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Bayesian Estimation of Population-Level
Trends in Measures of Health Status
Mariel M. Finucane, Christopher J. Paciorek, Goodarz Danaei and Majid Ezzati

Abstract. Improving health worldwide will require rigorous quantification
of population-level trends in health status. However, global-level surveys are
not available, forcing researchers to rely on fragmentary country-specific data
of varying quality. We present a Bayesian model that systematically com-
bines disparate data to make country-, region- and global-level estimates of
time trends in important health indicators.

The model allows for time and age nonlinearity, and it borrows strength in
time, age, covariates, and within and across regional country clusters to make
estimates where data are sparse. The Bayesian approach allows us to account
for uncertainty from the various aspects of missingness as well as sampling
and parameter uncertainty. MCMC sampling allows for inference in a high-
dimensional, constrained parameter space, while providing posterior draws
that allow straightforward inference on the wide variety of functionals of
interest.

Here we use blood pressure as an example health metric. High blood pres-
sure is the leading risk factor for cardiovascular disease, the leading cause
of death worldwide. The results highlight a risk transition, with decreasing
blood pressure in high-income regions and increasing levels in many lower-
income regions.

Key words and phrases: Bayesian inference, hierarchical models, combin-
ing data sources.

1. INTRODUCTION

Variations and trends in health outcomes and risk
factors across the globe have received greatly increased
attention in recent years, in part driven by the UN’s
Millennium Development Goals, the increase in in-
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ternational funding for global health and the demand
for objective evidence about the effectiveness of inter-
ventions. There has been a concomitant focus on data
sources and quantitative methods for population-level
measures of health status. However, global-level sur-
veys are not available, forcing researchers to rely on
fragmentary country-specific data of varying quality.

The Global Burden of Diseases, Injuries and Risk
Factors Study (GBD, www.globalburden.org), which
aims to quantify the relative contributions of different
diseases and injuries, and their risk factors, to morbid-
ity and mortality worldwide, offers a demonstration of
these challenges. For example, despite cardiovascular
diseases being the leading causes of death worldwide
(Lozano et al., 2013), our understanding of their trends
is almost entirely based on specific cohorts and com-
munities, primarily in high-income countries. As part
of the GBD Study, we set out to estimate trends in car-
diometabolic risk factors over the past 30 years for all
nations.
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In this paper we present a Bayesian model devel-
oped to address these issues by combining disparate
data sources to complete the largest-ever analysis of
metabolic risk factors and the first global analysis of
trends. Our model has been used to analyze global
trends in systolic blood pressure (Danaei et al., 2011b),
serum total cholesterol (Farzadfar et al., 2011), body
mass index (Finucane et al., 2011) and fasting plasma
glucose (Danaei et al., 2011a).

Here, we focus on the blood pressure analysis as
an illustrative example of model development and the
advantages of using the Bayesian paradigm. Kearney
et al. (2004, 2005) and Lawes et al. (2004) were in-
fluential in demonstrating the importance of this risk
factor, which is responsible for more than 9 million
annual deaths, more than any other risk factor (Lim
et al., 2013). These analyses, however, were based on
only a small subset of available data. Further, they
did not assess trends over time systematically, did not
distinguish nationally-representative surveys from sub-
national and community-based studies, and did not
take into account the missingness of data from entire
countries or age groups when quantifying uncertainty.

In addition to addressing these deficiencies, our ap-
proach differs in important ways from other recent
modeling of global health. Rajaratnam et al. (2010)
and Hogan et al. (2010), for example, modeled global
adult and maternal mortality, respectively. These stud-
ies used investigator-chosen smoothing parameters and
implemented a two-stage estimation procedure, which
prevents uncertainty from propagating through the
modeling process. We, on the other hand, estimate
all parameters as part of a single model, allowing all
sources of uncertainty to be reflected in our inference.
Furthermore, whereas they decided a priori how much
weight to give high- vs. low-quality studies, our model
estimates these weights empirically based on the nois-
iness observed in the different types of data sources.

2. THE DATA

For 199 countries and territories, from 1980 to 2008,
we estimate trends in mean systolic blood pressure
(SBP) for adults 25 years of age and older. We accessed
numerous unpublished studies and reviewed published
studies to collate comprehensive data on SBP. We
grouped the 199 analysis countries into 21 subregions
using the classifications of the GBD Study. We grouped
the subregions into seven merged regions. Details are
given in Danaei et al. (2011b).

The primary challenge of this analysis is the frag-
mented nature and varying quality of the data, avail-
able only from some countries, in some years and for
some age groups. For roughly one-third of all coun-
tries, no data exist at all. Furthermore, many studies
cover only rural or only urban populations. Although a
portion of the data comes from national surveys with
sample weights, most data come from epidemiologic
studies not intended to be nationally representative. In
addition, many data sources suffer from small sample
sizes.

3. WHY BAYES?

Given these patterns of data sparsity and missing-
ness, a hierarchical model is needed to provide infer-
ence for all country–year–age triplets and to account
for missingness when aggregating to the regional and
global levels. The hierarchy provides prior distribu-
tions that enable us to borrow strength over time, coun-
tries and age, while enforcing plausible parameter con-
straints.

In principle, a non-Bayesian hierarchical mixed
model is an alternative, fit by maximum marginal like-
lihood after integrating over all the random effects, but
the predictive uncertainty would not have included the
substantial uncertainty from hyperparameter estima-
tion. Furthermore, with 23 hyperparameters, this would
have been a challenging optimization in practice, es-
pecially given the parameter constraints. In addition,
it would have been difficult to interpret the hierarchi-
cal model in a non-Bayesian fashion, with mean blood
pressure for a country as a random effect, given that the
fixed countries of the world are not drawn from some
large population of possible countries.

MCMC sampling has the added advantage of pro-
viding Bayesian imputations of risk factor levels at any
level of aggregation (over age groups, times, countries,
etc.) as a product that the many stakeholders in this
work can use to do their own analyses that easily in-
corporate uncertainty; our analysis includes function-
als such as the linear component of blood pressure time
trends and the population-weighted, age-standardized
global mean blood pressure level (see Section 6).

4. THE MODEL

Our basic strategy is to fit a Bayesian hierarchical
model that clusters countries within geographical sub-
regions and regions of the globe, thereby borrowing
strength from countries with data. Our approach treats
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countries as exchangeable in the absence of other in-
formation, after accounting for covariates. To the basic
model we add smooth time trends and age effects as
well as country- and study-level covariates. We spec-
ify a heteroscedastic, multi-component error structure
to account for the fact that not all studies are nation-
ally representative. Models for women and men are fit
separately.

Throughout, bold characters denote vectors and ma-
trices. For each age group h from study i, the model
inputs a sample average and a sample standard devia-
tion of SBP values (yh,i and sh,i ) as well as a sample
size (nh,i). We let ti denote the year in which study i

was conducted and we use square brackets to denote
group membership such that j [i] is the country j in
which study i was conducted. The likelihood is

yh,i |aj [i], bj [i], uj [i],ti ,β, γi, ei, τ
2
i

∼ N
(
aj [i] + bj [i]ti + uj [i],ti(4.1)

+ X′
iβ + γi(zh) + ei,

s2
h,i

nh,i

+ τ 2
i

)
.

aj and bj denote the country-specific intercept and
linear time slope for the j th country (j = 1, . . . , J =
199). These intercepts and slopes are modeled hier-
archically, as discussed in Section 4.1. uj , a vector
of length T = 29, models smooth nonlinear change
over discretized time (t = 1980, . . . ,2008) in coun-
try j (Section 4.2). The matrix X contains study- and
country-level covariates (Section 4.3). The zh’s are
age-group values and the γi(·)’s are their smoothly-
varying study-specific effects; we describe the flexible
age model in Section 4.4. Finally we add a random ef-
fect, ei , to capture study-level heterogeneity, allowing
us to combine data from disparate sources, as described
in Section 4.5.

The likelihood variance has two terms. s2
h,i/nh,i rep-

resents the known sampling uncertainty of mean SBP
for a given age group within a study. We model addi-
tional residual variability across age groups within a
study as τ 2

i (Section 4.5).

4.1 Linear Components of the Time Trends

We model the intercepts and slopes in a hierarchical
fashion, with each country-specific intercept, aj , and
slope, bj , composed of country- (c), subregion- (s),
region- (r) and global-level (g) components. Letting k

index subregions and l index regions, we have

aj = ac
j + as

k[j ] + ar
l[j ] + ag,

bj = bc
j + bs

k[j ] + br
l[j ] + bg.

The constituent random intercepts (ac, as and ar ) and
slopes (bc, bs and br ) each have a normal prior with
mean zero and variance equal to κc

a , κs
a , κr

a , κc
b , κs

b
or κr

b , respectively. The variance parameters determine
the degree of intercept (κa) and slope (κb) shrinkage
performed at the country- (κc), subregion- (κs) and
region-levels (κr ). For the variance parameters, we use
a flat prior on the standard deviation scale (Gelman,
2006). We use flat priors for ag and bg as well. All flat
priors were truncated at 0 and 1000.

4.2 Nonlinear Change in Time

We also model smooth nonlinear change over time
in country j hierarchically: uj = uc

j + us
k[j ] + ur

l[j ] +
ug , with each component of the nonlinear trend mod-
eled using a discrete second-order Gaussian autore-
gressive prior (Rue and Held, 2005). In particular, we
model each of the vectors uc

j (j = 1, . . . , J ), us
k (k =

1, . . . ,K), ur
l (l = 1, . . . ,L) and ug using a normal

prior with mean zero and precision λcP, λsP, λrP and
λgP, respectively. The fixed matrix P penalizes second
differences.

In this portion of the model, we enforce two con-
straints to achieve identifiability. We give the precision
parameters a flat prior on the standard deviation scale
(Gelman, 2006), truncating logλ ≤ 15, as larger val-
ues correspond to essentially no extra-linear temporal
variability. We also enforce orthogonality between the
linear and nonlinear components of the time trends by
constraining the mean and slope of each uc, us , ur and
ug to be zero.

4.3 Covariate Effects

We include six time-varying, country-level covari-
ates: national income, national urbanization and four
measures of national food availability (namely, the
first four terms from a principal components analy-
sis summarizing the availability of many food types,
e.g., meats, pulses, spices). We include interactions
of income and urbanization with time because the
associations may have changed over time (e.g., as
treatment for high blood pressure became available).
We smoothed the country-level covariates using a
triangularly-weighted moving average with weights
decreasing from the year of data collection to the ninth
year prior.

At the study level, we include two covariates to ac-
count for potential bias from data sources that are not
representative of national populations. We account for
potentially time-varying effects of sources that are not
nationally representative. In addition, we account for
differences between study- and country-level urbaniza-
tion using an interaction term.
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4.4 Age Model

Mean SBP generally varies as a nonlinear function
of age (Singh et al., 2012). We model the age effect
using cubic splines with fixed knots at 45 and 60 years:

γi(zh) = γ1izh + γ2iz
2
h + γ3iz

3
h

+ γ4i (zh − 45)3+ + γ5i (zh − 60)3+.

We centered the age variable (zh) at 50 years of
age to reduce dependence among model parameters.
The γ ’s are modeled as γsi = ψs + φsμi + csj [i]
for s = 1, . . . ,5, where μi = aj [i] + bj [i]t + X′

iβ +
uj [i],ti + ei is the blood pressure level for the 50-year-
old age group. We model the spline coefficients for
study i as a linear effect of the level for this base-
line group because blood pressure tends to increase
more sharply as a function of age in countries with
higher SBP levels (Singh et al., 2012). To this, we add
a country-specific random effect to account for addi-
tional country-specific variation in the age effect, with
csj |σ 2

s ∼ N (0, σ 2
s ) and flat priors for the σs ’s (Gelman,

2006).
The age model above is continuous in age. How-

ever, the blood pressure means are reported for discrete
age groups (e.g., mean SBP for 35–44-year-olds). As a
simplification, we used the midpoint of each age range
(e.g., 40 years) as the age value for each data point.

4.5 Study-Specific Random Effects and Residual
Age-by-Study Variability

We account for study-level effects (above and be-
yond sampling variability) that are consistent across
age groups by including a study-specific random ef-
fect, ei . We model these random effects as being nor-
mally distributed with a variance that depends on how
representative the study is of the country’s population:

Var(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νw, if study i is nationally
representative with sample weights,

νu, if study i is nationally
representative without sample
weights,

νs, if study i is “sub-national” (i.e.,
covers multiple provinces/states),

νc, if study i is from
an individual community.

Exploratory analysis and subject-matter knowledge
suggest that even weighted national studies may have
more variability than can be accounted for by sam-
pling variability because of issues with study design

and quality; this is accounted for through the νw vari-
ance term. We then assume that studies that are in-
creasingly less representative have increasing random
effects variances, imposing the set of constraints νw <

νu < νs < νc. The assumption that we should smooth
over (rather than fitting) aberrant data points is substan-
tiated by the larger-than-expected variability among
studies from country-years in which we have multiple
nationally representative studies with sample weights.

We also include a variance term for within-study er-
rors (above and beyond sampling variability) that dif-
fer between age groups. As with the study-specific ran-
dom effects, we use variance parameters that differ de-
pending on the representativeness of the study, where
τ 2
w, τ 2

u , τ 2
s and τ 2

c are defined in an analogous fashion
to νw, νw, νs and νs and with an analogous ordering
constraint.

5. COMPUTATION

We fit the model via Markov chain Monte Carlo
(MCMC), using a combination of conjugate sampling
steps and Metropolis–Hastings updates, with details
provided in Danaei et al. (2011b). We note that in hi-
erarchical models there can be strong dependence be-
tween parameters across levels of the model, in par-
ticular, dependence of random effects and their associ-
ated variance components. To address this, we jointly
sampled random effects with their hyperparameters
(Rue and Held, 2005, Section 4.1.2), which greatly im-
proved convergence and mixing. Finally, we note that
while it is possible to analytically integrate out those
parameters in the mean of the normal likelihood whose
priors were also normal, we avoided doing so because
it would result in off-diagonal structure in the covari-
ance of the likelihood, requiring large matrix manipu-
lations in order to calculate the marginal likelihood.

6. MODEL CHECKING AND INFERENCE

We used posterior predictive checks to ensure that
we had not omitted important interactions and used
cross-validation to ensure that we had not overfit our
data. In addition, we assessed the sensitivity of our in-
ference to the inclusion of country-level covariates. All
model checks were reassuring and full results are given
in Danaei et al. (2011b). In particular, in the cross-
validation our model predicted the known-but-masked
data very well: the 95% prediction intervals covered
94% of excluded study mean values for both men and
women, consistent with the expected 95%.
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We draw from the posterior predictive distribution
for the mean SBP in each country, age and year with
covariates corresponding to a weighted national study
that represents both urban and rural populations. We
then estimate year- and age-group-specific mean SBP
at the subregion level using a population-weighted av-
erage of the mean SBP values for the countries within
the subregion, with analogous estimates for the regions
and globe. We also estimate mean SBP marginalizing
over age by calculating age-standardized values, with
weights for each age group from the World Health
Organization standard population. Epidemiologists are
interested in the linear component of the SBP time
trends to assess whether health status has generally
been improving. To linearize, at each iteration we fit a
simple linear regression of the country’s mean SBP val-
ues against year, collecting the resulting slopes across
MCMC iterations.

7. RESULTS

We additively decomposed the variability in the
country–year predictions for 50-year-olds to under-
stand the variation attributable to mean and time trends
at each of the levels of the hierarchy. For each coun-
try and MCMC iteration, we decomposed the pre-
dicted time series into mean, linear trend and nonlinear
trend (residual). We then decomposed each of these
terms into country-specific variation, subregional vari-
ation, regional variation and global variation, treating
country–time points as the units—that is, the subre-
gional, regional and global terms were averages of the
countries within each subregion, region and globe. This
weighting gives greater emphasis to subregions with
more countries than would treating subregions as units

within regions and regions as units within the globe.
As can be seen in Table 1, country and region varia-
tion predominate, and cross-country variation is more
important than temporal variation.

For females, we note that vc (the variance of random
effects specific to community studies) is large (33.0,
27.9–38.8), suggesting that studies of individual com-
munities do not reflect the country’s mean SBP level
accurately. Although vw (the analogous variance for
nationally representative studies with sample weights)
is smaller (10.8, 6.5–16.0), its magnitude is nonnegli-
gible. Consistent with this, if we include study-specific
variation for weighted national studies in the variance
decomposition above, this accounts for 22.8% (13.6–
34.4%) of the variation for females. This indicates
that even weighted national studies, the highest qual-
ity studies in this analysis, may have imperfect study
design and quality, reflected in the anomalous 2004
study in the U.S. (Figure 1). Similar conclusions hold
for males.

Figure 1 shows example model fits for 50-year-old
females from three countries with differing data den-
sity and study representativeness.

Comparing across subregions in 2008, female SBP
was highest in some east and west African countries,
with means of 135 mmHg or greater. Male SBP was
highest in Baltic and east and west African countries,
where mean SBP reached 138 mmHg or more. Men
and women in western Europe had the highest SBP
among high-income regions.

Figure 2 shows age-standardized regional and global
trends, highlighting a global transition in which car-
diovascular disease risk factor levels have increased in
lower-income regions to become comparable to—and

TABLE 1
Decomposition of variability in predictions (%), with 95% credible intervals subscripted

Country Subregion Region Globe Total

Female
Mean 26.538.651.8 3.47.614.2 16.926.938.5 60.373.184.4
Lin. trend 2.06.815.0 0.72.76.9 3.68.515.2 0.02.610.1 11.520.631.5
Nonlin. trend 0.84.09.3 0.11.02.8 0.11.03.2 0.00.31.4 1.56.313.8

Total 37.449.461.0 6.211.319.8 25.236.448.5 0.12.910.7

Male

Mean 26.440.154.1 5.710.317.1 15.226.037.3 63.076.587.3
Lin. trend 0.93.58.7 0.32.36.9 1.14.08.2 0.01.57.2 5.111.319.9
Nonlin. trend 1.96.613.7 0.41.84.4 0.42.04.9 0.12.06.4 4.312.323.2

Total 37.350.263.5 8.414.422.9 20.732.043.9 0.33.511.0
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FIG. 1. Raw data with model fits for 50-year-old females. The solid line represents the posterior mean, the shaded area the pointwise 95%
credible interval. The vertical error bars show the 95% intervals due to sampling variability (±2s/

√
n).

in places even surpass—those in high-income regions,
in which levels have decreased. A costly epidemic of
high blood pressure in low-income countries may be
the most salient feature of the global cardiovascular
risk transition in the coming decades.

8. DISCUSSION

The results of our analyses using this modeling strat-
egy were published in a series of four risk-factor-
specific papers in 2011 in The Lancet that received

press coverage at the national and global level (in-
cluding the Washington Post, International Herald Tri-
bune, Guardian, Times of India and BBC). The re-
sults were used in the WHO Global Status Report
on noncommunicable diseases (NCDs; WHO, 2011)
and The World Health Statistics, and were presented
at the First Global Ministerial Conference on Healthy
Lifestyles and NCD Control. They were used to se-
lect ambitious but achievable targets for cardiovascu-
lar disease risk factors for the UN high-level meeting

FIG. 2. Male (blue) and female (orange) trends (estimated separately) by region. The solid line represents the posterior mean and the
shaded area the pointwise 95% credible interval. Numerical values are the estimated linearized time trends.
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on NCDs, a task that requires a thorough understand-
ing of past trends. In addition, our results were used by
the US National Academy of Sciences Panel on Inter-
national Health Differences in High Income Countries
(Woolf and Aron, 2013) to understand the role of risk
factors for cardiovascular disease in cross-population
health differentials. Our results were also used to cal-
culate the global burden of disease attributable to CVD
risk factors (Lim et al., 2013), a calculation which
requires comparable estimates by age, sex, year and
country. Researchers working on non-CVD conditions
have also used our results on CVD risk factors, for
example, to examine the role of obesity on cancers
and of maternal obesity on stillbirths in different coun-
tries (Flenady et al., 2011). Finally, our close collabo-
ration with leading global health researchers is helping
to place Bayesian methods that rigorously synthesize
fragmentary data at the heart of the conversation about
methods for measures of health status.

While our confidence in the model is bolstered by
the cross-validation results that indicate that our infer-
ence reflects the important sources of variability, there
are a number of potential model improvements. These
include further consideration of additional covariates,
nonlinear covariate effects and covariate interactions,
including covariate effects that vary by region. In ad-
dition, we would like to have considered more flexi-
ble models for the effects of nonnationally representa-
tive studies and studies representing only rural or urban
populations. While data sparsity led us to assume that a
number of model parameters were constant across re-
gion, it would be worthwhile to investigate allowing
the country-level variance components, including the
autoregressive smoothing parameters, to vary by re-
gion. Finally, our model assessment indicated room for
improvement in the fitted age effect in some countries;
in particular, age effects may vary with time beyond
our modeled interaction with the overall time-varying
level of mean SBP.

Beyond such model selection issues, we close by
noting two important open issues. First, cross-vali-
dation can only assess our quantification of predictive
uncertainty in relation to the observed data; the pres-
ence of additional variability (beyond sampling vari-
ability) related to shortcomings in study quality in the
weighted nationally representative studies makes it dif-
ficult to assess our quantification of uncertainty in the
true country-level trends. Second, we assume that the
presence/absence of data is noninformative; if the stud-
ies or countries represented in the data set are not
missing at random, our results would be biased, with

trend estimates affected by data collection patterns. For
example, if countries with more airports tend to at-
tract both researchers and fast food franchises, then we
could be at risk for overestimating SBP levels.

In summary, efforts to improve global health will de-
pend on reliable estimates of health status, and many of
these estimates will be based on fragmentary data from
disparate sources. The Bayesian paradigm provides a
framework for rigorously combining these data sources
to obtain coherent country-, region- and global-level
inference.
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