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Abstract. Traditional analyses of Functional Magnetic Resonance Imag-
ing (fMRI) use little anatomical information. The registration of the
images to a template is based on the individual anatomy and ignores
functional information; subsequently detected activations are not con-
fined to gray matter (GM). In this paper, we propose a statistical model
to estimate a probabilistic atlas from functional and T1 MRIs that sum-
marizes both anatomical and functional information and the geometric
variability of the population. Registration and Segmentation are per-
formed jointly along the atlas estimation and the functional activity is
constrained to the GM, increasing the accuracy of the atlas.

Keywords: Probabilistic atlas, geometric variability, joint registra-
tion segmentation, atlas-based segmentation, multi-modal, T1 MRI and
fMRI.

1 Introduction

Brain atlas is a useful tool in medical image analysis for both segmentation
and registration. Probabilistic atlases yield a useful summary of a given dataset
[6,7], as they take into account the uncertainty on the underlying tissue type,
which is related to partial volume effect (PVE) or to perfectible registration.
In [3], a probabilistic framework was proposed for joint nonlinear registration,
intensity normalization and segmentation of a single image, from which it infers
tissue probability maps. In [10], a probabilistic model was proposed to segment
a heterogeneous data set of brain MRIs simultaneously while constructing the
probabilistic atlases. In spite of its convincing results, this model is not consistent
as the deformations are considered as parameters (whereas segmentation is an
unobserved random variable). In [13], the model proposed in [3] was generalized
in order to provide estimates of individual segmentation as well as the proba-
bilistic atlas from a set of anatomical images. This approach handles both the
segmentation and registration as hidden variables, leading to a coherent conver-
gent statistical estimator. However, this model is limited to scalar images. Here,
we generalize it to create a probabilistic atlas that provides the probabilistic
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templates of each tissue as well as the degree of activation on GM voxels and
the geometric variability.

Functional Magnetic Resonance Imaging of the brain is used to localize func-
tional areas in the cortex and deep nuclei by measuring MRI signal changes
associated with neural activity. It is a tool of choice for cognitive studies that
aim at identifying specific regions of the brain that are activated in percep-
tual, cognitive or motor tasks. The most popular type of analysis is Statistical
Parametric Mapping (SPM) [5], an approach that estimates the probability that
some activation can be due to chance alone and provides p-value maps. Group
analysis is then used to detect regions that show a positive mean activation
across subjects [4,12]. Accurate realignment of individual scans is most often
obtained by normalizing individual anatomical images to a T1 MRI template.
These processing steps are done without considering the complementarity of
the anatomical and functional information available in each subject. Therefore,
detected activations are not confined to gray matter. Few fMRI segmentation
methods have been proposed to take into account multi-modal data, such as T1
and functional MRI. An implementation of cortical-based analysis of fMRI data
was proposed in [2]. The fMRI data is mapped to the cortical surface, then ac-
tivations are detected on the surface. It has been shown to achieve anatomically
accurate activation detection. In [8], Markov Random Fields (MRF) were used
as a spatial regularization in fMRI detection and anatomical information was
incorporated into the MRF-based detection framework. In [11], both anatomical
and functional data are used to improve the group-wise registrations. Anatom-
ical information appears helpful in fMRI detection; however, the approaches so
far do not incorporate a group model into the analysis. In this paper, we process
multi-modal data jointly to ensure that the detected active areas are conditioned
to gray matter while registration is informed by functional information. More
specifically, group analysis first performs the realignment of individual images to
a T1 MRI template and then segments active regions by thresholding. However,
performing registration and segmentation jointly is generally more effective than
performing them sequentially [13,14]. In this paper, we take advantage of such
coupling.

To deal with all the issues described above, we propose an atlas estimation
procedure that can improve the template image estimation and the detection of
the active areas. We generalize the model proposed in [13]. The input is now
multivariate, as it encodes multi-modal patient observations (gray level T1 and
functional MRIs). The estimated active areas are conditioned to GM segmenta-
tion. We perform the estimation by coupling the segmentation and registration
steps. We estimate a probabilistic atlas that accounts for the variability of active
areas in the population. We also learn the geometry as the metric on the space
of deformations which drives the coupled segmentation. We use a stochastic al-
gorithm with known guarantees on the convergence in the estimation procedure.
The output of the algorithm is the probabilistic atlas, the individual active areas
and the means and variances of each tissue type in each modality.



594 H. Xu, B. Thirion, and S. Allassonnière

The rest of this paper is organized as follows. In Section 2, we present the
model, the estimation procedure, the algorithm. Section 3 yields experimental
results on simulated and real data.

2 Methods

Statistical Model. Let us consider n pairs of T1- and f- MRIs (y1,i, y2,i)1�i�n

from n patients. Each image is observed on a grid of voxels Λ embedded in
a continuous domain D ⊂ R

3. We denote xj ∈ D the location of voxel j.
We consider that each T1 MRI is composed of voxels belonging to one of
the four classes, corresponding to four tissue types: gray matter, white matter
(WM), CSF and background (BG). Each fMRI is composed of voxels belong-
ing to one class among 3 + K, corresponding to WM, CSF and BG, where
no activation is expected to occur, and K different levels of activation in
gray matter. We assume that the signal in the 3 + K classes is normally dis-
tributed with class dependent means (μ1,f(k), μ2,k)k∈{WM,CSF,BG,GM1,...GMK}
and variances (σ2

1,f(k), σ
2
2,k)k∈{WM,CSF,BG,GM1,...GMK}, where f(k) = k if k ∈

{WM,CSF,BG}, GM otherwise. The whole set of parameters is denoted by Θ.
As mentioned previously, we are working with gray level images which have

not been pre-segmented. The unknown class of each voxel is supposed to be the
discretization on Λ of a random deformation of probability maps (Pk)1�k�K+3.
These probability maps correspond to the probability of each voxel to belong to
each class in the template domain. They form the probabilistic template of the
population. The random deformations from this template to each subject are
also unobserved as the images are not pre-registered. We define them through a
random field z : R3 → R

3 such that for j ∈ Λ the prior probability of a voxel j
from subject i to be in the kth class is given by:

P(cji = k) = Pk(xj − z(xj)) . (1)

We define the deformation field as a finite linear combination of a given kernel
Kg centered at some fixed equi-distributed control points in the domain D,
(xg)1�g�kg , with parameter β ∈ (R3)kg

∀x ∈ D, zβ(x) =

kg∑

g=1

Kg(x, xg)β(g) , (2)

where Kg is chosen as a radial Gaussian Kernel. Note that we expect the tissue-
specific information to be found in all the brain volume, hence the whole volume
has to be covered with control points. As for the deformation model, the prob-
ability template maps Pk : R3 →]0, 1[, ∀k ∈ �1,K + 3� are parametrized by the

coefficients αk ∈]0, 1[kp which satisfy ∀l ∈ �1, kp�,
K+3∑
k=1

αl
k = 1. Let (pl)1�l�kp be

some control points :

∀x ∈ D,Pk(x) =

kp∑

l=1

Kp(x, pl)α
l
k, (3)

where Kp(x, pl) = 1 if pl is the nearest neighbor of x among (pj)j , 0 otherwise.
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The previous hypothesis provides a generative statistical model for a sample
of pairs of gray level images. The random variables are the deformation vector β,
the class of each voxel c and the observed gray levels of the images. We assume
that the deformation vector follows a normal distribution with mean zero and
non-diagonal covariance matrix Γg. The hierarchical model is given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βi ∼ N (0, Γg)|Γg; cji ∼
K+3∑
k=1

δkPk(xj − zβi(xj))|βi,
(
yj1,i
yj2,i

)
∼ N

((
μ1,f(k)

μ2,k

)
,

(
σ2
1,f(k) 0

0 σ2
2,k

)) ∣∣∣∣c
j
i = k,

(
μ1,f(k)

μ2,k

)
,

(
σ2
1,f(k)

σ2
2,k

) (4)

where N (·;μ, σ2) is the normal density with mean μ and variance σ2 and δk is a
Dirac function. The covariance matrix Γg is not assumed to have any particular
pattern of zeros. This makes it possible to model local and global correlations
between control point moves, in particular, very correlated displacements can be
captured such as translation of a large area of the images.

The parameters to estimate are the covariance matrix Γg of the deformation
distribution (Eq. (2)), (αk)1�k�K+3 the coefficients that define the template
maps (Eq. (3)), (μ1,f(k), μ2,k)1�k�K+3 and (σ2

1,f(k), σ
2
2,k)1�k�K+3 the class de-

pendent means and variances. As medical images are high-dimensional but usu-
ally come in small samples, we work in a Bayesian framework. We use the stan-
dard conjugate priors for the covariance matrix, the class dependent means and
variances with fixed hyper-parameters. All priors are assumed independent.

Estimation Algorithm. A maximum a posteriori (MAP) approach yields es-

timates of the model parameters: θ̂n = argmaxθ∈Θ qB(θ|(y1,1, y2,1), · · · , (y1,n,
y2,n)), where qB denotes the posterior distribution of the parameters given the
n observations (y1,1, y2,1), ..., (y1,n, y2,n). As we are in an incomplete-data setting,
we choose the Stochastic Approximation Expectation-Maximization (SAEM) al-
gorithm coupled with a Markov Chain Monte Carlo method to take advantage of
its theoretical and numerical properties [1,13]. The SAEM algorithm is an iter-
ative procedure that consists of three steps. First, we simulate the missing data
using a Metropolis-Hastings algorithm within Gibbs sampler. Then a stochastic
approximation is done on the sufficient statistics using the simulated value of
the missing data. Last, we maximize the expected log-likelihood with respect to
the model parameters.

3 Experiments and Results

We test our algorithm on both simulated data and real data. As the SAEM
algorithm is an iterative procedure, we run 250 iterations which was checked to
reach convergence. We initialize β0 = 0 and a random classification c0.

Simulated Data. We use a pair of 64 × 64 × 8 images as the reference images.
We consider here K = 3, i.e. three different levels of activation in GM and 6
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Fig. 1. Experiments on simulated data. The first column displays the first slice of
the probabilistic template, each row corresponding to a class and white/black colors
to high/low probability. The second and third columns show one slice of six pairs of
data images. The forth to seventh columns correspond to the ground truth and the
estimated segmentation for different models.

classes in total. We define the means and the standard deviations as follows
(taking values that are observed in real fMRI for the standard deviations):
(
μ1,1:6

μ2,1:6

)
=

(
1 2 4 3 3 3
0 0 0 2.5 0 −2.5

)
,

(
σ1,1:6

σ2,1:6

)
=

(
0.25 0.25 0.25 0.25 0.25 0.25
0.24 1.22 0.91 0.78 0.71 0.83

)

The training data is composed of 20 pairs of images with random deformations
of our template following Eq. (4) with previous parameters. We take 64 fixed
control points for the deformation model given in Eq. (2), i.e. one control point
in each 4 × 4 × 4 cube. We take all the points in the image as landmarks for
the template model given in Eq. (3).

The most important output of our estimation procedure is the probabilis-
tic template. The estimated probabilistic maps are shown in the first column
in Fig.1, each row corresponding to one class. The white/dark colors represent
high/low probability of the tissues. Our probabilistic maps are sharp, as most
voxels in each class have a probability larger than 0.9. Only voxels at the bound-
ary between two classes are fuzzy which takes into account both the accuracy of
deformation and the level of noise.

As mentioned previously, our model uses both the T1- and f- MRIs because
we want the active areas to be conditioned to GM. We compare our model with
the segmentation model in [13] using fMRI only. The result is shown in Fig.1.
The second and third columns correspond to one slice of six pairs of data images.
The ground truth and the final estimated segmentation of different methods (our
model, the model using fMRI only) are shown from the forth to sixth columns.
From the forth and fifth columns, we can see that the segmentation obtained
with our atlas estimation is accurate. From the fifth and sixth columns, we see
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Table 1. Experiments on synthetic data. Jaccard Index for the different methods
averaged across all data.

BG CSF WM GM1 GM2 GM3

Our model 98.5% 92.3% 88.4% 88.0% 73.1% 90.4%
fMRI only 89.0% 75.0% 69.7% 78.3% 48.2% 81.4%
Pre-Aligned 96.6% 91.1% 87.0% 86.6% 67.8% 86.6%

the improvement using the information provided from the T1 MRI. We calculate
the Jaccard index for each class as a quantitative validation (Table 1) for each
method. Our model yields an accurate segmentation, as only few voxels are
misclassified. For the model using fMRI only, we are only interested in GM1

and GM3 which correspond to the active areas. As the other classes are non-
active, the means of these classes are close to zero, therefore they are difficult
to segment without the MRI tissue type information, leading to lower values
for these classes. Moreover, the Jaccard indexes for the active area are lower
than those obtained with our procedure, which shows that the coupling of both
images information increases the accuracy of detection.

In our model, the registration and segmentation are done jointly, which avoids
any pre-registration. In the preprocessing, each fMRI is pre-aligned to its cor-
responding MR image. However, the inter-subject non-rigid registration is not
done, as it would require a template and would not take into account the fMRI
observation to drive this preprocessing step. We compare our model with the
pre-aligned model which does the registration and the segmentation sequentially.
Fisrt, we use the segmentation model in [13] using the T1 MRIs, we get the de-
formation vector and individual tissue segmentation as our output. Then we
apply the same deformation to the fMRI and detect the activation only in GM.
The estimated segmentation of the pre-aligned model is shown in the seventh
columns in Fig.1. Comparing the fifth and seventh columns, the segmentations
look similar which makes it difficult to say which method gives the better result.
However our model gives less isolated points. Moreover, looking at the Jaccard
indexes (Table 1), we see that our model outperforms the pre-aligned model.
This shows the improvement of doing registration and segmentation jointly.

In-Vivo Data. The proposed method was also tested on a real MRI and fMRI
dataset described in [9]. Both anatomical and functional data were subject to
standard preprocessing using SPM8, including spatial normalization and General
Linear Model analysis. Images are sampled at 3mm resolution, yielding volumes
of shape 46 × 53 × 63. We select a contrast from the fMRI that yields differential
effect of a computation task versus a simple instruction reading/listening. We
have K = 3 levels of activation in the GM, hence 6 classes overall.

We take 792 fixed control points for the deformation model given in Eq. (2),
corresponding to one control points in each 6 × 6 × 6 cube and 23 × 27 × 32
points in the image as the landmarks for the template model given in Eq. (3),
corresponding to one landmark in each 2 × 2 × 2 cube.
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Fig. 2. The estimated template on real data. The yellow/red colors correspond to
high/low probability of the activation for the computation task.

Fig. 3. Experiments on real data showing the detected active areas p > .95 for the
computation task. The first row for our method using both T1- and f- MRI and the
second row for the standard method using fMRI only. Each column corresponds to one
slice of the same patient.

The estimated probabilistic maps, thresholded at the p > .95 level, are shown
in Fig.2. The yellow/red colors correspond to high/low probability of the com-
putation task activation. Our probabilistic maps are sharp. The detected areas
are well conditioned to GM and fits the known active areas for the computation
task. For example, in the slice x = 25mm, we find well the Putamen.

We compared our model with the standard method that thresholds the group-
level mean activation. We represent the active areas in the computation task
overlayed on T1 images. The results of one patient are shown in Fig.3. The first
row for our method uses both T1- and f- MRI and the second row for the method
uses fMRI only. Each column corresponds to one slice of the same patient. In
zone 1, we see that the areas detected as active by our method are limited to
the GM. However, a part of the detected active areas by the non-anatomically
aware method are outside of the brain. In zone 2, the standard method detects
some active areas in WM, while our method does not. These show that we reach
our goal, i.e. the detected active areas are well conditioned to GM. The detected
active areas by our method are similar to those by the standard method in GM,
this shows that our segmentation is accurate.

4 Conclusion

In this study, we proposed a statistical model to detect the active areas in the
brain using both T1 and functional MRI. We used a stochastic algorithm to
perform registration, segmentation and to create a probabilistic atlas simultane-
ously. Our model has several advantages. First, the probabilistic atlas contains
both the templates and the geometric variability of the population. Second, we
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do not need any pre-registration to perform the segmentation which is automat-
ically obtained as an output. Third, the detected active areas are confined to
GM with the information provided from the MRI data. Our experiments show
that we get better results with our algorithm than the standard method. The
detected active areas are well conditioned to GM and the atlas is sharp.
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fMRI studies and conjunction analyses. NeuroImage 10(4), 385–396 (1999)

5. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Firith, C.D., Frackowiak,
R.S.J.: Statistical parametric maps in functional imaging: a general linear ap-
proach. Human Brain Mapping 2(4), 189–210 (1995)

6. Gouttard, S., Styner, M., Joshi, S., Smith, R.G., Cody, H., Gerig, G.: Subcortical
structure segmentation using probabilistic atlas priors. In: SPIE (2007)

7. Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Auto-
mated segmentation of multiple sclerosis lesions by model outlier detection. IEEE
TMI 20(8), 677–688 (2001)

8. Ou, W., Wells III, W.M., Golland, P.: Combining spatial priors and anatomical
information for fMRI detection. Medical Image Analysis 14(3), 318–331 (2010)

9. Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Bihan, D.L., Poline,
J.B., Dehaene, S.: Fast reproducible identification and large-scale databasing of
individual functional cognitive networks. BMC Neuroscience 8 (2007)

10. Ribbens, A., Hermans, J., Maes, F., Vandermeulen, D., Suetens, P.: Sparc: Unified
framework for automatic segmentation, probabilistic atlas construction, registra-
tion and clustering of brain mr images. In: IEEE ISBI, pp. 856–859 (2010)

11. Sabuncu, M.R., Singer, B.D., Conroy, B., Bryan, R.E., Ramadge, P.J., Haxby,
J.V.: Function-based intersubject alignment of human cortical anatomy. Cerebral
Cortex 20, 130–140 (2010)

12. Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., Poline, J.B.: Analysis
of a large fMRI cohort: Statistical and methodological issues for group analyses.
NeuroImage 35, 105–120 (2007)

13. Xu, H., Thirion, B., Allassonnière, S.: Probabilistic atlas and geometric variability
estimation to drive tissue segmentation. Statistics in Medicine (submitted)

14. Yeo, B., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.:
Spherical demons: Fast diffeomorphic landmark-free surface registration. IEEE
TMI 29(3), 650–668 (2010)


	Bayesian Estimation of Probabilistic Atlasfor Anatomically-Informed Functional MRIGroup Analyses
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Conclusion
	References


