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BAYESIAN ESTIMATION OF SPARSE SIGNALS WITH
A CONTINUOUS SPIKE-AND-SLAB PRIOR1

BY VERONIKA ROČKOVÁ

University of Chicago

We introduce a new framework for estimation of sparse normal means,
bridging the gap between popular frequentist strategies (LASSO) and popular
Bayesian strategies (spike-and-slab). The main thrust of this paper is to intro-
duce the family of Spike-and-Slab LASSO (SS-LASSO) priors, which form
a continuum between the Laplace prior and the point-mass spike-and-slab
prior. We establish several appealing frequentist properties of SS-LASSO pri-
ors, contrasting them with these two limiting cases. First, we adopt the penal-
ized likelihood perspective on Bayesian modal estimation and introduce the
framework of Bayesian penalty mixing with spike-and-slab priors. We show
that the SS-LASSO global posterior mode is (near) minimax rate-optimal un-
der squared error loss, similarly as the LASSO. Going further, we introduce
an adaptive two-step estimator which can achieve provably sharper perfor-
mance than the LASSO. Second, we show that the whole posterior keeps pace
with the global mode and concentrates at the (near) minimax rate, a property
that is known not to hold for the single Laplace prior. The minimax-rate op-
timality is obtained with a suitable class of independent product priors (for
known levels of sparsity) as well as with dependent mixing priors (adapting
to the unknown levels of sparsity). Up to now, the rate-optimal posterior con-
centration has been established only for spike-and-slab priors with a point
mass at zero. Thus, the SS-LASSO priors, despite being continuous, possess
similar optimality properties as the “theoretically ideal” point-mass mixtures.
These results provide valuable theoretical justification for our proposed class
of priors, underpinning their intuitive appeal and practical potential.

1. Normal-means revisited. Sparse estimation is fundamental to high-
dimensional statistical learning. Existing methods include the plentiful variants
of the LASSO (a popular frequentist approach) and of spike-and-slab selection
(a popular Bayesian approach). Relevant references include [5, 11, 12, 17, 23,
26, 34, 35, 38, 39]. Here, we cross-fertilize the two paradigms into one unify-
ing framework. To this end, we introduce the family of Spike-and-Slab LASSO
(SS-LASSO) priors. We show that Spike-and-Slab LASSO priors can be optimal
from both penalized likelihood and fully Bayes perspectives. We provide rigorous
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frequentist assessments of the behavior of the global posterior mode, an analog
of the LASSO estimator, and of the entire posterior distribution. For our theo-
retical investigation, we confine attention to the traditional normal means model.
Nevertheless, the ideas developed here reach far beyond this framework.

We focus on the canonical problem of estimating a high-dimensional mean vec-
tor from a single multivariate observation [10, 21]. The observed vector y(n) =
(y1, . . . , yn)

′ arises from

(1.1) Yi = β0i + εi where εi ∼N (0,1), i = 1, . . . , n,

and the goal is estimating β0 = (β01, . . . , β0n)
′ under squared error loss. We ap-

proach this classic problem from both the penalized likelihood and fully Bayes
perspectives, assuming that β0 is possibly sparse. The sparsity here is defined in
the nearly-black sense, where β0 ∈ l0[pn;n] = {β ∈ R

n : ∑n
i=1 I(|βi | �= 0) ≤ pn}

and pn = o(n) as n → ∞. With only one observation for each parameter, esti-
mation can be made more effectual under such sparsity assumptions. The qual-
ity of recovery here will be assessed relative to the benchmark minimax risk
2pn log(n/pn)(1 + o(1)) [14] and the near-minimax risk 2pn logn(1 + o(1)).
Namely, we adopt the view that a good point estimator should have a maximum
risk that is always within a universal constant multiple of the (near) minimax risk.
For instance, the near-minimax rate optimality is known to hold for the LASSO
mode estimator with a penalty λ = √

2 logn [4].
A traditional Bayesian approach to estimating sparse β0 begins with a spike-

and-slab prior on each βi that naturally segregates important coefficients from the
ignorable [6, 12, 17, 23, 26]. This separation is labeled by a vector of latent binary
indicators γ = (γ1, . . . , γn)

′, one γi ∈ {0,1} for each coordinate. A particularly
appealing spike-and-slab variant has been

(1.2) π(βi |γi, λ1) = (1 − γi)δ0(βi) + γiψ(βi |λ1), γ ∼ π(γ |θ),

where δ0(·) is the spike distribution (atom at zero) and ψ(·|λ1) is an absolutely
continuous slab distribution, indexed by a hyper-parameter λ1, and θ is a prior
mixing proportion. Continuous relaxations of (1.2), with δ0(·) replaced by a peaked
continuous density, have also become popular [17–19, 27, 30]. Despite the ubiquity
of the spike-and-slab methodology throughout science, the underlying theory “has
not kept pace with the applications” [20]. Here, we narrow the gap by providing
new theoretical insights for a class of continuous spike-and-slab priors.

One of the earliest theoretical analyses of continuous spike-and-slab priors was
carried out by Ishwaran and Rao [19]. The authors proposed and studied a class
of continuous bimodal priors (two-point student-t mixtures), established oracle-
like misclassification performance of the posterior mean for variable selection [19]
and multigroup classification [18] and coined the term selective shrinkage for the
asymptotic behavior of the posterior mean. More recently, Ishwaran and Rao [20]
went further and established the oracle property [15] of the posterior mean under
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two-point Gaussian mixtures, assuming nonorthogonal low-dimensional designs.
In another development, Narisetty and He [27] established model selection consis-
tency of Bayes factors under Gaussian mixture priors in more general designs with
a diverging number of covariates.

While the literature on theory for continuous spike-and-slab priors has been rel-
atively sparse, there is a large body of theoretical evidence endorsing point-mass
mixture priors [1, 10, 16, 21, 22]. More specifically, [21] analyzed an empirical
Bayes variant of the point-mass mixture prior (1.2) in model (1.1). With a (re-
stricted) marginal maximum likelihood estimate of θ , the posterior mean and me-
dian are shown to attain the minimax rate pn log[n/pn]. Going further, [10] pro-
vided profound theoretical results concerning the entire posterior measure under a
class of priors (1.2). For suitably chosen θ , or a suitable beta-prior π(θ), the en-
tire posterior concentrates at the minimax rate. This remarkable feature reinforces
the prominent position of point-mass mixture priors as benchmark methodologi-
cal ideals [7]. The rate-optimal posterior convergence is typically (under convex
losses) inherited by many posterior functionals, related to both location and spread.
Thus, the optimally concentrating posteriors are conformable to valid recovery and
uncertainty quantification. The notion of the speed of posterior concentration has
become a valuable instrument for frequentist assessments of Bayesian procedures
[3, 9, 25, 28, 36].

Despite their theoretical appeal, the point-mass mixture priors can be im-
practical for posterior simulation. Continuous spike-and-slab priors, on the other
hand, are amenable to fast deterministic computation [30–32]. The Spike-and-Slab
LASSO (SS-LASSO) priors introduced here can thus be viewed as an intermediate
between “the theoretically ideal” [the prior (1.2)] and “the computationally ideal”
(the Laplace prior). Recent methodological implementations of the Spike-and-Slab
LASSO priors are discussed in [31, 32]. In this present work, we focus primarily
on theoretical underpinnings.

Our proposed class of SS-LASSO priors forms a continuum between the point-
mass mixture prior (1.2) and the LASSO (Laplace) prior. This raises several com-
pelling questions. How does this prior fare compared to the two extreme cases?
First, does the SS-LASSO posterior mode attain (near) minimax rates (just like
the LASSO mode)? Second, does the SS-LASSO prior, despite being continuous,
yield optimal posterior concentration [just like the prior (1.2)]? Here, we provide
rigorous answers to these intriguing possibilities.

To answer the first question, we adopt the penalized likelihood perspective on
Bayesian modal estimation [1, 16]. We introduce and develop a framework for
Bayesian penalty mixing under continuous spike-and-slab priors. We flesh out sev-
eral revealing connections between the SS-LASSO and LASSO thresholding op-
erators (for similar comparisons see, e.g., [2, 15, 37, 38] and references therein).
We are primarily interested in SS-LASSO priors that are en route to the ideal prior
(1.2) in the limit as n → ∞. These priors produce highly nonconcave penalties [2,
15] and, inherently, multimodal posteriors. To begin, we provide a nonasymptotic
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upper risk bound for the global posterior mode and establish conditions under
which the global mode attains the (near) minimax risk rate. Our analysis aligns
with an earlier development of Antoniadis and Fan [2], who obtained oracle in-
equalities [13, 38] for a broad class of penalty functions (including ours). Here,
however, we position our results in terms of asymptotic minimaxity rather than
relative ideal risk performance [13]. We demonstrate that the selective shrinkage
ability [19] is not unique to the posterior mean, but is manifested also in pos-
terior modes. Our new insights justify the suitability of spike-and-slab posterior
modes for sparsity recovery, complementary to results known to hold for posterior
mean/median under priors (1.2) [10, 21]. Going further, we propose a data-adaptive
two-step SS-LASSO thresholding rule that achieves a sharper asymptotic rate rel-
ative to nonadaptive estimators (including the LASSO), when the level of sparsity
is unknown. With a suitable beta-min condition, this rate is minimax.

The rate-optimality of the mode (mean/median) and the entire posterior do not
necessarily come together [8]. One surprising example was provided recently for
the LASSO prior. Castillo and van der Vaart [9] show that the posterior distri-
bution concentrates far slower than the LASSO mode, dampening its usefulness
for uncertainty quantification. This can be attributed to the fact that with just one
penalty parameter, the Laplace prior falls short of satisfying the two conflicting
demands of shrinkage and unbiasedness. The SS-LASSO prior can be viewed as
a two-penalty refinement of the single Laplace prior proposed here, to avoid this
conflict.

To provide an affirmative answer to the second question, we study the posterior
concentration of SS-LASSO priors, following the line of research pioneered by
[10] and further developed by [3]. We show that under suitable SS-LASSO priors,
the asymptotic rate-optimality is a global property of the whole posterior measure,
not only of the global mode. We consider independent continuous product priors
obtained with θ fixed, adapting the approach of [3], and further extend the results to
the case of dependent continuous priors induced with a prior π(θ). Our results have
distinct implications in terms of calibration of continuous spike-and-slab priors
and provide valuable theoretical evidence supporting the intuition that with two
parameters, the SS-LASSO prior is well suited for the two simultaneous goals of
estimation and selection.

We begin with a formal introduction of SS-LASSO priors in Section 2 and de-
velop the penalized likelihood perspective in Section 3. Section 4 is devoted to the
discussion of the global mode and its risk properties. Section 5 concerns the fully
Bayes optimality aspects of SS-LASSO priors. Section 6 presents a simulation
study and Section 7 concludes with a discussion.

2. The spike-and-slab LASSO prior. We introduce the family of Spike-and-
Slab LASSO priors for Bayesian inference about β = (β1, . . . , βn)

′ in sparse set-
tings. Specified hierarchically with an intermediate vector of latent binary variables
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γ = (γ1, . . . , γn)
′, γi ∈ {0,1}, the SS-LASSO prior on β is defined as

(2.1) π(β|γ ) =
n∏

i=1

[
(1 − γi)ψ(βi |λ0) + γiψ(βi |λ1)

]
, γ ∼ π(γ |θ),

where ψ(β|λ) = λ
2 exp{−λ|β|} is a Laplace distribution with mean 0 and vari-

ance 2/λ2. With λ0 
 λ1, the spike distribution ψ(βi |λ0) will be concentrated
around zero, while the slab distribution ψ(βi |λ1) will be relatively diffuse. Al-
though the choice of π(γ ) offers rich potential for modeling γ , we shall focus
primarily on the exchangeable case π(γ |θ) where the entries in γ = (γ1, . . . , γn)

′
are i.i.d. Bernoulli with

(2.2) P(γi = 1|θ) = θ.

The point-mass mixture prior (1.2) is obtained as a limiting special case of (2.1)
when λ0 → ∞, whereas the LASSO prior is obtained by setting λ0 = λ1.

As will be seen, this mixture prior (2.1) induces a variant of “selective shrink-
age” [19] that adaptively segregates the active coefficients from the ignorable. By
treating the coefficients differentially, this property is crucial to obtaining a fine
balance between bias and shrinkage. This aspect plays an integral role in our theo-
retical analysis. Thereby it is worthwhile to briefly expand on the Bayesian mech-
anism underlying this property. The implications for frequentist penalized likeli-
hood estimation will be drawn in the next section.

Conditionally on θ , the prior (2.1) induces a posterior π(β|y(n), θ) =∏n
i=1 π(βi |yi, θ) under which β1, . . . , βn are independent and

π(βi |yi, θ) = π(βi |yi, γi = 1)P(γi = 1|yi, θ)
(2.3)

+ π(βi |yi, γi = 0)P(γi = 0|yi, θ).

The posterior (2.3) puts more weight on mixture components best supported by the
data through the distribution π(γ |y(n), θ) = ∏n

i=1 π(γi |yi, θ). For example, (2.3)
will be dominated by the spike posterior π(βi |yi, γi = 0) when π(γi = 0|yi, θ)

is large, signaling that βi has a higher probability of being small. On the other
hand, when π(γi = 1|yi, θ) is large, (2.3) will be dominated by the slab posterior
π(βi |yi, γi = 1) in which case βi is allowed to take larger values. This mechanism
underlies the selective shrinkage ability of the posterior, and its functionals that is
typical for the spike-and-slab priors.

Further adaptivity can be obtained with a fully Bayes variant of (2.2) by assum-
ing θ ∼ B(a, b), where B(a, b) denotes the beta distribution with shape parameters
a and b. This prior renders the elements in β a-priori (and a-posteriori) dependent.
We will study the property of the full posterior measure under this beta-Bernoulli
hierarchical construction in Section 5.3.

The following notation will be used throughout the paper. For sequences an

and bn, an � bn means an/bn → c for some c > 0, an � bn means an = O(bn).
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We will denote by ψ0(β) the Laplace spike density ψ(β|λ0) and by ψ1(β) the
Laplace slab density ψ(β|λ1). By φ(β), we denote the density of the standard
normal distribution. Denote by ‖ · ‖1 the l1 norm, by ‖ · ‖ the l2 norm, by ‖ · ‖0 the
l0 norm and by βS the subvector of β containing entries in S ⊂ {1, . . . , n}.

3. Spike-and-slab: The penalized likelihood perspective. Before studying
the posterior distribution in its entirety, we will examine one of its functionals,
the global posterior mode. A key to our approach will be drawing upon connec-
tions between posterior modes and penalized likelihood maximizers, the LASSO
in particular.

Our interest in posterior modes was motivated by the following practical consid-
erations. There are many ways to use information from the posterior for variable
selection. Rather than relying on the post-data selection uncertainty in π(γ |y(n), θ)

to select coefficients, a strategy computationally very involved, we can let posterior
modes automatically threshold out the irrelevant coordinates. In contrast, existing
continuous spike-and-slab priors [17, 18, 27, 30] yield nonsparse posterior modes
that must be thresholded for variable selection.

The modes can be viewed as penalized likelihood estimators associated with
a penalty logπ(β|θ). A single Laplace prior yields the familiar LASSO penalty
λ

∑n
i=1 |βi |. For our SS-LASSO prior, the penalty is obtained from (2.1) by

marginalizing γ out with respect to π(γ |θ). We will assume throughout this sec-
tion that the mixing proportion θ is fixed. This facilitates manipulations with the
SS-LASSO penalty, because it is separable conditionally on θ . Thus, we can write
logπ(β|θ) = ∑n

i=1 pen(βi) where

(3.1) pen(βi) ≡ log
[
(1 − θ)ψ(βi |λ0) + θψ(βi |λ1)

]
, i = 1, . . . , n.

Unlike the LASSO penalty that is linear both in |βi | and λ, the SS-LASSO penalty
(3.1) is a nonlinear functional of both |βi | and (λ1, λ0, θ). Despite the apparent
differences, there is an interesting connection between the two penalties. This con-
nection is unveiled after taking a derivative. The derivative corresponds to an im-
plicit bias term and plays a crucial role in estimation [15]. For the SS-LASSO
penalty (3.1), we have

(3.2)
∂ pen(βi)

∂|βi | = −λ1p
�(βi) − λ0

[
1 − p�(βi)

] ≡ −λ�(βi),

where

(3.3) p�(βi) = θψ1(βi)

θψ1(βi) + (1 − θ)ψ0(βi)
.

On the other hand, a single Laplace prior yields ∂ logψ(βi |λ)
∂|βi | = −λ. Thus, the SS-

LASSO bias term (3.2) is a convex combination of two LASSO bias terms. Im-
portantly, the combination is adaptive, because p�(βi) depends on βi . This is a
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unique feature of a spike-and-slab penalty, which weights the contributions from
the spike and the slab individually for every coefficient. In sharp contrast, the
LASSO penalty assigns the same amount of bias to every single coefficient, re-
gardless its size. This is often a source of conflict between shrinkage and bias. The
additional flexibility of λ�(βi) greatly alleviates this conflict.

The mixing proportion p�(βi) can be viewed as a conditional probability of
inclusion, having seen the regression coefficient βi . This interpretation comes di-
rectly from (3.3), which is P(γi = 1|βi, θ) by the Bayes theorem. It is clear that

(3.4) p�(βi) = 1

1 + (1−θ)
θ

λ0
λ1

exp[−|βi |(λ0 − λ1)]
is exponentially increasing in |βi |. This function has a sudden increase from near-
zero to near-one. The transition occurs at the intersection point between the spike
and slab densities. The intersection point will be introduced formally later and will
play a fundamental role in quantifying the speed of posterior concentration.

In the following, we will describe the implications of the Bayesian penalty mix-
ing for the global posterior mode estimator. Conditionally on θ , the posterior fac-
torizes into an independent product:

(3.5) π
(
β|y(n), θ

) =
n∏

i=1

exp
[
L(βi, yi)

]
,

where

(3.6) L(βi, yi) = −1

2
(yi − βi)

2 + pen(βi)

is the log-posterior contribution from a single observation yi . Define by

(3.7) β̂ = arg max
β∈Rn

π
(
β|y(n), θ

)
the global posterior mode, which will be further referred to as the SS-LASSO
estimator. Due to the separability, β̂ = (β̂1, . . . , β̂n)

′ can be obtained coordinate-
wise, where each β̂i is the global mode of the univariate log-posterior L(βi, yi)

in (3.6).
As with the LASSO penalty [34], an important necessary characterization of the

solution β̂ can be derived from first-order conditions.

LEMMA 3.1. The individual entries β̂i of the global mode β̂ = (β̂1, . . . , β̂n)
′

satisfy

(3.8) β̂i = (|yi | − λ�(β̂i)
)
+ sign(yi),

where

(3.9) λ�(βi) = λ1p
�(βi) + λ0

[
1 − p�(βi)

]
.
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PROOF. From the subdifferential calculus, it is necessary that

∂(yi − βi)
2

∂βi

∣∣∣
βi=β̂i

= 2λ�(β̂i) sign(β̂i) if β̂i �= 0,

∣∣∣∣∂(yi − βi)
2

∂βi

∣∣∣
βi=β̂i

∣∣∣∣ ≤ 2λ�(β̂i) if β̂i = 0,

which completes the proof. �

Equation (3.8) resembles the necessary and sufficient characterization of the
LASSO solution in orthogonal designs. There are, however, some fundamental
differences. First, λ�(β̂i) is unique to each coefficient. This occurs also with the
adaptive LASSO [38], which assigns fixed coefficient-specific penalties. The ma-
jor difference here is that the penalties λ�(β̂i) are not fixed, but adaptive to the
data through β̂i . More precisely, λ�(β̂i) is a “self-adaptive” linear combination of
spike and slab penalties, weighted by p�(β̂i). Promising coefficients have p�(β̂i)

close to one and are shrunk less. This is because λ�(β̂i) is driven primarily by λ1,
which is set to be small to avoid overshrinkage. The opposite happens with small
coefficients. Small β̂i ’s in the basin around zero have a small inclusion probability,
where λ�(β̂i) is taken over by the large penalty λ0. This is a manifestation of the
selective shrinkage property behind the SS-LASSO estimator.

Conditionally on θ , the coordinates are independent and the solution β̂i depends
on y(n) only through yi . However, because λ�(β̂i) depends on β̂i , obtaining β̂i

from (3.8) is far from obvious. Ultimately, there are at most two local maxima of
L(βi, yi). As illustrated in Figure 1, a local maximum can occur at zero, elsewhere

FIG. 1. Plots of L(βi, yi) for different values of λ0, assuming λ1 = 0.1, θ = 0.5 and yi = 2.
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or both. If |yi | < λ1, the global mode β̂i occurs at zero. Similarly, if |yi | > λ0, then
β̂i �= 0. From the characterization (3.8), the nonzero posterior mode β̂i �= 0, if it
exists, satisfies the implicit relationship

(3.10) |yi | = |β̂i | + λ�(β̂i).

However, if L(βi, yi) is bi-modal, (3.10) is also satisfied by a local maximum
β̃i as well as a local minimum separating the posterior modes [β�

i in Figure 1(b)].
Thus, the global mode is not uniquely characterized by (3.8). This may occur when
the SS-LASSO penalty is strongly nonconcave. The extent of the nonconcavity
can be quantified by the maximal nonconcavity number κ(λ0, λ1) [24], defined as

κ(λ0, λ1) = maxβ{ ∂2 pen(β)

∂|β|2 }. The second derivative of the penalty function can be
written as

(3.11)
∂2 pen(β)

∂|β|2 = p�(β)
[
1 − p�(β)

]
(λ0 − λ1)

2,

and where p�(β) is defined in (3.3). With κ(λ0, λ1) < 1, the posterior L(β,y)

will be concave and thereby unimodal. The second derivative is maximized when
p�(β) = 0.5. This occurs at the two intersection points ±δ(λ0, θ) between the
spike and slab densities where

(3.12) δ(λ0, θ) = 1

λ0 − λ1
log

[
1 − θ

θ

λ0

λ1

]
.

The intersection point (3.12) is here expressed as a function of (λ0, θ), the two
sparsity parameters of the main focus, and will reoccur in Section 5 and Sec-
tion 5.3, where it will be an important ingredient for characterizing a gener-
alized notion of sparsity. To continue, the maximal nonconcavity then equals
κ(λ0, λ1) = 1

4(λ0 − λ1)
2. Thus, the posterior distribution π(β|y(n), θ) in (3.5) has

a unique mode, whenever (λ0 − λ1)
2 < 4.

The single Laplace prior, obtained as a special case when λ1 = λ0, is known
to yield single-mode posteriors. Thus, it is not surprising that unimodal posteriors
occur when λ0 and λ1 are not too different. However, here we focus primarily on
penalties that are en route to the limiting ideal (1.2) when λ0 → ∞ as n → ∞. Let-
ting λ0 and λ1 grow apart as n → ∞ will be essential for achieving optimal rates of
convergence. The ambient penalties in this asymptotic regime are, however, very
nonconcave and the posteriors, thus, may possess many local optima.

In order to investigate the estimation aspects of the global mode, we need a more
refined characterization, which sets it apart from all the local solutions satisfying
the first-order condition (3.8). The following function plays a principal role in this
characterization:

(3.13) g(x) = [
λ�(x) − λ1

]2 + 2 logp�(x).

We also need the following notation. Denote by

c+ = 0.5
(
1 +

√
1 − 4/(λ0 − λ1)2

)
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and

(3.14) δc+ = 1/(λ0 − λ1) log
[

1 − θ

θ

λ0

λ1

c+
1 − c+

]
.

Note that p�(δc+) = c+ > 0.5 and pen′′(δc+) = 1. Thus, δc+ is an inflection point
of L(β;y). Because c+ > 0.5, δc+ is greater than the intersection point δ(λ0, θ).
The significance of δc+ is in the fact that the curvature of L(β;y) at δc+ indi-
cates the presence of multimodality and the degree of separation between posterior
modes. An important quantity for us will be the value g(δc+).

The following theorem uniquely characterizes the global mode and formalizes
the intuition that, unlike the posterior mean, the mode is a strict thresholding rule.

THEOREM 3.1. Denote by β̂ = (β̂1, . . . , β̂n)
′ the global posterior mode (3.7).

Then

β̂i =
{

0 when |yi | ≤ �,[|yi | − λ�(β̂i)
]
+ sign(yi) when |yi | > �.

Furthermore, when (λ0 − λ1) > 2 and g(0) > 0 we can write

�L < � ≤ �U,

where

(3.15) �L =
√

2 log
[
1/p�(0)

] − d + λ1 and �U =
√

2 log
[
1/p�(0)

] + λ1

and 0 < d = −g(δc+) and δc+ is as in (3.14).

PROOF. See the supplementary materials ([29], Section 1.1.1). �

The global mode thresholds out values below �L < � ≤ �U , where �U de-
pends on (λ1, λ0, θ) through p�(0). Recall that p�(0) = θλ1

θλ1+(1−θ)λ0
is the relative

height of the slab density at zero. This quantity will be fundamental for controlling
the risk of the global mode and posterior concentration properties. The assumption
g(0) > 0 in Theorem 3.1 guarantees that p�(0) is sufficiently far away from zero.
This condition will be satisfied, for instance, when λ1 ≤ e−2 and λ0 ≥ 1/θ + 3,
where 0 < θ ≤ 0.5.

Theorem 3.1 has important practical implications for calibrating the SS-LASSO
priors. Suppose λ0 → ∞ and λ1 < 1 is fixed. According to Lemma 1.2 (sup-
plementary material [29]), we have d < 2 − ( 1

λ0−λ1
− √

2)2 so that d → 0 as

(λ0 − λ1) → ∞. Thus, �L approaches the pseudo-threshold �U as (λ0 − λ1) →
∞. Moreover, (3.4) implies limλ0→∞ p�(|x|) = 1 for any |x| > 0. Consequently,
limλ0→∞ λ�(|x|) = λ1 for |x| > 0. Therefore, as λ0 → ∞, the global mode ap-
proaches the following estimator:

(3.16) β̄ =
{

0 when |y| ≤ �,(|y| − λ1
)
+ sign(y) when |y| > �.
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This limiting estimator highlights the two distinct roles of the spike and slab
penalty parameters (λ0, λ1, θ). The slab penalty λ1 controls the bias of nonzero
effects, whereas (θ, λ0) control the size of the selected model (through �). Inter-
estingly, the estimator (3.16) relates to known thresholding operators [13] through
the following connection: |β̂ST| ≤ |β̄| ≤ |β̂HT|, where β̂ST = (|y| − �)+ sign(y)

is the soft-thresholding operator and β̂HT = |y|I(|y| > �) is the hard-thresholding
operator. Both β̂ST and β̂HT satisfy the so called oracle inequality [13] when �

equals (is sufficiently close to)
√

2 logn. The oracle inequality implies that the
attained performance in terms of squared error loss differs from the ideal perfor-
mance by at most a factor of 2 logn. The estimator β̄ ought to possess a similar
optimality property when � � √

2 logn [i.e., 1/p�(0) � n] [2]. This asymptotic
consideration provides useful insight into tuning λ0, θ and λ1, and conveys the in-
tuition that controlling 1/p�(0) will be crucial for achieving good risk properties
of β̂ .

4. Risk properties of the global mode. The similarities between the LASSO
and SS-LASSO estimators apparent in (3.1) suggest that there be similarities also
in terms of risk performance. Because the SS-LASSO estimator is a two-penalty
refinement of the LASSO estimator, we would expect it to perform at least as
well. In this section, we provide an affirmative answer. In Section 4.1, we show
how improvements over the LASSO can be obtained with a two-step SS-LASSO
estimator.

The following theorem presents a nonasymptotic upper risk bound for the SS-
LASSO estimator β̂ over l0[pn;n] under the squared error loss. The bound is ex-
pressed in terms of 1/p�(0) = 1 + 1−θ

θ
λ0
λ1

.

THEOREM 4.1. Suppose (λ0 −λ1) > 2 and λ1 < e−2. Assume the model (1.1)
with β0 ∈ l0[pn;n]. Let d be as in Theorem 3.1 and assume g(0) > 0. Then the
risk of the global mode β̂ satisfies

Eβ0
‖β̂ − β0‖2 < 8pn

(
1 + log

[
1/p�(0)

])
(4.1)

+ 4n√
π

edp�(0)
(
1 +

√
log

[
1/p�(0)

])
.

PROOF. See the supplementary materials ([29] Section 1.2.1). �

According to Theorem 4.1, the triplet (λ0, λ1, θ) affects the risk of β̂ through the
functional 1/p�(0). Here, we consider λ1 fixed to a small constant. Thereby, the
asymptotic behavior of (4.1) is affected by (λ0, θ), the two parameters controlling
the sparsity of the solution. The question remains, what values of (λ0, θ) yield
β̂ with the minimax risk, possibly up to a multiplicative constant. The answer is
provided in Corollary 4.1.
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COROLLARY 4.1. Assume model (1.1) with β0 ∈ l0[pn;n], where pn,n → ∞
and pn = o(n). Suppose λ1 < e−2 and

(4.2) θ �
(

pn

n

)α

and λ0 �
(

n

pn

)ν

,

for α ≥ 0, ν > 0 and α + ν ≥ 1. If (λ0 − λ1) > 2 and g(0) > 0, then we have

sup
β0∈l0[pn;n]

Eβ0
‖β̂ − β0‖2 � pn log(n/pn).

PROOF. Applying Theorem 4.1, we find p�(0) � λ1(pn/n)α+ν and λ1ed < 1.
If α+ν ≥ 1, both summands in (4.1) are dominated by the term pn log[1/p�(0)] �
(α + ν)pn log(n/pn). �

Corollary 4.1 provides valuable insights into the delicate interplay between θ

and λ0. The mixing weight θ in (4.2) relates to the true proportion of the nonzero
elements pn/n. This is no surprise, since θ is often regarded as a proxy for the pro-
portion of active coefficients. A more surprising finding is that λ0 should increase
ideally at a rate (n/pn)

ν . Any faster increase would have to be compensated by a
slower decay of θ in order to maintain the balance. Thus, the parameters λ0 and
θ are ultimately tied with each other [through p�(0)] and have to cooperate in or-
der to achieve optimal performance. This conveys an important conclusion that the
rate at which the SS-LASSO prior approaches the limiting ideal (1.2) should not
be arbitrary.

Interestingly, θ actually does not have to be adaptive as long as λ0 is. Indeed,
with α = 0 and λ0 ∼ (n/pn)

ν for ν ≥ 1 we can still obtain the minimax perfor-
mance. This shows that the traditional interpretation of θ as the sparsity level does
not necessarily pertain to the continuous spike-and-slab priors. The use of adap-
tive θ is thus not crucial for the posterior mode. However, it will be crucial for the
posterior distribution, as will be seen in Section 5 and Section 5.3.

Recommendations for the choice of hyper-parameters (θ, λ0) can be obtained
by matching the dominant term 8pn log[1/p�(0)] in (4.1) to the minimax risk
2pn log[n/pn]. For instance, with λ0 = n/pn and (1− θ)/θ = λ1, the leading term
becomes 8pn log[1 + n/pn], inflating the minimax rate only by a factor of 4. An-
other possibility is setting λ0 = (1 − θ)/(θλ1) = (n/pn)

1/2 which yields the same
upper bound. Generally, larger values α +ν > 1 will inflate the multiplication con-
stant in front of the minimax rate. We explore the practical implications of these
hyper-parameter choices in Section 6.

Corollary 4.1 provides asymptotic minimax optimality when pn is known, an
assumption rarely available. However, with the following automatic choice of
(λ0, θ), near-minimax performance can be achieved when pn is unknown.



SPIKE-AND-SLAB LASSO PRIORS 413

COROLLARY 4.2. Assume model (1.1) with β0 ∈ l0[pn;n], where pn,n → ∞
and pn = o(n). Suppose λ1 < e−2 and

(4.3) θ � 1/nα and λ0 � nν,

where α ≥ 0, ν > 0 and α + ν ≥ 1. If (λ0 − λ1) > 2 and g(0) > 0, then we have

sup
β0∈l0[pn;n]

Eβ0
‖β̂ − β0‖2 � pn log(n).

PROOF. With (4.3), we obtain 1/p�(0) = 1+nα+ν/λ1, yielding a risk of order
pn logn(1 + o(1)). �

REMARK 4.1 (Connection to the LASSO estimator). Recall that the LASSO
estimator β̂λ attains the near-minimax risk 2pn logn(1 + o(1)) with the universal
penalty λ = √

2 logn. As in Theorem 4.1, we can obtain an analogous upper risk
bound for β̂λ: Eβ0

‖β̂λ − β0‖2 ≤ pn(2 + 4λ2) + (n − pn)4λψ(λ). This bound,
despite improvable, showcases the analogy between λ (the LASSO complexity
penalty) and

√
log[1/p�(0)] (the SS-LASSO complexity penalty). When λ0 and

θ are as in (4.3),
√

log[1/p�(0)] is of the same order as the universal penalty√
2 logn. Thus, β̂ also attains the near-minimax risk up to a constant.

So far, our minimax-rate optimality result in Corollary 4.1 was obtained under
the assumption that pn was known. Now, we show how the performance of the
SS-LASSO posterior mode can be sharpened in the absence of knowledge of pn.

4.1. Adapting to unknown levels of sparsity. We design adaptive penalized
likelihood estimators that aspire to mimic the oracle performance obtained with
(θ, λ0) chosen so that � � √

2 log(n/pn) when pn is unknown. We pursue a two-
step approach inspired by empirical Bayes considerations.

We begin by showing that under the assumptions of Corollary 4.2, the estimator
p̂n ≡ ‖β̂‖0 overshoots pn by at most a constant factor (with large probability).

THEOREM 4.2. Under the assumptions of Corollary 4.2, the following two
statements hold with probability at least 1 − 2

n
. The estimator p̂n ≡ ‖β̂‖0 satisfies

p̂n ≤ pn(1 + C),

where 0 < C < 2 whenever α + ν − 4(1 + λ1) > c > 0. Moreover, if |β0i | > b0 >

D
√

pn logn for each β0i �= 0 and some suitable D > 0, then pn ≤ p̂n.

PROOF. See the supplementary materials ([29], Section 1.2.2). �

Now we introduce a two-step SS-LASSO approach.
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DEFINITION 4.1. Denote by p̂n = ‖β̂‖0, where β̂ is the SSL posterior mode
from Theorem 4.2. The two-step SS-LASSO estimator β̂TS is defined as the
SS-LASSO posterior mode obtained with 0 < λ1 < e−2, θ � (

p̂n+1
n

)α and λ0 �
( n
p̂n+1)ν for some α ≥ 0, ν > 0 and α + ν = 1.

Note that β̂TS corresponds to the one-step SS-LASSO estimator from Corol-
lary 4.2 when p̂n = 0. The following theorem provides an upper bound for the
maximal risk of β̂TS.

THEOREM 4.3. Let β̂TS be the two-step estimator from Definition 4.1, where
p̂n > 0. Then

(4.4) sup
β0∈l0[pn;n]

Eβ0
‖β̂TS − β0‖2 � pnEβ0

log
(

n

p̂n

)
.

Moreover, if |β0i | > b0 > D
√

pn logn for each β0i �= 0 and some suitable D > 0,
then β̂TS achieves the minimax rate pn log(n/pn).

PROOF. With (θ, λ0, λ1) given in Definition 4.1, we have 1−θ
θ

λ0
λ1

� n
p̂n+1 and

thereby p�(0) � p̂n+1
n

. Theorem 4.1 yields

Eβ0
‖β̂TS − β0‖2 � pnEβ0

log
[
1/p�(0)

] + nEβ0
p�(0)

√
log

[
1/p�(0)

]
.

(4.5)

According to Theorem 4.2, we have Pβ0
[p̂n < (1 + C)pn] > 1 − 2

n
. Thereby, the

second term in (4.5) can be upper-bounded by a constant multiple of

Eβ0
p̂n

√
log

[
1/p�(0)

]
<

[
(1 + C)pn

(
1 − 2

n

)
+ 2

n
n

]√
log

[
1/p�(0)

]
.

The first term in (4.5) thus dominates the second term, where log[1/p�(0)] �
log( n

p̂n+1). This observation directly implies (4.4). The second statement follows

again from Theorem 4.2 by noting Eβ0
log( n

p̂n+1) < (1 − 2
n
) log( n

pn
) + 2 logn

n
�

log( n
pn

). �

Theorem 4.3 shows that when p̂n → ∞ (as pn,n → ∞), β̂TS improves on the
nonadaptive estimators (such as the LASSO with λ ∼ √

2 logn or the SS-LASSO
estimator from Corollary 4.2) by achieving a sharper upper bound on the maximal
risk. In conclusion, the rate of β̂TS is at least as good as the near-minimax rate and,
under the beta-min condition of Theorem 4.2, it is minimax. Note that the beta-min
condition, though a bit stronger than usual, it is not required to obtain improved
performance (as long as p̂n → ∞). We will illustrate the performance of β̂TS in
the simulation study in Section 6, showing that it mimics the performance of the
parent oracle estimator.
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The two-step approach has an empirical Bayes flavor in the sense that we are
estimating the unknown coefficients (θ, λ0) from the data. Alternative empirical
Bayes strategies are discussed in van der Pas et al. [36], in the context of horseshoe
priors, and Johnstone and Silverman [21], in the context of point-mass mixtures.

An alternative route toward adaptive estimators could be obtained, for instance,
through fully Bayes considerations. This strategy is developed in Section 5.3,
where we show minimax rates of posterior concentration under suitable hierar-
chical priors.

5. Spike-and-slab: The Bayesian perspective. For fully Bayesian inference
about β0, the fundamental instrument is the entire posterior distribution π(β|y(n)).
This random measure serves as a vehicle for both estimation and uncertainty quan-
tification. For estimation, we studied the global mode and showed that it can be
(near) minimax-rate optimal. In high-dimensional settings, however, the behav-
ior of the posterior and its aspects (mode, mean or median) can be very differ-
ent [8]. For instance, the LASSO posterior mode is known to be asymptotically
near-minimax when λ = √

2 logn. At the same time, such LASSO prior induces
asymptotically vanishing posterior mass on balls centered at β0 with a radius of
much larger order than the near-minimax rate [10]. The posterior thus contracts a
lot slower than the posterior mode dampening its usefulness for uncertainty quan-
tification. This limitation is overcome with the SS-LASSO prior.

We show that asymptotic (near) minimaxity can be achieved simultaneously
for the global mode and the entire posterior with the SS-LASSO prior. Thus, the
posterior does not prevent from valid posterior inference, behaving similarly as the
rate-optimal posteriors obtained with the limiting prior (1.2). In this analysis, we
build on Castillo and van der Vaart [10], who pioneered posterior convergence rate
results for variable selection priors, and on Bhattacharya et al. [3], who extended
them to one-group shrinkage priors.

For now (until Section 5.3), we will assume that (λ0, θ) are fixed, in which
case the SS-LASSO prior constitutes an independent product. We will denote such
prior by SSL(λ0;λ1; θ). The results obtained under this simpler scenario will be
a stepping stone for the developments in Section 5.3 with dependent coordinates
induced by putting a prior on (λ0, θ).

The SS-LASSO prior, despite being continuous, is also a two-group prior. How-
ever, it segregates the coefficients into negligible and nonnegligible groups rather
than into zero and nonzero groups. This separation is captured by the latent γi in-
dicators. However, the γi’s now indicate the magnitude of the nonzero coefficients
βi . Naturally, coefficients βi such that |βi | > δ(λ0, θ) are more likely affiliated
with the slab (rather than the spike) because P(γi = 1|βi, θ) > 0.5. Because the
posterior puts no mass on exactly sparse vectors, we will work with a more gen-
eral notion of sparsity. For this purpose, we introduce generalized binary indicators

(5.1) γ (βi) = I
[|βi | > δ(λ0, θ)

]
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to designate whether the coefficients are nonnegligible. These indicators are again
i.i.d. with a Bernoulli distribution, where the success probability relates to θ in the
following way.

LEMMA 5.1. Assume β ∼ SSL(λ0;λ1; θ) with θ ∈ (0,1/2), λ1 ≤ e−2 and
λ0 > 1. Then

P
[
γ (β) = 1

]
< θ.

PROOF. Denote by δθ = δ(λ0, θ). Using the fact θψ1(δθ ) = (1−θ)ψ0(δθ ), we
have P(|β| > δθ) = θ exp[−δθλ1](1+ λ1

λ0
). Because λ1 ≤ e−2 and λ0(1−θ)/θ > 1,

we have log[λ0(1−θ)
λ1θ

] > 2. Thereby

exp(−δθλ1) = exp
{
− λ1

λ0 − λ1
log

[
λ0(1 − θ)

λ1θ

]}
≤ exp

(
−2λ1

λ0

)
≤

(
1 − λ1

λ0

)
.

Altogether, we obtain P(|β| > δθ) ≤ θ(1 − λ2
1

λ2
0
) < θ . �

We now define the notion of effective dimensionality under the SS-LASSO
prior, an analogue to the actual dimensionality |γ | = ∑n

i=1 γi under the point-mass
mixture prior.

DEFINITION 5.1. For the intersection point δ(λ0, θ), let us define γ (β) =
[γ (β1), . . . , γ (βn)]′ the vector of indicators (5.1) of active coefficients. Then by
effective dimensionality we refer to

(5.2)
∣∣γ (β)

∣∣ =
n∑

i=1

γ (βi).

It is worthwhile to note that the intersection point (3.12) depends on 1/p�(0)

through δ(λ0, θ) = 1
λ0−λ1

log[ 1
p�(0)

− 1]. We will be interested in situations when
λ0 → ∞ and θ → 0 as n → ∞, in which case δ(λ0, θ) → 0 and |γ (β)| coincides
with |γ | in the limit. Of particular interest to us will be the two scenarios in Corol-
laries 4.1 and 4.2, where δ(λ0, θ) ∼ pn/n log(n/pn) and δ(λ0, θ) ∼ log(n)/n, re-
spectively.

As seen in the previous section, p�(0) controls the risk of the global posterior
mode. Going further, we provide a result showing that the entire posterior distribu-
tion concentrates at a rate which depends on p�(0). A crucial step toward obtaining
the convergence rates is the study of the posterior effective dimensionality |γ (β)|.
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5.1. Effective posterior dimension. It is desirable that the posterior effective
dimensionality |γ (β)| accumulates roughly around the true dimensionality pn.
With our notion of sparsity (5.1) and (5.2), this is akin to a requirement that the
posterior squeezes most of its mass between ±δ(λ0, θ) in roughly n − pn direc-
tions. This is where β0 is presumed to reside.

One important aspect leading to this desired property is having a prior on |γ (β)|
that decays exponentially with pn, that is, P(|γ (β)| > k) < e−Ck for some C >

0 and k ≥ pn. With a suitably small θ , the distribution on |γ | is exponentially
decaying in pn from Chernoff’s inequality. Due to Lemma 5.1, we obtain that the
prior on |γ (β)| is also exponentially decaying in pn.

LEMMA 5.2. Assume β ∼ SSL(λ0;λ1; θ) with λ1 ≤ e−2 and λ0 > 1. Assume
θ < Apn/n < 1/2 for some A > 0. Then for any C > 2Ae, we have

(5.3) P
[∣∣γ (β)

∣∣ > Cpn

] ≤ exp(−pnC log 2).

PROOF. The random variable Bθ ≡ |γ (β)| is distributed according to
Binomial(n,πθ ), where πθ = P(|β1| > δθ). A version of Chernoff’s inequality for
the binomial distribution states that for t > 2eEBθ we have P(Bθ > t) ≤ 2−t . From
Lemma 5.1, we have πθ ≤ θ ≤ Apn/n. The result then follows from Chernoff’s
inequality with t = 2Aepn. �

Note that the space of vectors β ∈ R
n can be partitioned into 2n subsets, iden-

tified by γ (β). For each of the n coefficients, we have two possibilities: either
|βi | ≤ δ(λ0, θ) or |βi | > δ(λ0, θ). This results in a tessellation of Rn into 3n boxes
[splitting the set {βi : |βi | > δ(λ0, θ)} into positive and negative values], each hav-
ing a positive prior probability. Lemma 5.2 shows that with a suitably chosen θ , the
SS-LASSO prior assigns small probability to boxes away from the origin in more
than Cpn directions. Importantly, this property will be transmitted to the posterior,
as shown in the following theorem.

THEOREM 5.1. Consider the model (1.1) with β ∼ SSL(λ0;λ1; θ). Assume
β0 ∈ l0[pn;n] with pn,n → ∞ and pn = o(n). Assume θ ≤ Apn/n < 1/2 with
A > 1/2, λ1 < e−2 and λ0 ≥ n/pn,∀n ∈ N. Then

lim
n→∞ Eβ0

P
[∣∣γ (β)

∣∣ > Cpn|y(n)] = 0

for any constant C > 2Ae.

PROOF. See Appendix A.1.1. �

Theorem 5.1 was obtained under suitable conditions on (θ, λ0). The mixing
weight θ has to be reasonably small to guarantee the exponential decay of the
prior on |γ (β)|. In addition, λ0 has to be reasonably large so that the tessellation
yields boxes narrow enough to be informative about the sparsity of β0.
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5.2. Optimal posterior concentration. Our goal is to show that the posterior
π(β|y(n)) concentrates asymptotically on n-balls centered at β0 with a square ra-
dius proportional to an optimal rate rn. Here, rn will be either the minimax rate
pn log(n/pn) or the near-minimax rate pn logn, depending on the context. More
precisely, we want to show

(5.4) sup
β0∈l0[pn;n]

Eβ0
P
(
β ∈ R

n : ‖β − β0‖2 > Mrn|y(n)) → 0

for a sufficiently large constant M > 0.
Castillo and van der Vaart [10] establish the minimax-optimal rate of posterior

concentration for a class of point-mass mixture priors using a testing argument.
This strategy relies on two main ingredients: (a) an exponentially decaying prior
on |γ | and (b) heavy tailed slab densities π(βi |γi = 1) that are i.i.d. and propor-
tional to eh, for h : R → R where |h(x) − h(y)| � 1 + |x − y|,∀x, y ∈ R. With
a continuous prior like SS-LASSO, the conditions (a) and (b) have to be suitably
modified.

In the previous section, we formalized an analogue to the condition (a) using
instead the effective-dimensionality |γ (β)|. To modify (b), we impose a condition
on the tails of the whole mixture rather than only the slab. Intuitively, the tails will
be dominated by the slab density for sufficiently large |β|. Thus, the SS-LASSO
marginal prior ought to satisfy a similar Lipschitz property. This is formalized in
the following lemma.

LEMMA 5.3. Denote by h(x) ≡ pen(x) the logarithm of the SSL(λ0;λ1; θ)

density (3.1), where λ0 > λ1. Then∣∣h(x) − h(y)
∣∣ ≤ C(λ0;λ1; θ) + λ1|x − y| ∀x, y ∈ R,

where C(λ0;λ1; θ) = log[ 1
p�(0)

− 1].

PROOF. See Appendix A.1.2. �

REMARK 5.1. Letting λ0 → ∞ and θ → 0 as n → ∞, the constant
C(λ0;λ1; θ) will grow to infinity at a rate controlled by the familiar functional
log[1/p�(0)].

Now, we are ready to state the main theorem. We show that the contraction rate
of π(β|y(n)) under the SSL(λ0;λ1; θ) prior depends on p�(0), the quantity which
was shown to control the risk of the global mode.

From Section 4, we know that (λ0, θ) should work in tandem to control the rate
of p�(0). Again, we will need θ to decay at a rate no slower than pn/n. To deploy
Theorem 5.1, we will also need λ0 ≥ n/pn.



SPIKE-AND-SLAB LASSO PRIORS 419

THEOREM 5.2. Consider the model (1.1) with β0 ∈ l0[pn;n], where pn,n →
∞ and pn = o(n) with pn/n < 1/2. Assume β ∼ SSL(λ0;λ1; θ) where θ ≤
pn/(pn + n), 1/Cλ1 < λ1 ≤ e−2 and λ0 ≥ n/pn. Denote by r2

n = pn[log( 1
p�(0)

−
1)]. Then

lim
n→∞ Eβ0

P
(‖β − β0‖2 > Mr2

n |y(n)) = 0

for some constant M >
√

(1 + Cλ1)/3.

PROOF. See Appendix A.1.3. �

By Theorems 5.2 and 4.1, one can simultaneously achieve good reconstruction
(using the global mode) and good posterior concentration by suitably controlling
p�(0). The following two immediate corollaries are companion results to Corol-
laries 4.1 and 4.2. They show that the posterior distribution under a properly tuned
SS-LASSO prior contracts at the minimax rate when pn is known and at the near-
minimax rate when pn is unknown.

COROLLARY 5.1. Consider the model (1.1) with β0 ∈ l0[pn;n], where
pn,n → ∞ and pn = o(n) with pn/n < 1/2. Assume β ∼ SSL(λ0;λ1; θ) with
1/Cλ1 < λ1 ≤ e−2 and

(5.5) θ = pn/(pn + n) and λ0 = n/pn.

Then

lim
n→∞ Eβ0

P
(‖β − β0‖2 > Mpn log(n/pn)|y(n)) = 0

for some constant M >
√

(1 + Cλ1)/3.

PROOF. The proof follows by noting pn[log( 1
p�(0)

− 1)] � pn log(n/pn). �

COROLLARY 5.2. Consider the model (1.1) with β0 ∈ l0[pn;n], where
pn,n → ∞ and pn = o(n) with pn/n < 1/2. Assume β ∼ SSL(λ0;λ1; θ) with
1/Cλ1 < λ1 ≤ e−2 and

(5.6) θ = 1/(1 + n) and λ0 = n.

Then

lim
n→∞ Eβ0

P
(‖β − β0‖2 > Mpn log(n)|y(n)) = 0

for some constant M >
√

(1 + Cλ1)/3.
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PROOF. The proof follows by noting pn[log( 1
p�(0)

− 1)] � pn log(n). �

The concentration results in Corollaries 5.1 and 5.2 do not require any assump-
tions restricting the size of the true signal, such as limiting ‖β0‖2 to be small.
Such assumptions would be needed if the priors were to over-shrink the large co-
efficients in magnitude. Such problems would occur, for instance, with Gaussian
slab distributions if ‖β0‖2 
 pn log(n/pn) [10]. Assuming pn is known, the SS-
LASSO prior avoids even the weaker assumption ‖β0‖2 < pn log4 n of [3].

5.3. Fully Bayes considerations. Ideally, the prior inclusion probability θ and
the reciprocal of the spike penalty 1/λ0 should be set close to pn/n. When pn is
unknown, it is natural to treat (λ0, θ) also as unknown with a prior distribution. The
hope is that with a suitable prior, the posterior can adapt to the unknown sparsity
level and contract at the minimax rate. Remarkably, this happens with point-mass
mixture priors, when combined with a suitable beta prior π(θ) [10].

Rather than treating λ0 and θ as two independent parameters and assigning a
prior to both, we induce a prior distribution on θ and set λ0 deterministically to
(1 − θ)/θ . This functional is chosen here (and in Theorem 5.2) so that 1/p�(0) =
1 + (n/pn)

2/λ1 for θ = pn/(n + pn). By tying λ0 with θ , putting a prior only on
θ will be enough to obtain the desired adaptivity.

We consider the beta prior π(θ) ∼ B(a, b), where a � b, so that θ is small with
high probability. In particular, we set a = 1 and b = 4n in results about to follow.
To achieve the rate-optimal concentration under the point-mass mixture priors,
[10] recommend setting a = 1 and b = κn + 1 for some κ > 0. With λ0 = (1 −
θ)/θ , this amounts to assigning λ0 a beta-prime2 distribution β ′(a, b). Although
this prior assigns positive probability to {θ : λ0 = (1 − θ)/θ < λ1}, these values
will not be supported by the data in the presence of sparsity.

The prior on θ (and inherently on λ0) renders the coefficients β a priori (and
hence a posteriori) dependent. This is in sharp contrast with earlier results in this
section, where the coordinates were separable. Independent product priors were
studied previously by Bhattacharya et al. [3], who pioneered posterior concen-
tration results for continuous shrinkage priors. Going a step further, here we ob-
tain posterior convergence rates for a dependent continuous prior. The dependence
comes exclusively from the mixing over θ . Other sources of dependence can be
introduced through multivariate slab densities [10]. We do not pursue these alter-
natives here.

We will leverage results established earlier in Section 5. In the remainder of this
section, we will be using the following notation. In light of Corollary 5.1, denote
by

(5.7) θo = pn

pn + n
and λo

0 = n

pn

2The beta-prime distribution β ′(a, b) has an expectation b/(a − 1) for a > 1.
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the “oracle” choices of parameters which would yield the minimax concentration
rate if pn was known. Similarly, let

(5.8) δo ≡ δ
(
λo

0, θ
o) = 1

( n
pn

) − λ1
log

[(
n

pn

)2 1

λ1

]
be the “oracle” intersection point, which is again the ideal intersection point
when pn is known. Furthermore, by γo(βi) we will denote the indicator func-
tion (5.1) with δ(λ0, θ) = δo. We will denote by M-SSL(λ1;a;b) the mixture of
SSL(λ0;λ1; θ) priors with π(θ) ∼ B(a, b) and λ0 = (1 − θ)/θ .

To begin, we generalize Theorem 5.1 to M-SSL(λ1;a;b) priors. One side-effect
of the dependence is that the random variable |γ o(β)| is no longer distributed bi-
nomially, but rather beta-binomially. Although this precludes from using the Cher-
noff’s inequality, the result can be obtained with suitable modifications.

THEOREM 5.3. Consider the model (1.1) with β ∼ M-SSL(λ1;a;b), where
λ1 < e−2, a = 1 and b = 4n. Assume β0 ∈ l0[pn;n] with pn,n → ∞ and pn =
o(n). Assume pn/n < 1/2. Then

lim
n→∞ Eβ0

P
(∣∣γ o(β)

∣∣ > Cpn|y(n)) = 0

for any constant C > 2e.

PROOF. See Appendix A.2.1. �

Theorem 5.3 is only one of the two pieces needed to carry out the concentration
result. The second piece is the Lipschitz property of the logarithm of the marginal
prior π(β). We will show that such property is satisfied by the |S|-variate marginal
M-SSL(λ1;a;b) prior, confined to coordinates in a set S ⊂ {1, . . . , n}. We denote
this marginal prior by πS(β). By Fubini’s theorem, we have

πS(β) =
∫ 1

0

∏
i∈S

π(βi |θ)dπ(θ)

(5.9)

=
(

λ1

2

)|S|
e−λ1|βS |

∫ 1

0
θ |S| ∏

i∈S

1

p�
θ (βi)

dπ(θ).

Here, p�
θ (β) is as in (3.3), where the θ subscript is added to emphasize the depen-

dence on θ .
The following lemma generalizes Lemma 5.3 to the M-SSL(λ1;a;b) prior.

LEMMA 5.4. Assume S ⊂ {1, . . . , n} and let πS(β) be as in (5.9), where λ1 <

e−2. Assume pn/n < 1/2 and let β,β ′ ∈ R
n be such that |βi | > δo, i ∈ S. Then

logπS(β) − logπS

(
β ′) < |S|C(λ1) + λ1

∥∥βS − β ′
S

∥∥
1,

where C(λ1) = log[2 + 1
p�

θo (0)
].
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PROOF. See Appendix A.2.2. �

Note the similarities with Lemma 5.3 introduced earlier. There the additive con-
stant C(λ0;λ1; θ) depends on p�(0) that is evaluated at θ , which may not be op-
timal. Here, the additive constant C(λ1) depends on p�

θ (0) evaluated at the oracle
mixing proportion θo, which is known to be the optimal one.

In Theorem 5.2, we established the posterior concentration rate in terms of
p�

θ (0) with θ fixed. There, unless θ is set close to pn/n, the posterior would not
be minimax-rate optimal. Here, we cast the convergence rate in terms of p�

θo(0),
which yields the minimax order pn log[n/pn]. To this end, we will need one addi-
tional assumption regarding the nonzero elements of β0. For β0 ∈ l0[pn;n], we
will require that the nonzero entries satisfy |β0i | > δo. This mild requirement
is needed to assure that the signal is strong enough to be recoverable. Due to
the continuous spike, the M-SSL prior may otherwise over-shrink negligible, yet
nonzero, coefficients. This is in line with the notion of “practical significance” that
has been associated with continuous spike and slab priors [17]. The coefficients
worth recovering should be of magnitude greater than the intersection point. Since
δo ∼ pn/n log[n/pn] → 0 as n → ∞, this condition vanishes asymptotically as
the M-SSL prior approaches to the point-mass mixture prior.

THEOREM 5.4. Consider the model (1.1) with β ∼ M-SSL(λ1;a;b), where
λ1 < e−2, a = 1 and b = 4n. Assume β0 ∈ l0[pn;n] with pn = o(n) and pn/n <

1/2 as pn,n → ∞. Denote by δo the oracle threshold (5.8) and assume that the
nonzero entries of β0 satisfy |β0i | > δo, then

lim
n→∞ Eβ0

P
(‖β − β0‖2 > Mpn log(n/pn)|y(n)) = 0

for some constant M > 0.

PROOF. See Appendix A.2.3. �

Theorem 5.4 shows that the M-SSL prior mimics the performance of the ideal
limiting prior (1.2) over l0[pn;n] sparsity class, restricted by a mild “beta-min
condition”. With a prior on θ , the M-SSL prior achieves the desired adaptivity,
attaining the minimax rate without assuming pn is known.

6. Simulation study. We assess the performance of the SS-LASSO estima-
tors relative to its two limiting cases: (a) the LASSO estimator and (b) estimators
under point-mass mixture priors. We simulated observations from Yi ∼ N (β0i ,1)

for i = 1, . . . , n = 500, assuming β0i are zero except for pn chosen positions,
where β0i = b0 �= 0. Following Castillo and van der Vaart [10], we consider various
degrees of sparsity pn ∈ {25,50,100} and various degrees of the signal strength
b0 ∈ {3,4,5}.
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We consider three classes of estimators. The first are the oracle estimators as-
suming that pn is known: (a) the oracle hard and LASSO thresholding rules (with
the selection threshold

√
2 logn/pn), (b) the oracle SS-LASSO estimators from

Corollary 4.1 assuming two choices of α ≥ 0 and ν > 0 as well as two differ-
ent values λ1 < e−2. Regarding the choice of (α, ν), we consider α = ν = 1/2 so
that 1/p�(0) = 1 + n/pn. It is worth noting that with α = 0 and ν = 1 we ob-
tained nearly identical results. The second category are nonadaptive estimators:
(a) the universal hard and LASSO thresholding rules (with the selection thresh-
old

√
2 logn) and (b) nonadaptive SS-LASSO estimators from Corollary 4.2 with

α = ν = 1/2. The third class includes estimators intended to be adaptive to pn:
(a) empirical Bayes median estimator under point-mass mixture priors [21] with
Cauchy and Laplace tails, (b) the SLOPE estimator [33] with q = 0.1 and (c) the
two-step SS-LASSO estimator β̂TS from Theorem 4.3 with α = ν = 1/2.

Table 1 reports the empirical average estimates of the mean squared error
Eβ0

‖β̂ − β0‖2 from 100 independently generated data vectors. Within each of

TABLE 1
Average square errors computed on 100 data vectors of length n = 500 with pn of the signal values

set equal to a nonzero value b0, and the remainder zero. The estimators are HTO: oracle hard
thresholding; HTU: universal hard thresholding; LASSO: soft thresholding; SSL: Spike-and-Slab

LASSO; EB Laplace/EB Cauchy: empirical Bayes posterior median as in Johnstone and Silverman
[21] with Laplace/Cauchy tails; SLOPE: slope estimator [33] with q = 0.1; SSL 2step: two-step SSL
estimator as in Theorem 4.3; Top performance within each of the three blocks for each of the nine

settings is in bold font

pn = 25 pn = 50 pn = 100

Signal b0 λ1 λ0
1−θ
θ 3 4 5 3 4 5 3 4 5

As if pn were known
HTO 131 99 78 207 158 143 316 257 244
LASSO 144 172 175 247 276 282 397 428 437
SSL 0.1

√
n
pn

√
n
pn

× λ1 124 87 64 195 139 117 288 218 200

SSL 0.01
√

n
pn

√
n
pn

× λ1 130 96 74 203 152 134 303 237 221

Does not adapt to pn

HTU 171 143 65 342 275 123 683 563 262
LASSO 201 290 326 403 572 652 810 1157 1318
SSL 0.1

√
n

√
n × λ1 176 155 72 353 301 140 704 618 292

SSL 0.01
√

n
√

n × λ1 172 145 66 344 278 125 685 568 264

Adapts to pn

EB Laplace 144 95 54 275 167 96 621 371 208
EB Cauchy 156 110 58 307 197 106 696 461 250
SLOPE 190 241 251 355 422 440 650 746 769
SSL 2step 0.1

√
n

p̂+1

√
n

p̂+1 × λ1 139 90 64 236 134 114 373 206 195

SSL 2step 0.01
√

n
p̂+1

√
n

p̂+1 × λ1 134 92 74 227 143 131 350 219 216
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the three blocks of estimators, we highlight the top performance in bold font for
each of the nine considered settings.

Among the oracle estimators, SS-LASSO with α = ν = 1/2 appears to perform
better than oracle hard-thresholding (HTO), especially when λ1 = 0.1. While the
selection threshold for the LASSO is very similar when α = ν = 1/2, there are dra-
matic differences in terms of performance. This is clearly a consequence of the seg-
regation ability of the SS-LASSO estimator. Among the nonadaptive estimators,
the universal hard-thresholding rule (HTU) performs best. However, SS-LASSO
with λ1 = 0.01 is very similar. Again, we observe marked differences between SS-
LASSO and LASSO, despite the similarity of their selection thresholds. Among
the adaptive estimators, empirical Bayes (EB) median estimators perform very
well, especially for larger signals (b0 = 5). SS-LASSO seems to outperform EB
estimates when the signal is small (for both b0 = 3 and b0 = 4). It is worthwhile to
note that, for large enough signals, the two step SS-LASSO estimator essentially
mimics the performance of the oracle SS-LASSO estimator (under similar hyper-
parameter choices). This finding is consistent with Theorem 4.3. While SLOPE
controls very well for false discoveries, it induces bias by shrinking more the large
effects. SS-LASSO, on the other hand, shrinks the large effects less, yielding a
smaller recovery error.

We also compared our procedures in terms of their subset recovery ability. We
report the average Hamming distance (false positives plus false negatives) between
the true and estimated subsets of nonzero coefficients in Table 2. The oracle esti-
mators seem to perform best overall when the signal is small whereas universal
thresholding rules dominate when the signal is large. The two step estimator is
again seen to perform similarly as the oracle estimators (improving upon them
when b0 = 4). For subset recovery, SLOPE is now competitive across all the sce-
narios, yielding improved performance as the signal gets stronger.

7. Discussion. In this paper, we have provided a unifying perspective on
Bayesian estimation of sparse signals with continuous spike-and-slab priors, com-
bining penalized likelihood perspectives and fully Bayes perspectives. For our pro-
posed class of SS-LASSO priors, we provided rigorous frequentist analysis of the
entire posterior distribution and its modes. These results provide valuable theoret-
ical evidence supporting the intuitive appeal of SS-LASSO priors.

The SS-LASSO priors are especially appealing due to their implementation po-
tential. As shown by Rockova and George [32], by deploying a sequence of SS-
LASSO priors, one can dynamically explore the posterior in a manner analogous
to the LASSO method. This type of deployment greatly enhances the practical
value of this prior, freeing its implementation from the confinement to posterior
simulation.
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TABLE 2
Average Hamming distance between true and estimated support computed on 100 data vectors of

length n = 500 with pn of the signal values set equal to a nonzero value b0, and the remainder zero.
The estimators are HTO: oracle hard thresholding; HTU: universal hard thresholding; LASSO: soft

thresholding; SSL: Spike-and-Slab LASSO; EB Laplace/EB Cauchy: empirical Bayes posterior
median as in Johnstone and Silverman [21] with Laplace/Cauchy tails; SLOPE: slope estimator
[33] with q = 0.1; SSL 2step: two-step SSL estimator as in Theorem 4.3; Top performance within

each of the three blocks for each of the nine settings is in bold font

pn = 25 pn = 50 pn = 100

Signal b0 λ1 λ0
1−θ
θ 3 4 5 3 4 5 3 4 5

As if pn were known
HTO 14 8 7 24 16 14 42 31 28
LASSO 14 8 7 24 16 14 42 31 28
SSL 0.1

√
n
pn

√
n
pn

× λ1 13 7 5 22 12 10 37 24 22

SSL 0.01
√

n
pn

√
n
pn

× λ1 14 8 6 23 14 13 39 28 25

Does not adapt to pn

HTU 18 8 2 35 16 4 71 32 8
LASSO 18 8 2 35 16 4 71 32 8
SSL 0.1

√
n

√
n × λ1 18 9 2 37 17 4 74 36 9

SSL 0.01
√

n
√

n × λ1 18 8 2 35 16 4 71 32 8

Adapts to pn

EB Laplace 16 6 3 28 9 5 64 14 6
EB Cauchy 17 6 2 32 9 4 72 16 6
SLOPE 14 6 3 23 8 5 35 13 9
SSL 2step 0.1

√
n

p̂+1

√
n

p̂+1 × λ1 14 6 5 24 9 9 37 15 19

SSL 2step 0.01
√

n
p̂+1

√
n

p̂+1 × λ1 13 7 6 23 11 12 34 19 23

APPENDIX

A.1. Proofs of Section 5. We use the technique of Castillo and van der Vaart
[10] (CvdV12) and Bhattacharya et al. [3] (BPPD14). Throughout this section, we
will be using the following notation. For a set S ⊂ {1, . . . , n}, βS denotes the |S|-
dimensional subvector of β ∈ R

n comprised of entries in S. By δ, we will simply
denote the intersection point δ(λ0, θ) in (3.12). Let πS(β) = ∏

i∈S π(βi |θ), where
π(β|θ) is the SSL(λ0;λ1; θ) prior density (3.1).

A.1.1. Proof of Theorem 5.1. We will need the following lemma.

LEMMA A.1. Assume that β ∼ SSL(λ0;λ1; θ) with a fixed θ ∈ (0,1). For
r > 1, we have

P
(
|β| ≤ r√

n

)
> (1 − θ)

(
1 − 1

1 + λ2
0r

2/n

)
.
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PROOF. We have

P
(
|β| ≤ r√

n

)

= 1 −
[
θ exp

(
− r√

n
λ1

)
+ (1 − θ) exp

(
− r√

n
λ0

)]
> (1 − θ)

[
1 − exp(−λ0r/

√
n)

]
.

Using exp(−x) < 1
1+x2 for x > 0, we obtain for r > 1

P
(
|β| ≤ r√

n

)
> (1 − θ)

(
1 − 1

1 + λ2
0r

2/n

)
. �

For β ∈ R
n, let fβ(·) denote the probability density function of a N (β, In) dis-

tribution and fβi
(·) denote the univariate marginal N (βi,1). Let S0 = {1 ≤ i ≤ n :

β0i �= 0} and Sc
0 be its complement. Since |S0| = pn, it suffices to show that

lim
n→∞ Eβ0

P

(
n∑

i=1

γ (βi)I
(
i ∈ Sc

0
)
> Cpn

∣∣∣y(n)

)
→ 0.

Let Bn = {∑n
i=1 γ (βi)I(i ∈ Sc

0) > Cpn}. Following CvdV12, we can write

(A.1) P
(
Bn|y(n)) =

∫
Bn

∏
i∈Sc

0

fβi
(yi )

fβ0 (yi )
dπ(βi)∫ ∏

i∈Sc
0

fβi
(yi )

fβ0 (yi )
dπ(βi)

≡ Nn

Dn

.

Note that

(A.2) Eβ0
P
(
Bn|y(n)) ≤ Eβ0

P
(
Bn|y(n))

IAn + Pβ0

(
Ac

n

)
,

where An = {Dn ≥ e−r2
n P(‖βSc

0
‖ ≤ rn)}, where rn is a sequence of positive real

numbers. According to Lemma 5.2 of CvdV12, we have Pβ0
(Ac

n) ≤ e−r2
n . From

(A.1), we obtain

Eβ0
P
(
Bn|y(n)) ≤ P(Bn)

e−r2
n P(‖βSc

0
‖ ≤ rn)

+ e−r2
n .

Now, we have P(‖βSc
0
‖ ≤ rn) ≥ P(|β1| < rn/

√
n)n−pn . Choosing r2

n = pn and as-
suming λ0 > n/pn, Lemma A.1 yields

P
(‖βSc

0
‖ ≤ rn

)
> (1 − θ)n−pn

(
1 − 1

1 + λ2
0r

2
n/n

)n−pn

(A.3)

>

(
1 − Apn

n

)n(
1 − 1

n

)n

≥
(

1

2e

)Apn+1
.(A.4)
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The last inequality follows from (1 − x)1/x > 1/(2e) for 0 < x < 0.5. From
Lemma 5.2, we have P(Bn) ≤ exp(−Cpn) for C > 2Ae. With r2

n = pn, we have

(A.5) Eβ0
P
(
Bn|y(n)) ≤ 2e−pn[C−1−A log(2e)]+1 + e−pn.

Because C > 2Ae > 1 + A log(2e) for A > 0.5, (A.5) yields Eβ0
P(Bn|y(n)) → 0.

A.1.2. Proof of Lemma 5.3.

PROOF. Let us assume w.l.o.g. |x| > |y|, then∣∣h(x) − h(y)
∣∣ ≤

∣∣∣∣log
ψ1(x)

ψ1(y)

∣∣∣∣ + ∣∣∣∣log
(1 − θ)

θ

ψ0(x)

ψ0(y)

∣∣∣∣.
This yields∣∣h(x) − h(y)

∣∣ ≤ λ1|x − y| + log
[
(1 − θ)λ0

θλ1
exp

(−|x|λ0 + |y|λ1
)]

(A.6)

≤ λ1|x − y| + log
[
(1 − θ)λ0

θλ1
exp

[−|x|(λ0 − λ1)
]]

(A.7)

≤ λ1|x − y| + log
[
(1 − θ)λ0

θλ1

]
.(A.8) �

A.1.3. Proof of Theorem 5.2. We will need the following two lemmata. In the
sequel, we denote r2

n = pn log[1/p�(0) − 1].

LEMMA A.2. Let S,S0 ⊂ {1, . . . , n} and β ′,β ∈R
n. Assume λ0 > 2,0 < θ <

1/2 and 0 < λ1 < e−2. Assume γ (β ′
i ) = 1, i ∈ S. Then

log
[
πS(β ′)
πS0(β)

]

≤ λ1
∣∣βS0∩S − β ′

S0∩S

∣∣
1 + λ1|βS0\S |1 + |S0|

[
2 log

(
1

p�(0)
− 1

)
+ log

(
1

2

)]
.

PROOF. Similarly as CvdV12, let us decompose

πS(β ′)
πS0(β)

= πS(β ′)
πS∩S0(β

′)
πS∩S0(β

′)
πS∩S0(β)

πS∩S0(β)

πS0(β)
.

Denote by h(β) = logπ(β|θ). From the assumption |β ′
i | ≥ δ, i ∈ S, and using

the fact (1 − θ)ψ0(δ) = θψ1(δ), we obtain h(β ′
i ) ≤ h(δ) = log[θλ1 exp(−λ1δ)] <

log(θλ1) for i ∈ S. This yields

log
πS(β ′)

πS∩S0(β
′)

= ∑
i∈S\S0

logh
(
β ′

i

)
< |S \ S0| log[θλ1] < 0.(A.9)
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Denote by Cn = log[1/p�(0) − 1]. Then, using Lemma 5.3, we obtain∣∣∣∣log
πS∩S0(β

′)
πS∩S0(β)

∣∣∣∣
≤ ∑

i∈S∩S0

∣∣h(
β ′

i

) − h(βi)
∣∣

<
∑

i∈S∩S0

[
λ1

∣∣β ′
i − βi

∣∣ + Cn

] = λ1
∣∣βS∩S0

− β ′
S∩S0

∣∣
1 + |S ∩ S0|Cn.

Finally, using the fact |h(0)| < log(λ0/2) for λ0 > 2 and λ1 ≤ e−2, we obtain∣∣∣∣log
πS0(β)

πS0∩S(β)

∣∣∣∣ ≤ ∑
i∈S0\S

∣∣h(βi) − h(0)
∣∣ + |S0 \ S| log(λ0/2)(A.10)

≤ λ1|βS0\S |1 + |S0 \ S|[Cn + log(λ0/2)
]
.(A.11)

Altogether, because log(λ0/2) < Cn + log(1/2)

log
πS(β ′)
πS0(β)

≤ λ1
∣∣βS0∩S − β ′

S0∩S

∣∣
1 + λ1|βS0\S |1 + |S0|[2Cn + log(1/2)

]
. �

LEMMA A.3. Let S,S0 ⊂ {1, . . . , n}, |S0| = pn and j ≥ 1. Assume a prior

β ∼ SSL(λ0;λ1; θ) with λ0 ≥ n/pn,λ1 < e−2 and θ ≤ pn/n. Let β̃
S,j ∈ R

n sat-

isfy: β̃
S,j
i = 0 for i /∈ S; γ (β̃

S,j
i ) = 1 for i ∈ S; and ‖β̃S,j − β0‖ < 2(j + 1)rn.

Denote by

(A.12) π
(
β̃

S;j ;S; j ) = P(β ∈ R
n : γ (βi) = I(i ∈ S),‖βS − β̃

S,j

S ‖ < 2jrn)

e−4r2
n P(β ∈ Rn : ‖β − β0‖ < 2rn)

.

Then

logπ
(
β̃

S;j ;S; j ) ≤ 3 + |S|(3 + log j) + r2
n

[
9 + λ1(4j + 3 + δ)

]
.

PROOF. Denote by Nn and Dn the numerator and the denominator of (A.12).
The numerator can be upper-bounded as follows:

Nn ≤ ∣∣vS(2jrn)
∣∣P[

γ (β1) = 0
]n−|S| sup

β∈A
πS(β),

where A = {β ∈ R
n : γ (βi) = 1, i ∈ S; ‖βS − β̃

S,j

S ‖ < 2jrn}, vS(r) denotes the
|S|-dimensional ball centered at zero with a radius r and |vS(r)| is its volume. To
bound the denominator Dn of (A.12), we begin with the inequality

(A.13) P
(‖β − β0‖ < 2rn

)
> P

(‖βSc
0
‖ < rn

)
P
(‖βS0

− β0S0
‖ < rn

)
.
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As in the proof of Theorem 5.1, we have P(‖βSc
0
‖ < rn) > ( 1

2e)
Apn+1 with A = 1.

The denominator can be thus lower-bounded as follows:

Dn > e−4r2
n−(pn+1) log(2e)∣∣vS0(rn)

∣∣ inf
β∈BπS0(β),

where B = {β ∈ R
n : ‖βS0

− β0S0
‖ < rn}. Assume β ′ ∈ A and β ∈ B, then invok-

ing Lemma A.2 we obtain

πS(β ′)
πS0(β)

≤ exp
{
λ1

√|S0|(∥∥β ′
S0∩S − βS0∩S

∥∥ + ‖βS0\S‖) + |S0|[2Cn + log(1/2)
]}

,

where Cn = log[1/p�(0) − 1]. Denote by S1 = S0 ∩ S, then by expanding and
splitting both norms we obtain∥∥β ′

S1
− βS1

∥∥ + ‖βS0\S‖
≤ ∥∥β ′

S1
− β̃

S,j

S1

∥∥ + ∥∥β̃S,j

S0
− β0S0

∥∥ + ‖βS0
− β0S0

‖ + ∥∥β̃S,j

S0\S
∥∥

≤ 2jrn + 2(j + 1)rn + rn + √|S0|δ = 4jrn + 3rn + √|S0|δ.
Using the facts pn ≤ r2

n and pnCn = r2
n , we obtain

π
(
β̃

S;j ;S; j ) ≤ |vS(2jrn)|
|vS0(rn)|

er2
n [7+λ1(4j+3+δ)]+log(2e).

Let vS = vS(1), then |vS(r)| = vSr |S|. According to Lemma 5.4 of CvdV12, we
have

r
|S|
n vS

r
|S0|
n vS0

≤ e1/6(2πe)(|S|−|S0|)/2
(

rn√|S|
)|S|(√

S0

rn

)|S0| √|S0|√|S| .

With
√|S0| ≤ rn, the last display can be bounded from above by

e1/6(2πe)|S|/2
(

rn√|S|
)|S|

rn

≤ exp
[

1

6
+ |S|

2
log(2πe) + log rn + r2

n

2e

]
≤ exp

(
1 + 2|S| + 2r2

n

)
.

Altogether, we obtain

logπ
(
β̃

S;j ;S; j ) ≤ 3 + |S|(3 + log j) + r2
n

[
9 + λ1(4j + 3 + δ)

]
. �

Now we embark on the proof of Theorem 5.2. In view of Theorem 5.1, it suffices
to work with

(A.14) Eβ0
P
(‖β − β0‖ > Mrn,

∣∣γ (β)
∣∣ ≤ Cpn|y(n)).
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Let S be the collection of subsets S ⊂ {1, . . . , n} such that |S| ≤ Cpn. For each
such S and j ∈N , we denote by

(A.15) BS,j = {
β ∈ R

n : γ (βi) = I(i ∈ S);2jrn ≤ ‖β − β0‖ ≤ 2(j + 1)rn
}

the j th shell of vectors with an “effective support” S. Let {β̃S,j

k : k ∈ IS,j } be a
2jrn-isolated set of BS,j , constructed similarly as in BPPD14. First, we take a jrn-
separated net inside the set {β ∈ R

n : βi = 0, i /∈ S;γ (βi) = 1, i ∈ S : ‖β − β0‖ <

2(j + 1)rn}. This net can be chosen so that |IS,j | ≤ eD|S|, where D > 1. This set
appears to be a 2jrn-separated net of BS,j for j ≥ M . This is because ∀β ∈ BS,j

we have ∥∥β − β̃
S,j

k

∥∥2
< j2r2

n + (n − pn)δ
2.

Note that δ = 1/(λ0 − λ1) log[1/p�(0) − 1] < 1 + 1/λ1 < 1 + Cλ1 . Because r2
n =

pn log[1/p�(0) − 1] and λ0 ≥ n/pn we have

n − pn

(λ0 − λ1)2 log2[
1/p�(0) − 1

]
< δr2

n.

Assuming M >
√

(1 + Cλ1)/3, we have δ < 3j2 for j ≥ M and thereby ‖β −
β̃

S,j

k ‖2 < 4j2r2
n . Therefore, {β̃S,j

k : k ∈ IS,j } is a 2jrn-separated net of BS,j . Thus,

each shell BS,j can be covered with balls B
S,j
k of radius 2jrn centered at β̃

S,j

k .
To bound the implicit denominator in (A.14), we confine attention to sets An

(as in Lemma 5.2 of CvdV12) on which

(A.16)
∫ n∏

i=1

fβi
(yi)

fβ0i
(yi)

dπ(β) ≥ e−4r2
n P

(
β ∈ R

n : ‖β − β0‖ < 2rn
)
.

By Lemma 5.2 of CvdV12 Pβ0
(An) ≥ 1 − exp(−r2

n/2). Applying the test argu-
ment to each point-versus-ball (CvdV12, Proposition 5.1), we obtain

Eβ0
P
(
β : ‖β − β0‖ > 2Mrn,

∣∣γ (β)
∣∣ = S|y(n))

IAn

(A.17)
≤ ∑

S∈S

∑
j≥M

∑
k∈IS,j

2
√

π
S,j
k e−j2r2

n/2,

where

π
S,j
k = P(B

S,j
k )

e−4r2
n P(β : ‖β − β0‖ < 2rn)

.

Using Lemma A.3 and assuming |S| < Cpn, we can write

log
√

π
S,j
k ≤ 3/2 + 0.5Cpn(3 + log j) + 0.5r2

n

[
9 + λ1(4j + 3 + δ)

]
< j2r2

n/4
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for j > M , where M is large enough. Then (A.17) can be (for Cpn/n < 1/2)

bounded from above by

(A.18)
�Cpn�∑
p=0

(
n

p

) ∑
j≥M

2eDp−j2r2
n/4 < 2CpneDCpn−M2r2

n/4+D̃r2
n ,

where we used the inequality
(n
p

) ≤ eCpn log[(ne)/(Cpn)] < eD̃r2
n for Cpn/n < 1/2

(an assumption satisfied for n large enough). Thus, (A.18) goes to zero as n → ∞,
which completes the proof.

A.2. Proofs of Section 5.3.

A.2.1. Proof of Theorem 5.3. We will need the following two lemmata.

LEMMA A.4. Assume β ∼ SSL(λ1;λ0; θ) with θ ∈ (0,1), λ1 ≤ e−2 and λ0 =
(1 − θ)/θ . Let θo and δo be as in (5.7) and (5.8). Assume θo < 1/2, then

P
[|β| > δo|θ] ≤ θo ∀θ ≤ θo.

PROOF. The function x → P(|β| > y|x) is increasing on (0,1) when λ0 > λ1,
because P(|β| > y|x) = x exp(−yλ1) + (1 − x) exp(−yλ0) has a positive deriva-
tive ∀y ∈ R

+. Invoking Lemma 5.1 we obtain

P
[|β| > δo|θ] ≤ P

[|β| > δo|θo] ≤ θo. �

LEMMA A.5. Assume β ∼ M-SSL(λ1, a, b) with λ1 ≤ e−2, a = 1 and b = 4n.
Denote by δo the oracle intersection point (5.8). Then for any C > 2e, we have

P
[∣∣γ o(β)

∣∣ > Cpn

] ≤ 2 exp(−2pn).

PROOF. Denote by B ≡ |γ o(β)|. Then

P(B > Cpn) =
∫ 1

0
P(B > Cpn|θ)dπ(θ)

(A.19)

≤
∫ θo

0
P(B > Cpn|θ)dπ(θ) + P

(
θ > θo).

Conditionally on θ , B has a binomial law Bin(n,πθ ) with πθ = P(|β1| > δo|θ). By
Corollary A.4, we can write πθ ≤ θo for θ ≤ θo and apply Chernoff’s inequality to
bound the integrand in (A.19). For C > 2e, we get

P(B > Cpn|θ) ≤ exp
[−pnC log(2)

]
, 0 ≤ θ ≤ θo.

Under the assumption θ ∼ B(a, b) with a = 1 and b = 4n, we can write

P(θ > θn) = (1 − θn)
n =

(
1 − pn

pn + n

)4n

≤ e−2pn.
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Combining the last two displays, we obtain P(B > Cpn) ≤ 2e−2pn . �

Similarly as in the proof of Theorem 5.1, let Bn = {∑n
i=1 γo(βi)I(i ∈ Sc

0) >

Cpn}. We can write

(A.20) P
(
Bn|y(n)) =

∫
Bn

∏
i∈Sc

0

fβi
(yi )

fβ0i
(yi )

dπ(β)∫ 1
0 Dn,θ dπ(θ)

≡ Nn

Dn

,

where Dn,θ = ∫ ∏
i∈Sc

0

fβi
(yi )

fβ0i
(yi )

dπ(βi |θ). Let rn be a sequence of positive real num-

bers and denote by An = {∫ 1
0 [Dn,θ − e−r2

n P(‖βSc
0
‖ ≤ rn|θ)]dπ(θ) ≥ 0}. Note that

Pβ0
(An) ≥ Pβ0

(Ãn) where Ãn =
{
inf
θ

[
Dn,θ − e−r2

n P
(‖βSc

0
‖ ≤ rn|θ)]

> 0
}
.

According to Lemma 5.2 of CvdV12, we have Pβ0
(Ãn) ≥ 1 − e−r2

n and thereby

Pβ0
(Ac

n) ≤ e−r2
n . Using (A.2), we obtain

Eβ0
P
(
Bn|y(n)) ≤ P(Bn)

e−r2
n
∫ 1

0 P(‖βSc
0
‖ ≤ rn|θ)dπ(θ)

+ e−r2
n .

For r2
n = pn ≥ 1, n ≥ 2 and θ ≤ 1/(1 + n), we have P(‖βSc

0
‖ ≤ rn|θ) ≥ (1 −

1
n
)2(n−pn) > ( 1

2e)
2 by Lemma A.1. Thereby∫ 1

0
P
(‖βSc

0
‖ ≤ rn|θ)

dπ(θ) > e−2 log(2e)P(θ ≤ 1/n) > e−4(
1 − e−4)

> 0.

The last inequality follows from P(θ ≤ 1/n) = 1 − (1 − 1
n
)4n > 1 − e−4. From

Lemma A.5, we have P(Bn) ≤ 2 exp(−2pn). We have Eβ0
P(Bn|y(n)) � e−pn and,

therefore, Eβ0
P(Bn|y(n)) → 0.

A.2.2. Proof of Lemma 5.4. To begin, we find an upper bound to (5.9). The
mapping θ → δ(λ0, θ), after plugging (1 − θ)/θ in for λ0, is monotone increasing
on θ ∈ [0,1/2] when λ1 < e−2. Because |βi | > δo, i ∈ S, we have p�

θ (βi) > 1/2
when θ < θo < 1/2. For θ > θo, we can write p�

θ (βi) > p�
θ (0) to obtain∫ 1

0
θ |S| ∏

i∈S

1

p�
θ (βi)

dπ(θ) < 2|S|
∫ θo

0
θ |S| dπ(θ) +

∫ 1

θo
θ |S|

[
1

p�
θ (0)

]|S|
dπ(θ).

Since θ → (1 − θ)/θ is monotone decreasing, so is the mapping θ → 1/p�
θ (0).

Therefore, we can write

(A.21)
∫ 1

0
θ |S| ∏

i∈S

1

p�
θ (βi)

dπ(θ) <

[
2|S| +

(
1

p�
θo(0)

)|S|]∫ 1

0
θ |S| dπ(θ).
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Next, note that

(A.22) πS

(
β ′) >

(
λ1

2

)|S|
exp

(−λ1
∣∣β ′

S

∣∣) ∫ 1

0
θ |S| dπ(θ).

Using (5.9) and (A.22), together with [2|S| + ( 1
p�

θo (0)
)|S|] < (2 + 1

p�
θo (0)

)|S|, we ob-

tain
πS(β ′)
πS(β ′)

< eλ1|βS−β ′
S |

(
2 + 1

p�
θo(0)

)|S|
.

A.2.3. Proof of Theorem 5.4. We denote r2
n = pn log[1/p�

θo(0) + 2]. The be-
ginning of the proof is the same as in Theorem 5.2. While keeping θ = θo, we
again partition the set (A.14) into shells and find a net of points. The first ma-
jor difference occurs in (A.16). Here, we instead confine attention to sets An, on
which ∫ 1

0

∫ n∏
i=1

fβi
(yi)

fβ0i
(yi)

dπ(β|θ)dπ(θ)

≥ e−4r2
n

∫ 1

0
P
(
β ∈R

n : ‖β − β0‖ < 2rn|θ)
dπ(θ).

As in the proof of Theorem 5.1, we have Pβ0
(Ac

n) ≤ exp(−r2
n/2). Confining atten-

tion to An, we obtain the following analog to (A.17):

(A.23) π
S,j
k = P(B

S,j
k )

e−4r2
n
∫ 1

0 P(β : ‖β − β0‖ < 2rn)dπ(θ)
.

To find an upper bound to (A.23), we need two additional lemmata.

LEMMA A.6. Assume S,S0 ⊂ {1, . . . , n} and β ′,β ∈ R
n. Let πS(β) be the

marginal M-SSL prior (5.9) with λ1 < e−2, a = 1 and b = 4n. Assume |β ′
i | >

δo, i ∈ S, and |βi | > δo, i ∈ S0. Then

log
[

πS(β ′)∫ pn
n

pn
4n

πS0(β|θ)dπ(θ)

]

≤ λ1
∣∣βS0∩S − β ′

S0∩S

∣∣ + λ1|βS0\S | + (|S0| + 1
)

log
(

2

λ1

)
+ (|S| + 3|S0|)[log

(
2 + 1

p�
θo(0)

)]
+ 4|S0|.

PROOF. Similarly as in the proof of Lemma A.3, let us decompose

(A.24)
πS(β ′)∫ pn

n
pn
4n

πS0(β|θ)dπ(θ)

= πS(β ′)
πS∩S0(β

′)
πS∩S0(β

′)
πS∩S0(β)

πS∩S0(β)∫ pn
n

pn
4n

πS0(β|θ)dπ(θ)

.
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By direct application of Lemma 5.4, we obtain

(A.25)
πS∩S0(β

′)
πS∩S0(β)

< eλ1|βS∩S0
−β ′

S∩S0
|
(

2 + 1

p�
θo(0)

)|S∩S0|
.

Similarly, from (5.9) and (A.22) we obtain

(A.26)
πS(β ′)

πS∩S0(β
′)

<

(
λ1

2

)|S\S0|(
2 + 1

p�
θo(0)

)|S|
.

To find an upper bound to the last term in (A.24), we begin with∫ pn
n

pn
4n

πS0(β|θ)dπ(θ) >

(
λ1

2

)|S0|
e−λ1|βS0

|
∫ pn

n

pn
4n

θ |S0| dπ(θ)

>

(
λ1

2

)|S0|
e−λ1|βS0

|
(

pn

4n

)|S0|
P
[
θ ∈

(
pn

4n
,
pn

n

)]
.

For pn ≥ 1, we have P[θ ∈ (
pn

4n
,

pn

n
)] = (1 − pn

4n
)4n − (1 − pn

n
)4n > e−2pn(1 −

e−2). Now, we use the following two facts: (a) |βi | > δn, i ∈ S0; (b) n/pn < 2 +
1/p�

θo(0). Using (A.21), we can write

(A.27)
πS∩S0(β)∫ pn

n
pn
4n

πS0(β|θ)dπ(θ)

< 2
(

2

λ1

)|S0\S|
eλ1|βS0\S |

(
2 + 1

p�
θo(0)

)2|S0|
e4|S0|.

Combining the three pieces (A.25), (A.26) and (A.27), we obtain

πS(β ′)∫ pn
n

pn
4n

πS0(β|θ)dπ(θ)

< eλ1|βS0\S |+λ1|βS∩S0
−β ′

S∩S0
|
(

2

λ1

)|S0|+1(
2 + 1

p�
θo(0)

)|S|+3|S0|
e4|S0|. �

LEMMA A.7. Let S,S0 ⊂ {1, . . . , n} where |S0| = pn, |S| < C|S0| and j ≥
1, j ∈ N . Assume β ∼ M-SSL(λ1;a;b) with λ1 < e−2, a = 1 and b = 4n. Let

β̃
S,j ∈ R

n satisfy: β̃
S,j
i = 0 for i /∈ S; γθo(β̃

S,j
i ) = 1 for i ∈ S; and ‖β̃

S,j − β0‖ <

2(j + 1)rn. Assume |β0i | > δo, i ∈ S0. Denote by

(A.28) π
(
β̃

S;j ;S; j ) = P(β ∈ R
n : γδo(βi) = I(i ∈ S),‖βS − β̃

S,j

S ‖ < 2jrn)

e−4r2
n
∫ 1

0 P(β ∈ Rn : ‖β − β0‖ < 2rn)dπ(θ)
.

Then

logπ
(
β̃

S;j ;S; j ) ≤ 3 + log(2/λ1) + r2
n

[
9 + C + λ1

(
4j + 3 + δo)]

(A.29)
+ pn

[
7 + log(2/λ1) + 3C + C log j

]
.
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PROOF. The numerator of (A.28) can be upper-bounded by

P
(∥∥βS − β̃

S,j

S

∥∥ < 2jrn;γδo(βi) = 1, i ∈ S
) ≤ ∣∣vS(2jrn)

∣∣ sup
β∈A

πS(β),

where A= {β ∈ R
n : γ (βi) = 1, i ∈ S; ‖βS − β̃

S,j

S ‖ < 2jrn}. As a lower bound to
the denominator, we use (invoking Lemma A.1)∫ pn

n

pn
4n

P
(‖β − β0‖ < 2rn|θ)

dπ(θ)

>

(
1

2e

)pn+1 ∫ pn
n

pn
4n

P
(‖βS0

− β0S0
‖ < rn|θ)

dπ(θ).

Next, we use the following truncation P(‖βS0
− β0S0

‖ < rn|θ) > P(|βi | > δn, i ∈
S0; ‖βS0

− β0S0
‖ < rn|θ). Because |β0i | > δo, i ∈ S0, the volume of the truncated

ball is at least as large as |vS0(rn)|/2|S0|. The denominator can be then lower-
bounded by(

1

2

)pn

e−4r2
n−(pn+1) log(2e)∣∣vS0(rn)

∣∣ ∫ pn
n

pn
4n

inf
β∈BπS0(β|θ)dπ(θ),

where B = {β ∈ R
n : ‖βS0

− β0S0
‖ < rn; |βi | > δo, i ∈ S0}. Using Lemma A.6,

splitting the norms as in the proof of Theorem 5.2, and using the fact
√|S0| ≤ rn,

we obtain (A.29). �

To continue with the proof of Theorem 7.2, we use Lemma A.7 to find an upper
bound to (A.23). We have pnδ

o < pn log[1/p�
θo(0)] < r2

n and δo < M . Thus, for

pn ≥ 1, (A.23) can be upper-bounded by ej2r2
n/2 for M large enough. The rest of

the proof is now analogous to the proof of Theorem 5.1.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian estimation of sparse signals with a continuous
spike-and-slab prior” (DOI: 10.1214/17-AOS1554SUPP; .pdf). Supplement con-
tains proofs of Section 4.
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