tion. Due to the complicated nature of the above likelihood equation it is difficult to

get an explicit solution for p and hence the RSS-based MLE of p does not have any

closed form.

As an alternative way out we can obtain an estimate of p by indirectly us-

ing the maximum likelihood principle. For this we first consider the probabilities

p[1], p[2], · · · , p[s] as the unknown parameters, although all of them are the functions

of the basic parameter p. Then we determine the maximum likelihood estimates

of those parameters separately and substitute these estimates in the relation (2.2) of

Result 2.1 to get an estimate of p. Given the ranked set sample X = x, the likelihood

function of the parameters p[1], p[2], · · · , p[s] is written as

L1(p[1], p[2], · · · , p[s]|x) =
s

∏
i=1

m

∏
j=1

[p[i]]
x[i] j [1− p[i]]

1−x[i] j

=
s

∏
i=1

[p[i]]
zi [1− p[i]]

m−zi (3.3)

and the corresponding log-likelihood function is given by

l(p[1], p[2], · · · , p[s]|x) =
s

∑
i=1

ziloge p[i]+
s

∑
i=1

(m− zi)loge(1− p[i]).

Thus, by solving s maximum likelihood equations, ∂
∂ p[i]

l(p[1], p[2], · · · , p[s]|x) = 0,

for i = 1,2, · · · ,s, we easily get the MLE of p[i] as

p̂[i] =
Zi

m
, i = 1,2, · · · ,s.

Then, after replacing p[i]’s by p̂[i]’s in the relation (2.2) we get an estimate of p as

p̂M =
1

s

s

∑
i=1

p̂[i]. (3.4)
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Note 3.1: It is easy to argue that the ML estimates p̂[1], p̂[2], · · · , p̂[s] are statistically

independent as the variables Zi’s are independently distributed. Again, substituting

the value Zi

m
of p̂[i] in the equation (3.4), the estimate p̂M can be shown to be identical

with the overall mean of the given ranked set sample. It is also readily verified that

p̂M is an unbiased estimator of p.

4. Comparison Between p̂B, p̂∗B and p̂M

The goal of this section is to compare the estimators of p derived in sections 2

and 3. Since the posterior mean, by definition, minimizes the Bayes risk under

squared error loss function, it is not surprising that a Bayes estimator of an unknown

parameter is often superior to the corresponding MLE in respect of mean squared

error (MSE). However, MLE neither requires any specification of prior distribution

for the parameter nor it involves any particular loss function. Thus, the comparison

should be made on the basis of a criterion which does not bother about the particular

nature of prior information regarding unknown parameter. However, as MSE of an

estimator can be regarded as risk under squared error loss, one can use risk function

for comparison purpose. The expressions for risk functions of the estimators are

described below. Under square error loss the risk of p̂B is given as

Rp̂B
(p) = E(p̂B− p)2

, (4.1)

which cannot be further simplified analytically. On the other hand, the risk of p̂M

has a theoretical expression obtained as

Rp̂M
(p) = E(p̂M− p)2

= V

(

1

s

s

∑
i=1

p̂[i]

)

=
1

ms2

s

∑
i=1

p[i](1− p[i]), (4.2)

after using the fact that p̂[i]’s are independent with V ( p̂[i]) =
1
m

p[i](1− p[i]).

Result 4.1: The risk function R p̂M
(p) of the estimator p̂M is symmetric around

’p = 1
2
’.
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Proof: By (2.1) we rewrite Rp̂M
(p) as

Rp̂M
(p) =

1

ms2

s

∑
i=1

Ip(s− i+1, i)[1− Ip(s− i+1, i)]

=
1

ms2

s

∑
i=1

Ip(s− i+1, i)I1−p(i,s− i+1), for p ∈ [0,1].

Now, for any ξ ∈ [0,1], we see that

ms2Rp̂M

(

1

2
+ξ

)

=
s

∑
i=1

I 1
2
+ξ (s− i+1, i) I 1

2
−ξ (i,s− i+1)

=
s

∑
j=1

I 1
2
+ξ ( j,s− j+1) I 1

2
−ξ (s− j+1, j), putting j = s− i+1

=
s

∑
j=1

I 1
2
−ξ (s− j+1, j) I 1

2
+ξ ( j,s− j+1)

= ms2R p̂M

(

1

2
−ξ

)

,

and hence the required proof follows.

In the present situation we compare the performances of the estimators p̂B, p̂∗B
and p̂M by plotting their risk functions in the same co-ordinate axes. The estimator

p̂B performs uniformly better than the estimator p̂M if

Rp̂B
(p)≤ Rp̂M

(p),

for all p ∈ [0,1] with strict inequality for at least one value of p. Here, we conve-

niently choose Beta(α,β ) distribution as a prior for p, that is,

τ(p) = {B(α,β )}−1 pα−1(1− p)β−1
, 0 < p < 1,α > 0,β > 0.

In the numerical computation we take, in particular, (s,m)= (3,50), (5,30), (3,100),

(5,60) and (α,β ) = (1
2
,

1
2
), (2,2), ( 1

2
,3), (3, 1

2
). Here, we compute the risk values

for the Bayes estimator p̂B by simulation technique with the help of Metropolis-

Hasting’s algorithm (given in Appendix) and then plot them over the whole range

of p. The plotted risk functions are shown in Figures 1-4 given in Appendix. These

figures show that the risk curves corresponding to Bayes estimators p̂B and p̂∗B com-

pletely lie below the risk curve of p̂M implying that the proposed Bayes estimators

are uniformly better than the estimator based on ML principle so far as the given

parametric combinations are concerned. Again it is observed that the risk curves
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corresponding to Bayes estimators p̂B and p̂∗B are not significantly distinct and hence

we can conclude that these two estimators are more or less equally good.

5. Estimation of Measles Vaccination Coverage Probability

In public health related studies, the virus of measles is regarded as highly epidemic

and is responsible for severe diseases. According to the Medical Dictionary, the

virus of measles infects the lungs at childhood which may cause pneumonia and in

older children it can lead to inflammation of the brain, called encephalitis, which

can cause seizures and brain damage (Perry and Halsey, 2004). As precautionary

measures the proper vaccination is introduced from the very beginning of the child-

hood to acquire the immunity against measles viruses. According to the Integrated

Child Development Services (ICDS) program in India, a child should have received

basic vaccinations (BCG, polio, DPT and measles) in the 12-23 months of their age.

Here, our objective is to illustrate the proposed procedures for estimating the

vaccination coverage of the measles among the children of age group 12-23 months

(the age by which children should have received all basic vaccinations) in India

2005-06. The study data has been taken from the website of the Measure DHS-

Demographic and Health Surveys (DHS) (http://www.measuredhs.com). DHS

provides national and state estimates of fertility, child mortality, the practice of fam-

ily planning, attention to mother and child and access to services for mothers and

children. For this study, data set of National Family Health Survey-III (NFHS-

III,2005-2006) for the year 2005-06 of India is considered. Here, the samples of

DHS are treated as our population of interest and those children who are in the

12-23 months of their age considered as our study population.

The event of receiving vaccination for a child usually depends on awareness of

the child’s mother regarding vaccination. The higher the educational qualification

of a mother during child bearing period, the higher would be the awareness as ex-

pected. Therefore, mother’s educational qualification is used as auxiliary variable

for ranking purpose in ranked set sampling. The observations are obtained through

the following steps.

1. A simple random sample of s2 units is drawn from the target population and

is randomly partitioned into s sets, each having s units.

2. In each of s sets the units are ranked according to the mother’s qualification

{1 = “No education", 2 = “Primary", 3 = “Secondary", 4 = “Higher"}. The
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ranking process could also be based on the individuals’ duration (in terms of

years) of study. Here, samples in different sets are ranked based on mother’s

qualification denoted as (1, 2, 3, 4) and duration (in terms of years) of study.

Obviously, there is a high chance of having ties. Then in that situation the ob-

servations are ordered systematically in the sequence, as discussed by Terp-

stra and Nelson (2005).

3. From the first set, the unit corresponding to the mother with lowest qualifi-

cation (or duration of study) is selected. From the second set, the unit corre-

sponding to the mother with the second lowest qualification is selected and

so on. Finally, from the sth set, the unit corresponding to the mother with the

highest qualification is selected. The remaining s(s− 1) sampled units are

discarded from the data set.

4. The Steps 1 - 3, called a cycle, are repeated m times to obtain a ranked set

sample of size n = ms.

Here, in particular, we take (s,m)= (4,100). Corresponding to each selected mother,

information regarding whether her child is administrated with measles vaccina-

tion or not is collected. Suppose X is the binary response that takes value ‘1’ if

the child is vaccinated and ‘0’ otherwise. With this notation we have the sam-

ple {X[1]1,X[1]2, · · · ,X[4]100} of size 400, where X[r] j takes the values ‘1’ or ‘0’ ac-

cordingly as the jth child in the rth ranking class is vaccinated or not. Obviously,

p[r] is the proportion, in rth class, of children who received the vaccination and

p is the overall proportion of children receiving the vaccine in entire target pop-

ulation. The implementation of the proposed Bayes approach requires assuming

the prior distributions of p[r]’s. Here we use Beta (α,β ) priors with (α,β ) =

(0.5,0.5),(1,1),(2,2),(5,5),(1,2),(2,1) and (5,3). With these parametric com-

binations we compute the estimates p̂B, p̂∗B and p̂M. We also calculate the estimated

relative risk of Bayes estimators w. r. t. p̂M defined by

ρ̂ p̂B
=

R̂( p̂M)

R̂( p̂B)

ρ̂ p̂∗B
=

R̂( p̂M)

R̂( p̂∗B)

and all computed results are summarized in Table 5.1. From the table, it is observed

that the Bayes estimate of the proportion of children receiving measles vaccine is

very close to that based on ML approach. Also, both the estimates are very close

to the value 58.8%, which is the estimated value of p reported by NFHS-III(2005-
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Table 5.1: Estimates of the proportion and Relative Efficiency

Bayesian approach ML

Symmetric prior Asymmetric prior

Estimate α = 0.5 α = 1 α = 2 α = 5 α = 1 α = 2 α = 5

β = 0.5 β = 1 β = 2 β = 5 β = 2 β = 1 β = 3

p̂B 0.562 0.562 0.562 0.562 0.562 0.562 0.564 0.578

p̂∗B 0.577 0.576 0.575 0.570 0.570 0.580 0.581 0.578

ρ̂ p̂B
2.13 2.02 2.14 2.25 2.37 2.02 2.15

ρ̂ p̂∗B
1.02 1.03 1.05 1.10 1.03 1.04 1.09

06). It is also clear that the proposed Bayes procedure, especially the estimator p̂B,

shows greater efficiency than the corresponding ML based procedure.

6. Concluding Remarks

The present work is concerned with the problem of estimating unknown population

proportion p based on ranked set sample (RSS) drawn from a binary population.

Since the RSS-based likelihood function of p is complicated, the direct applica-

tion of Bayes principle (in the context of Bayesian paradigm) or maximum like-

lihood principle (in connection with classical framework) is not straightforward

for estimating p. In Bayesian framework the RSS-based Bayes estimator does

not have a simple explicit form even if we choose the simplest distribution, i.e.

Uniform(0,1) (≡ Beta(1,1)) as a possible prior for p. The RSS-based likelihood

function of p can easily be expressed in the form of polynomial in p. Thus, under

the assumption of Beta(α,β ) prior for p, the posterior distribution can be shown,

through a routine calculation, to be a mixture of several Beta distributions. Also,

the explicit form of the Bayes estimator is not so convenient from the computa-

tional point of view. Obviously, the posterior distribution does not belong to the

Beta-family and hence Beta(α,β ) prior is not a conjugate prior in this case. In fact,

there does not exist any conjugate prior in standard form due to complexity in the

functional form of RSS-based likelihood of p.

As a natural competitor of the Bayes estimator of p, we have used here a very

common estimator indirectly based on maximum likelihood principle used in find-

ing MLEs of intermediate parameters p[1], p[2], · · · , p[s]. On the other hand, one can

directly use the MLE of p as considered by Tepstra (2004) for comparison purpose.

However, this estimator does not exist in a closed form but can be computed through
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numerical methods. Since our main focus lies in the Bayesian approach of estima-

tion by incorporating available prior information regarding the parameter of interest.

We here consider a commonly used estimator for comparison purpose only.

In Bayesian statistics the selection of the prior distribution is crucial to the anal-

ysis of data because the final conclusion depends on this particular choice. In our

proposed procedure we have considered the Beta prior due to its important features,

viz., proper interpretability according to the model (see Paolino (2001)), less compu-

tational complexity of posterior distribution (see Gupta and Nadarajah (2004)), hav-

ing reasonable reflection of prior uncertainty (see Ferrari and Cribari-Neto (2004)),

capability to extend to higher dimensions (see Pham-Gia (1994)), etc. However,

the Beta-Binomial conjugate analysis may not be adequately robust. Thus, the pre-

cision of the prior is important and the sensitivity analysis regarding the prior is

necessary. Keeping these in mind one can carry out a robust Bayesian analysis us-

ing non-conjugate priors. One such way out might be the use of Cauchy priors after

expressing the likelihood of binary data in terms of its exponentially family form,

and this Cauchy-Binomial model for binary data might be more robust (see Fuquene

et al. (2008)). Several other robust approaches are also discussed in, among oth-

ers, Berger et al. (1994) and Wang and Blei (2015). The consideration of robust

Bayesian approach is beyond the scope of the present work and will be considered

in a separate issue.
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APPENDIX

Algorithm: Metropolis-Hastings algorithm

The purpose of the Metropolis-Hastings (MH) algorithm is to simulate samples from

a probability distribution by utilizing the full joint density function and (indepen-

dent) proposals distributions corresponding to each variable of interest. The steps

of Algorithm mainly consist of three components and are given below:

Initialize x(0) ↑ q(x)

Initialize the sample value for each random variable (this value is often sampled

from the variable’s prior distribution).

for iteration i = 1,2, · · · do

Propose: xcand ↑ q(x(i)|x(i−1))

Generate a proposal (or a candidate) sample xcand from the proposal distribution

q(x(i)|x(i−1))

Acceptance Probability:

α (xcand |x(i−1)) = Min

{

1,
q(x(i)|xcand)π(xcand)

q(xcand |x(i−1))π(x(i−1))

}

u ∼ Uniform (u;0,1)

Compute the acceptance probability via the acceptance function α (xcand |x(i−1))

based on the proposal distribution and the full joint density π(.)

if u < α then

Accept the proposal: x(i)← xcand

else

Reject the proposal: x(i)← x(i−1)

end if

Accept the candidate sample with probability α , the acceptance probability, or re-

ject it with probability 1−α

end for
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Figure 1: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 3,m = 50 at

different choices of α and β

Figure 2: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 5,m = 30 at

different choices of α and β
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Figure 3: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 3,m = 100 at

different choices of α and β

Figure 4: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 5,m = 60 at

different choices of α and β


