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Abstract
The paper deals with estimating shift point which occurs in any sequence of independent
observations , … … . , , … . . of Poisson model in statistical process control. This
shift point occurs in the sequence when i.e. m life data are observed. The Bayes estimator on
shift point 'm' and before and after shift process means & are derived for symmetric and
asymmetric loss functions under informative and non informative priors. The sensitivity analysis of
Bayes estimators are carried out by simulation and numerical comparisons with R-programming.
The results show the effectiveness of shift in sequence of Poisson distribution.

1. Introduction
In some real life applications, like physical systems manufacturing the items are
often subject to abrupt shifts in the failure rate function, which  are observed due
to overhauls, major operations or specific maintenance activities, that is it may
observed at some point of  time instability in the sequence of life times. Such
observed point is known as shift point. In such situations we are interest to detect
the location where such a shift occurs and have estimate on the shift. In this
paper we have considered the problem of estimating a single shift point in failure
rate function when the observed variables are subject to random censoring.
There are many studies on shift point problem in a sequence of random
variables. Hinkley (1970) studied the shift point problem and considered a
sequence of independent continuous random variables. In Hinkley’s study, the
maximum likelihood estimate was derived for three cases-when means of pre
and post shift point are known but the shift point is unknown, when mean of pre
shift point is known but the shift point and mean of post shift point are unknown
and, when means of pre and post shift point and the shift point are unknown.

Most authors’ investigations are based on the work of Hinkley (1970). For
example, the shift point problem in a sequence of binomial variables is studied by
Hinkley and Hinkley (1970); the shift point in a sequences of exponential and
Poisson variables are investigated by Worsley (1986); Haccou, Meelis and Geer
(1988); Estimation of shift points in a homogeneous Poisson process studied by
Jandhyala and Fotopoulos (1999) and Boudjelaba, MacGibbon and Sawyer
(2001); Fotopoulos and Jandhyala (2001).The study of homogeneous Poisson
process and continuous time shift point problem in such  Poisson process has
been carried out by some authors. For example use of cumulating sum (CUSUM)
control charts and exponentially weighted charts are studied by Montgomery
(2001) and Wu et. al. (2004) to detect shift in target value in production process,
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when small shift (<1.5 ) occur.Lim et. al. (2002), Wu and Tiau (2005) and Zhang
and Wu (2005) considered the applications of CUSUM control charts. Broemeling
(1985) and Broemeling and Tsurumi (1987) provide a literature on structural shift
which denotes a shift in one or more of the parameters in models from the
Bayesian perspective. Its applications are very much useful in the models whose
parameters cannot be clearly defined but in some way such models are involved
with structural shift. Shift point study in Poisson process is very much useful in
earthquake data.

The Bayesian inferential applications can play an important role in study of such
problem of shift points. Many of statisticians like Chin and Broemeling (1980),
Calabria and Pulcini (1994), Zacks (1983), Pandya and Jani (2006), Shah and
Patel (2007,2009), Chib (1998), Altissemo and Corradi (2003) and Fiteni (2004)
studied the shift point Models in Bayesian framework.

In this paper the Bayes estimates of the mean parameters , for the
sequences, before and after shift point ‘m’ of independent  lifetimes from Poisson
population and also Bayes estimate of shift point ‘m’, in  the same sequence of
independent lifetimes from Poisson population are derived for symmetric and
asymmetric loss functions viz. squared error loss function, linex loss function,
precautionary loss function and general entropy loss function under informative
and non informative priors.A sensitivity analysis of these Bayes estimates has
also been presented by simulation and numerical comparison study through R-
programming.

2. Likelihood, Prior, Posterior and Marginal
Let x1, x2,....,xn (n ≥ 3) be a sequence of observed discrete life times. First let
observations x1, x2,...............,xn have come from Poisson distribution with probability
mass function (pmf)  asp(x) = ! ; x = 0,1, … , λ > 0 (1)

Poisson distribution occurs when there are events which do not occurs as
outcomes of a definite number of trials of an experiment but which occur at
random points of time and space wherein our interest lies only in the number of
occurrences of the event , not in its non-occurrences.

Let ‘m’ is shift point in the observation which breaks the distribution in two
sequences as (x1, x2,....,xm ) & (xm+1, ...., xn).

The probability mass functions of the above sequences arep (x) = ! , wherex = 0,1, … , λ > 0 (2)p (x) = ! ,     where x = 0,1, … , λ > 0 (3)

The likelihood functions of p.m.f.’s of the sequences are
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L( λ x α !…… ! (4)L( λ x α ( ) ( )( )!…… ! (5)

Where S = ∑ x and S − S = ∑ x
and the joint Likelihood function is given by;L( λ λ x α !…… ! ( ) !…… ! (6)
Suppose the marginal prior distributions of λ1, λ2 are natural conjugate priorg (λ ) α λ exp(−b λ ), a , b > 0 (7)g (λ ) α λ exp(−b λ ), a , b > 0 (8)
We take the marginal prior distribution of shift point 'm' discrete uniform over the
set{1,2,3,……(n-1)},then
The joint prior distribution of λ1, λ2 and shift point ‘m’ isg λ ,λ , m α λ λ exp(−b λ ) exp(−b λ ) (9)Where λ , λ > 0 & = 1, … … ( − 1)
The Joint posterior density of λ , λ and m say π λ ,λ ; m x is obtained by using
equations (6) and (9) as

π λ1, λ2;m x =
( ) ( ) ( ) ( )( , , , , , ) (10)

Where,ψ(a , a , b , b , m, n) = ∑ ( )( )( ) ( )( )( )( ) (11)

The marginal posterior distribution of shift point ‘m’ using the eqns. (6), (7) and
(8) is

π m x = ( )( )( ) ( )( )( )( , , , , , ) (12)
The marginal posterior distribution ofλ , using the eqns (6)and (7) is

π λ1 x =
∑ ( )λ1 ( ) ( )( )( )( , , , , , ) (13)

The marginal posterior distribution ofλ , using the eqns (6) and (8) is

π λ2 x =
∑ ( )( )( ) ( )λ2 ( )( , , , , , ) (14)

3. Bayes Estimators under Asymmetric Loss Functions
In decision theory the loss criterion is specified in order to obtain best estimator.
The simplest form of loss function is squared error loss function (SELF) which
assigns equal magnitudes to both positive and negative errors. However this
assumption may be inappropriate in most of the estimation problems. Some time
overestimation leads to many serious consequences. In such situation many
authors found the asymmetric loss functions, more appropriate. In this paper we
have considered some of the asymmetric loss functions vizlinexloss function
(LLF) suggested and studied by Varian (1975), Zellner (1986), Basu and
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Ebrahimi (1991), general entropy loss functions (GELF) by Calabria and Pulcini
(1996) and precautionary loss function (PLE) studied by Norstrom(1996). Such
asymmetric loss functions are also studied by Ohtani (1995), Parsian and
Kirmani (2002), Braess and Dette (2004) and Pandyaet. al. (2004).Aitchison and
Dunsmore(1975) and Berger(1985) are the important references of such type of
Bayesian inferential problems.

3.1 Bayes Estimators under Squared Error Loss Functions (SELF)
From a decision – theoretical view point, in order to select value as representing
on ‘best’ estimator, a loss function must be specified. In this section we consider
SELF.
The Bayes estimate of a generic parameter (or function thereof) based on a
SELF is given by

( ,d) ‘d’ is a decision rule to estimate , is posterior
mean. For the shift point ‘m’, which is a non negative integer quantity
m = 1,2,.....,(n-1), the loss function is defined as

(15)
where, is the smallest integer greater than analytical solution.

The Bayes estimate of ‘m’ under SELF using marginal posterior density
equation (12) is given as

(16)

(17)

The Bayes estimate of under SELF using marginal posterior density
equation (13) is given by

(18)

The Bayes estimate of under SELF using marginal posterior density
equation (14) is given by

(19)

3.2 Bayes Estimators under Linex Loss function (LLF)
The asymmetric loss function given by Varian(1975), known as linex loss
function(LLF), is defined as

(20)
Where d is the decision rule to estimate unknown parameter .
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For shift point m, the loss function is defined as
(21)

The Bayes estimate of m under LLF eqn.(21) using marginal posterior of
eqn. (12), is given by

(22)

The Bayes estimate of of using marginal posterior of eqn. (13) under LLF
eqn.(20) is given by

(23)

The Bayes estimate of of using marginal posterior of eqn. (14) under LLF
eqn.(20) is given by

(24)

3.3 Bayes Estimators under Precautionary Loss Function (PLF)
Norstrom(1996) introduced an alternative asymmetric loss function and also
presented a general class of precautionary loss function with quadratic loss
function as a special case. These loss functions approach infinitely near the
origin to prevent the overestimation and thus giving conservative estimators,
especially when low failure rates are being estimated which may lead to serious
consequences.

A very useful and simple asymmetric precautionary loss function is given by
(25)

The posterior expectation is given by
(26)

The value of that minimizes (26) is given by , the Bayes estimator of
under precautionary loss function is obtain by solving the equation;

(27)

For shift point m, the loss function defined as
(28)
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The Bayes estimate of m using the marginal posterior distribution equation
(12) is

(29)

The Bayes estimator of under PLF using the marginal posterior
distribution equation (13) is

(30)

The Bayes estimate of under PLF using the marginal posterior
distribution equation (14) is

(31)

3.4 Bayes estimators under General Entropy Loss Function (GELF)
Occasionally, the use of symmetric loss function, namely SELF, was found
inappropriate, since for example, an overestimation of the reliability function
usually much more serious than an underestimation. Here was considered
asymmetric loss function namely general entropy loss function (GELF) proposed
by Calabria and Pulcini (1994), is given by

(32)
whereas for the shift point m, the loss function is defined as

(33)
where and . Here is the
smalllest integer greater than the analytical solution. In GELF sign and
magnitude of reflects the degree of asymmetry.

The Bayes estimate of m under GELF using marginal posterior distribution
eqn.(12) is

(34)

The Bayes Estimate of under GELF using marginal posterior distribution
eqn.(13), we get
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(35)

The Bayes estimate of under GELF using marginal posterior distribution
eqn.(14) is

(36)

Numerical Comparison
We have generated 20 random observations from poisson distribution with mean

= 2. The observed data mean is = 2.45 and variance is 2.47. Let  the shift in
sequence is at 12th observation, so the means of both sequences (x1,x2,…,xm)
and (x(m+1), x(m+2),…, xn)  are = 2.33, = 2.63. If the target value of is
unknown, its estimating ( ) is given by the mean of first m sample observation
given m=12, .

Table 1

1 2 3 4 5 6 7 8 9 10
4 3 3 2 2 2 2 0 3 0
11 12 13 14 15 16 17 18 19 20
2 5 3 0 4 6 2 3 1 2

We have again generated the random samples of different sizes 15, 20, 25. The
Shift point would lie between 1 to 20 and let the shift point is 12. The Bayes
estimators of and shift point ‘m’ are calculated under Squared error loss
function, Linex loss function, Precautionary loss function and General entropy
loss function by making programs in R-2.11.1 statistical software. We have
repeated these steps for 500 times to calculate the respective M.S.E.’s of various
Bayes estimators by making program in R-2.11.1 and analyzed the data for
comparisons and conclusions.

Sensitivity Analysis of Bayes Estimates
In this section we have studied the sensitivity of the Bayes estimators  of

and shift point ‘m’ with respect to the parameters of prior distribution
and . We have computed the Bayes estimators of m, and under

SELF, LLF, PLF and GELF considering different set of values of prior parameters

and .We have also considered
different sample sizes n=15(05)25.
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Table 2: Bayes Estimates of m, & and their respective M.S.E.'s under
SELF and LLF

( ) ( ) n

(1.5, 1.75) (1.8, 2.0) 15 10

(25.283)

1.041

( 0.501)

0.656

(1.001)

13

(0.195)

1.964

( 1.412)

1.281

(0.963)

20 6

(32.697)

0.684

(1.408)

1.262

(0.037)

17

(9.087)

1.409

(1.263 )

2.364

(0.026)

25 10
(26.920)

0.978
(0.024)

0.979
(2.431)

22
(63.514)

2.039
(0.014)

1.795
(2.506)

(1.75, 2.0) (2.0, 2.25) 15 9

(3.117)

1.054

(0.019)

0.924

(1.095)

13

(0.741)

2.019

(0.005 )

2.021

(0.776)

20 12
(0.007)

0.933
(0.169)

0.849
(1.383)

18
(18.823)

1.668
(0.140 )

1.691
(1.175)

25 17

(4.920)

0.775

(0.204)

0.734

(0.079)

23

(100.676)

1.293

(0.170 )

1.480

(0.021)

(2.0, 2.25) (2.20, 2.5) 15 10
(22.526)

0.975
(0.594)

0.416
(0.304)

12
(0.641)

1.851
(0.339)

0.722
(0.191)

20 8

(21.463)

1.152

(1.306)

0.791

(0.057)

19

(40.432)

1.538

(0.001)

1.229

(0.494)

25 12
(27.310)

1.141
(1.420)

0.830
(0.225)

21
(71.862)

1.584
(0.009)

1.155
(0.617)

(2.25,2.50) (2.40,2.75) 15 8

(15.672)

1.132

(0.513)

0.733

(0.431)

17

(18.368)

1.366

(0.094)

1.101

(0.552)

20 10
(6.542)

0.765
(0.846)

0.655
(1.125)

19
(39.143)

1.525
(0.055)

1.176
(0.553)

22 19

(54.225)

1.507

(0.007)

0.948

(0.556)

21

(70.215)

1.618

(0.001)

1.164

(0.550)

The Bayes estimates of the shift point ‘m’ and the parameters and are
given in table-2 under SELF and LLF and  the Bayes estimates of the shift point
‘m’ and the parameters and are given in table-3 under PLF and GELF.
Their respective mean squared errors (M.S.E’s) are calculated by repeating this
process 500 times and presented in same table in small parenthesis under the
estimated values of parameters.
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Table 3: Bayes Estimates of m, & and their respective M.S.E.'s under
PLF and GELF

( ) ( ) n

(1.8,2.3) (1.3,1.55) 18 16
(14.956)

1.294
(0.012)

1.027
(0.305)

14
(11.453)

1.141
(0.152)

1.029
(.0.495)

20 18
(34.352)

1.558
(0.025)

0.995
(0.356)

17
(31.143)

1.399
(0.567)

1.049
(0.136)

22 20
(62.358)

1.750
(0.006)

1.135
(0.357)

20
(58.017)

1.591
(0.366)

1.238
(0.075)

(1.9,2.4) (1.4,1.65) 18 16
(15.464)

1.724
(0.349)

1.039
(0.321)

15
(12.964)

1.530
(0.479)

1.044
(0.171)

20 18
(31.803)

1.555
(0.003)

1.146
(0.376)

17
(27.638)

1.396
(0.276)

1.199
(0.208)

22 19
(56.149)

1.434
(0.363)

1.156
(0.218)

21
(71.552)

1.597
(0.001)

1.457
(0.422)

(2.0,2.5) (1.5,1.75) 18 16
(15.739)

1.559
(0.012)

1.008
(0.483)

14
(12.964)

1.379
(0.479)

1.009
(0.171)

20 17
(28.788)

1.455
(0.003)

1.053
(0.381)

16
(20.505)

1.303
(2.045)

0.877
(0.321)

22 20
(60.529)

1.506
(0.002)

1.042
(0.467)

19
(54.989)

1.365
(2.012)

0.954
(0.352)

(2.1,2.6) (1.6,1.85) 18 16
(10.199)

1.304
(0.107)

1.054
(0.396)

13
(3.816)

1.140
(2.161)

0.999
(0.407)

20 18
(25.497)

1.453
(0.067)

1.093
(0.399)

16
(16.350)

1.300
(2.147)

1.051
(0.397)

22 19
(55.891)

1.542
(0.002)

1.071
(0.387)

19
(48.764)

1.398
(2.027)

0.093
(0.387)

From the above tables we conclude that –

The Bayes estimates of under PLF and SELF are seem to be efficient as the
numerical values of their mse’s are smaller for and in comparison
with other estimates of the parameters under different loss functions. The Bayes
estimates of both parameters are robust with accurate choice of prior parameters
and sample size. The robustness of the Bayes estimates of shift point ‘m’ are
shown by calculating its expected values and mse’s under all considered loss
functions. The Bayes estimates of shift point ‘m’ under SELF are much effective
and nearer to the considered value of shift point ‘m’ for smaller values of  the
prior parameters and also for smaller sample sizes.
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