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Abstract 

Decisions on the rehabilitation of a sewer system are usually based on a single computation of 
CSO volumes using a time series of rainfall as system loads. A shortcoming of this method is that 
uncertainties in knowledge of sewer system dimensions are not taken into account. Besides, 
statistical uncertainties are left aside. This paper presents the effect of variations in sewer system 
dimensions on return periods of calculated CSO volumes. As an example the sewer system of 
‘De Hoven’ (the Netherlands) is used. CSO volumes per storm event are computed using Monte 
Carlo simulations with a reservoir model of the sewer system. In each Monte Carlo run random 
values for the sewer system dimensions are drawn and substituted in the model. With regard to 
the computed CSO volumes probability distributions are estimated taking into account the 
statistical uncertainties involved. For this purpose so-called Bayes factors are used to determine 
weights that describe how well a probability distribution fits the computed data, i.e. the better the 
tit, the higher the weighing. With the fitted probability distributions the 95% uncertainty intervals 
of calculated CSO volumes and their corresponding return periods are computed. The results 
show that uncertainties in knowledge of sewer system dimensions cause a considerable 
variability in return periods of calculated CSO volumes. 

introduction 

Decisions on sewer system rehabilitations are taken under substantial uncertainties, including 
uncertainties in knowledge of sewer system dimensions. As a result the effectiveness of 
investments in sewer system rehabilitation may be questioned. For example, in the Netherlands a 
number of examples are known in which the rehabilitations did not have the desired effect. 

In current practice, assessment of sewer system performance is based on return periods of 
CSO (Combined Sewer Overflow) volumes and flooding events. However, sufficiently long time 
series of measurements of for example CSO volumes are usually not available for a sewer 
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system. Generating a series of CSO volumes with a model of the sewer system solves this 
problem of data scarcity. The model requires data on sewer system dimensions (e.g. storage 
volume, pumping capacity, contributing areas, etc) and hydraulic loads (precipitation and dry 
weather flow (dwf)). Since only one model run is performed, uncertainties in knowledge of sewer 
system dimensions are not considered. As a result, the effect of uncertainties in system 
dimensions on the return period of calculated CSO volumes remains unknown. 

For quantification of the influence of variations in system dimensions on the return period 
of calculated CSO volumes the probability distribution of calculated CSO volumes needs to be 
estimated. A practical difficulty in fitting probability distributions to CSO data is that often only a 
limited amount of data is available. If only sparse data is available more than one distribution 
seems to fit the observed data and only a few can be rejected on the basis of probability plots or 
goodness-of-fit tests (e.g. C&square or Kolmogrov-Smimov). Uncertainty about the distribution 
type and the parameters of the distribution comprise the statistical uncertainty. As an alternative, 
a Bayesian approach can be used to determine how well a probability distribution tits observed 
data. Bayesian estimation takes into account statistical uncertainties involved. This kind of 
distribution type selection has been applied to civil engineering problems by e.g. Van Gelder ef 
al. (1999), Chbab et al. (2000), Van Gelder (2000) and Van Noortwijk et al. (2001). For 
applications of probabilistic modelling in the field of urban drainage, we refer to Novotny and 
Witte (1997), Reichert (1997), Willems and Berlamont (1999) and Willems (2001). 

This paper discusses the variability in return periods of calculated CSO volumes due to 
uncertainties in knowledge of sewer system dimensions. For this purpose a Bayesian method for 
estimating the probability distribution of calculated CSO volumes is presented. At first, statistical 
uncertainties are treated. Subsequently, Bayesian estimation in general and a Bayesian approach 
for selecting probability models using so-called Bayes weights are considered. The effect of 
uncertainties in sewer system dimension on return periods of calculated CSO volumes is studied 
in a case study. Return periods are computed using Bayesian estimation. The paper ends with 
conclusions. 

Statistical uncertainties 

Types of uncertainty. According to Van Gelder (2000) uncertainties in decision and risk analysis 
can primarily be divided in two categories (Figure 1): 

l Inherent uncertainty: uncertainties that originate from variability in known (or 
observable) populations and therefore represent randomness in samples (e.g. measured 
rainfall volumes). 

l Epistemic uncertainty: uncertainties that originate from lack of knowledge of 
fundamental phenomena (e.g. rainfall-runoff process). 

Inherent uncertainties represent randomness or variability in nature (Figure 1). For 
example, even in the event of sufficient data, one cannot predict the maximum rain intensity that 
will occur next year. The two main types of inherent uncertainty are inherent uncertainty in time 
(e.g. variations of rainfall intensities in time) and inherent uncertainty in space (e.g. fluctuations 
in local terrain slope). 

Epistemic uncertainties represent the lack of knowledge about a physical system, e.g. 
limited knowledge about in-sewer processes (Ashley et al., 1998) (Figure 1). The two main types 
of epistemic uncertainty are model uncertainty (due to lack of understanding of the physics) and 
statistical uncertainty (due to lack of sufficient data). Model uncertainty is subdivided into model 
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parameter and model structure uncertainties, statistical uncertainty into statistical parameter and 
distribution uncertainties. 

In general, epistemic uncertainties can be reduced as knowledge increases and more data 
becomes available. 

time 

uncertainty model parameter 

model structure 

statistical parameter 

Figure 1. Types of uncertainty. Uncertainties can primarily be divided in inherent and 
epistemic uncertainty (Van Celder, 2000). The latter consists of model and statistical 

uncertainty. 

Statistical parameter and dktribution type uncertainty. Statistical uncertainty may contribute 
considerably to the overall uncertainty. The uncertainty caused by the fact that the parameters of 
a distribution (e.g. normal, exponential and lognormal) are determined with a limited number of 
data is called statistical parameter uncertainty. Statistical parameter uncertainty can be calculated 
by means of bootstrapping or Bayesian methods (Van Gelder, 2000). 

In addition to statistical parameter uncertainty, statistical distribution uncertainty is of 
importance. This type of uncertainty represents the uncertainty of the distribution type of a 
variable. For example, beforehand it is not clear whether rainfall intensities are exponentially or 
lognormally distributed or have another distribution. Besides, if only sparse data is available 
more than one distribution seems to fit the observations and only a few can be rejected on the 
basis of goodness-of-fit tests (C&-square and Kolmogorov-Smimov). Bayesian selection 
methods can be used to avoid this problem (Van Gelder, 2000 and Van Noortwijk et al., 2001). 

Bayesian estimation 

Bayesian statistics is the only statistical theory that combines modelling inherent uncertainty and 
statistical uncertainty. The theory of Bayesian statistics is described in detail in a number of 
textbooks such as Benjamin and Cornell (1970). The theorem of Bayes (1763) provides a 
solution to the problem of how to learn from new data. Bayes’ theorem (i.e. the conditional 
probability theorem) is written as, 

(1) 

where ~(01~) is the posterior density of 8 = (64,. . .,&) after observing data x = (xi,. . .A~), @(e/x) is 
the likelihood function of observations x = (xi,. . .,x,,) when the parameter 0 = (f?,,. . .,&) is known, 
n(t)) is the prior density of 8 = (0, ,..., &) before observing data x = (xi ,... ,.x,J and z(x) is the 
marginal density of the observations x = (xi,. . .,x~). 
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If X has a probability density function &x/8), then the likelihood function of the 
independent observations x = (XI,. . . , x,) is given by, 

!(xl6) = I(x,,x,,...,x,/8)=~~(x,!e). 
i-l 

(2) 

The likelihood function of the observations e(x/@) represents the inherent uncertainty of a random 
variable X when B is given. Statistical uncertainty in tl is represented in the prior density ~(0) and 
the posterior density $0/x). Both statistical uncertainties are parameter uncertainty. 

Using Bayes’ theorem a prior distribution can be updated as soon as new observations are 
available. The more new observations are used, the smaller the parameter uncertainty in 0. In 
other words, Bayes’ theorem updates subjective beliefs on the occurrence of an event based on 
new data. With the assessment of sewer system performance one is interested in the probability 
of exceeding a certain CSO volume x0. The posterior predictive probability of exceeding xo is 
calculated from the survival function of X (i.e. probability of exceeding x given parameter vector 
0), which is denoted as, 

(3) 

This gives a posterior predictive probability of exceedance equal to 

Pr(X > x, 1 x} = J Pr{X > x,~e}7r(e~x)d6 = ~F(x,~o)a(qx)de, (4) 
0 e 

where Pr (X > x01x) is the predictive probability of exceeding xo when the observations 
x =(x1,... yrXn) are given. 

Bayesian statistics can not only represent statistical parameter uncertainty, but also take 
into account distribution type uncertainty using Bayes factors or Bayes weights. 

Bayes factors and Bayes weights 

In decision-making for sewer system management the question arises which probability 
distribution should be chosen to model the performance parameter, i.e. CSO volumes. Instead of 
choosing one probability distribution type one could also consider various possible distributions 
and attach weights to the distributions according to how good the fits of these distributions are. 
Weight factors for probability distributions can be determined with different methods (see Van 
Gelder, 2000). 

Hypothes~ testing. The traditional approach would be to formulate two probability models (or 
hypotheses) HI and H2. A test statistic (e.g. 2 test) is used to judge whether hypothesis H1 should 
be rejected or not. Probability model HI is rejected if the test statistic is smaller than a certain 
value, which was determined beforehand. The traditional approach of model testing has quite a 
few disadvantages. It can only be applied if two models are nested. Besides, it can only offer 
evidence against a hypothesis H1 or the alternative HZ. Acceptance of hypothesis H1 on the basis 
of the traditional approach is not possible. 

Buyesiun hypothesis testing. Van Gelder (2000) and Van Noortwijk et al. (2001) use a Bayesian 
method to choose one probability model from a set of possible models. The disadvantages of the 
traditional approach do not exist in this Bayesian hypothesis testing. The number of candidate 
models that can be considered simultaneously is not limited. Moreover, models do not have to be 
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nested (one within another). The Bayesian approach to hypothesis testing originates from the 
work of the physicist Sir Jeffreys (Jeffieys, 1961). It is a methodology for quantifying the 
evidence in favour of a scientific theory using Bayes factors. The approach quantifies statistical 
uncertainty. Kass and Raftery (1995) give a recent overview of Bayes factors. 

Consider a data set x = (xi,. . . ;m) and two candidate probability models Hi and Hz. The two 
hypotheses Hi and & represent two marginal probability densities n(xIH1) and n(xFj2). Given the 
prior probabilities p(H1) and p(H2) = 1 -p(H,) the data produce posterior probabilities p(Hl /x) and 
p(H4x) = l&Hi/x). When the two hypotheses are considered equally probable beforehand, p(H1) 
= p(H2) = 0.5 are chosen. 

The posterior probabilities are obtained using Bayes’ theorem, 

4XlHk hwk > 
p(zzk’x)= p(~iH,)p(ll,)+p(~lli,)p(H,) k= lF2’ 

(5) 

These probabilities are called Bayes weights, i.e. the posterior probability of model Hk being 
correct given the data x = (XI,. . . A,,). The marginal density of the data n(xjHk) under model Hk is 
obtained by integrating with respect to the parametric vector &, 

n(xiHk)=fPtxlek,Hk)IZ(6k/Hk)dek* (6) 

where X(&l&) is the prior density of H4 and &(x/8 $f ) k k is the likelihood function of the data x 
given &. The results can be summarised in the so-called Bayes factor, 

B _ P(fw/P(W) 
12 - 

Pm >/wi, > ’ 
(7) 

which can be reduced using Bayes’ theorem to, 

B _ w4) 
I2 - x(x1 H2). 

Extending (5) to m candidate models Hk (k = 1 , . . . ,m) can easily be obtained, 

P( ‘I, / ‘) = 
n(xIHk)P(Hk) 

m  k = l,...,m, 

c pfxi HI MHi 1 

(8) 

(9) 

,=I 

which results in Bayes factors defined as, 

B = 4xlH,) 

Ik 4XlHk) 
j,k= I ,..., m. (10) 

Non-informative priors. For the purpose of predicting return periods of CSO volumes, one 
would like the observed or computed volumes to ‘speak for themselves’. This means that a prior 
distribution should describe a certain ‘lack of knowledge’. For this purpose so-called non- 
informative priors have been developed. Non-informative priors represent the type of information 
to be used for making the observations dominant when a particular likelihood model is given. 
According to Van Noortwijk et al. (2001) the Jeffreys prior is considered to be most appropriate 
for purposes of ‘fully objective’ formal model comparison. 

A disadvantage of non-informative priors is that these priors are improper, or in other 
words they do not integrate to one. Because of this the Bayes factors in (8) are undefined. The 
prior probability&&) is defined as, 
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where w(Hk) is the prior weight of probability model Hk and J(&jklHk) is the integral over the non- 
informative Jeffieys prior, which is often infinite. The problem is resolved by defining the Bayes 
factors differently, 

(12) 

Using (9) and (I 2) the posterior probability of model H, being correct (i.e. the Bayes weight) can 
be rewritten as, 

4XI04Hk) 

Pw/x)= n 
k= I,...,m. (13) 

It remains to choose the prior weights w(Hk). For formal model comparison Van Noortwijk et al. 
(200 1) propose to use equal prior weights, w(Hk) = l/m, k=l,. . .,m. 

When using the improper Jeffreys prior the marginal density of the data given in (6) is 
difficult to compute. A solution is to approximate the logarithm of the marginal density with the 
Laplace expansion (Van Noortwijk el al., 2001), 

log(?r(x/H)) = ;log(2s)-;log(n)+log((x&H) (14) 

for n--+m, where 6 is the maximum likelihood estimator under model H, d is the number of 
parameters in model H and n is the number of observations. The second and third term on the 
right-hand side of Eq.( 14) form the so-called Schwartz Criterion for model selection. Despite the 
fact that the relative error in the Bayes factor using the Laplace expansion has an accuracy of 
O(l), the approximation appears to work rather well in practice. 

Case study: Return period analysis of sewer system ‘De Hoven’ 

The influence of variations in system dimensions, such as storage capacity and contributing 
areas, on the return period of calculated CSO volumes is studied by modelling the sewer system 
of ‘De Hoven’ (Clemens, 2001). The catchment ‘De Hoven’ (12.69ha) is situated in the 
Netherlands on the banks of the river IJssel in the city of Deventer. The sewer system (865m’) is 
of the combined type and comprises one pumping station (119m’/h) transporting the sewage to a 
treatment plant and three CSO structures. The sewer system is modelled as a reservoir with an 
external weir and a pump. The rainfall runoff is modelled with the so-called NWRW 4.3 model 
(Figure 2), the standard rainfall runoff model in the Netherlands. In this model evaporation, 
inf%ration, storage on street surfaces and overland flow are modelled as described in e.g. 
Clemens (200 1). 

Table 1. Variations in system parameters (from: Clemens, 2001). 

System 
parameter 

S 0-n’) 

P 6 cv (%) 

865.0 43.25 5.0 

pc (m7/h) 119.0 5.95 5.0 

A (ha) 12.69 0.64 5.0 

CC (m0,5/s) 1.40 0.35 25.0 



The influence of variability in four sewer system dimensions is studied: storage volume (S), 
pumping capacity (PC), contributing area (A) and overflow coefficient (CC). These dimensions 
are assumed to be normally distributed with known lo and <r and independent. Averages and 
standard deviations are based on expert judgement (Clemens, 2001). As input of the 
computations a lo-year rainfall series (1955- 1964) of KNMI (De Bilt, the Netherlands) is used. 

1 -@@jjgL 

! I infmefion 

RUN-OFF MODEL 
I 
i.-.-.-.- -.-.---.-..----.-.-!---.- 

overland 17ow 

SEWER MODEL 

(RESERVOIR) 
-..-,..- ..-... -,-- _..-.... - ,.--, ---,,,-,,,--_- ..-. 

,’ 
I 

Figure 2. Model of sewer system. The model comprises a rainfall runoff model and a 
reservoir model with an external weir and a pump. 

A Monte Carlo simulation with 1000 runs is performed. In each run a random value of the 
model parameters (S, pc, A, CC) is drawn from the probability distribution functions. The 
random samples are substituted in the reservoir model. The four parameter values are drawn 
independently, since their covariances are equal to 0 in the reservoir model. Otherwise, a 
simulation scheme based on a multi-variate normal distribution (Cholesky decomposition) can be 
considered. The computed CSO volumes are summed over the storm events. A storm event is 
defined as an event that starts when rainfall occurs resulting in a water level rise in the sewer 
system above dwf level. The event lasts until the water level drops below dwf level again. This 
results in statistically independent storm events and CSO volumes per storm event. 

The uncertainties in the computed CSO volumes comprise not only model parameter 
uncertainty due to the variation in system parameters, but also model structure uncertainty due to 
the strongly simplified reservoir model and inherent uncertainty in time due to the temporal 
variation in rainfall. Model structure uncertainty decreases when a more detailed model is applied 
given sufficient data are available for model calibration. 

Table 2. Prior and posterior Bayes weights for calculated CSO volumes per storm event for 
sewer system ‘De Hoven’. 

Bayes Exponential Rayleigh Normal Lognormal Gamma Weibull Cumbel 
weight 
Prior 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 

Posterior 0.0766 o.oooo o.oooo 0.0087 0.4089 0.5059 0.0000 
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Using Bayes weights the distribution function with the best fit to the CSO data is chosen. 
Exponential, Rayleigh, normal, lognormal, gamma, Weibull and Gumbel distributions are 
considered. The Bayes weights are computed for 10 randomly selected runs from the Monte 
Carlo simulation with 1000 runs. In the computation of the weights, Jeffreys priors are used as 
prior distributions and the Laplace expansion is used for approximation of marginal densities. In 
Table 2 the averages of the prior and posterior Bayes weights of these 10 runs are given. The 
Weibull distribution appears to fit best with a Bayes weight of 51%. Therefore, the Weibull 
distribution is chosen to describe the calculated CSO volumes per storm event. 

A random variable X has a Weibull distribution with shape parameter a>0 and scale 
parameter b>O if probability density is given by, 

‘. (15) 

The corresponding survival function of the Weibull distribution (i.e. the probability of 
exceedance) is defined as, 

(16) 

Given the data x‘= (xi,.-. .;m) the shape parameter a and the scale parameter b of a Weibull 
distribution can be estimated with the Maximum Likelihood (ML) method. As an alternative, the 
parameters could be estimated using Bayes’ theorem. As the number of observations n 
approaches infinity, a ML estimate is similar to a Bayesian estimate with non-informative priors. 
However, the ML estimator produces a point estimate of parameters a and b, whereas a Bayesian 
analysis gives the probability densities of these parameters. The Bayes estimates of a and b are 
the posterior means of the posterior distributions of a and b, respectively. 
For the sake of convenience, a ML estimate is used. The fully Bayesian approach will be applied 
in a forthcoming paper. The loglikelihood of the Weibull distribution is, 

(17) 

With the Maximum Likelihood method those values of a and b are chosen for which the 
likelihood function (2) is maximised. Consequently, the maximum likelihood estimator of 
parameter vector (u,b) is defined as, 

(~,~)=~gY(xlu,b)=~~~log(/(xl(u,b))) (18) 

Computation of return periods of calculated CSO volumes requires not only estimating the 
probability of threshold exceedances (i.e. CSO volumes per event), but also specifying the 
stochastic process of the occurrence times of these exceedances. The threshold exceedances are 
assumed to be mutually independent and to have a Weibull distribution. The occurrence process 
of exceedances of the threshold can be regarded as a Poisson process (see e.g. Buishand, 1989). 
As a result, the return period of a CSO volume depends on the exceedance probability of this 
volume and the average return period of exceedances (irrespective of the volume), 

1 1 
-= 
T “CW’VI 

-*Pr{V&>v,/x}=+-- 
T 

(19) 
cm cm 

(l-Pr{Y,<v,,lx))=~(~-~(~cs~)), 
CSO 

where Tv~.~~>~,, is the return period of calculated CSO volumes (Yeso) larger than VO, Tao is the 

average return period of CSOs irrespective of their volume, Pr{ Vc.&v~~x) is the probability of 
exceeding volume vn given data set x = (xi,... ,x~) of computed CSO volumes and F(VCSO) is the 
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cumulative distribution function of CSO volumes. The average return period of calculated CSOs 
irrespective of the volume is, 

T 
cso 

= #years (over which CSO events are measured) 

# CSO events 
7 (20) 

Figure 3 shows calculated CSO volumes per storm event and their corresponding return 
periods. Both the average CSO volume and the 95% uncertainty interval are displayed. The 
figure is based on the performed Monte Carlo simulation with 1000 runs. It demonstrates that 
calculated CSO volumes with a certain return period show considerable variation. For example, 
in the event of a return period of 0.5~ the average calculated CSO volume is 6.lmm and the 95% 
uncertainty interval of this volume is 2.7mm. However, with a return period of 5y the average 
increases to 22.0mm and the 95% uncertainty interval to 6.2mm. 

RetmpaicdofCSOvc&ms(y) 

Figure 3. Return period of calculated CSO volumes per storm event (including 95% 
uncertainty interval). The CSO volumes per storm event are Weibull distributed. 

Conclusions 

Return periods of calculated CSO volumes are an important criterion in decision-making for 
sewer system rehabilitation. In this paper, the variability in return periods of CSO volumes of the 
sewer system ‘De Hoven’ is determined using Bayes weights. Determination of the distribution 
type of a data set with Bayes weights takes into account statistical uncertainties, which stem from 
lack of data. Using Bayes weights enables discrimination between different probability models 
and quantification of the fit between the distributions and the data. With respect to variability in 
the return periods of CSO volumes in ‘De Hoven’ the following conclusions are drawn: 

l Bayes weights have been successfully applied to estimate return periods of calculated 
CSO volumes taking into account statistical uncertainties involved. 

l Calculated CSO volumes per storm event are Weibull distributed. 
l For a certain return period calculated CSO volumes show considerable variation due to 
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uncertainties in knowledge of sewer system dimensions. The variation increases with 
increasing return periods. 
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