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Abstract This paper discusses practical Bayesian estimation of stochastic volatility
models based on OU processes with marginal Gamma laws. Estimation is based on
a parameterization which is derived from the Rosiński representation, and has the
advantage of being a non-centered parameterization. The parameterization is based
on a marked point process, living on the positive real line, with uniformly distrib-
uted marks. We define a Markov chain Monte Carlo (MCMC) scheme which enables
multiple updates of the latent point process, and generalizes single updating algo-
rithm used earlier. At each MCMC draw more than one point is added or deleted
from the latent point process. This is particularly useful for high intensity processes.
Furthermore, the article deals with superposition models, where it discuss how the
identifiability problem inherent in the superposition model may be avoided by the use
of a Markov prior. Finally, applications to simulated data as well as exchange rate data
are discussed.
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1 Introduction

Continuous time models are nowadays widely used in modern mathematical finance,
providing the basis for option pricing, asset allocation and term structure theory. A
classical example is the so called Black–Scholes model (Black and Scholes 1973)
which characterizes the log of an asset price x�(t) as the solution of the stochastic
differential equation

dx�(t) = {µ + βσ 2}dt + σdW (t), (1)

where W (t) is a standard Brownian motion. Implying that aggregate returns are nor-
mally distributed with constant variance, well-known stylized features of financial
time series such as heavy tails, skewness and volatility clustering are not captured by
this model. To improve model (1) stochastic volatility models have been introduced:

dx�(t) = {µ + βσ 2(t)}dt + σ(t)dW (t), (2)

where the volatility σ 2(t) is allowed to change over time. Various assumptions have
been made concerning the stochastic nature of the volatility process, most of them
based on diffusion type models, e.g. square root processes (Hull and White 1987) or
Ornstein-Uhlenbeck (OU) processes for the log volatility (Andersen and Lund 1997).
More recently, Barndorff-Nielsen and Shephard (2001) suggested to use non-Gaussian
OU processes driven by a Lévy process to model the stochastic volatility σ 2(t):

dσ 2(t) = −λσ 2(t)dt + dz(λt), (3)

where z(λt) is a Lévy process with independent, strictly positive increments consisting
entirely of jumps. z(λt) is called the back-ground-driving Levy process, BDLP for
short. As shown by Barndorff-Nielsen and Shephard (2001), this model, which will
be called subsequently the BNS stochastic volatility model, implies volatility clusters
as well as heavy tails.

The focus of the present paper is to discuss Bayesian estimation of the BNS sto-
chastic volatility model with marginal Gamma law, which results as that special case
of model (2) and (3) where the marginal distribution of σ 2(t) is a Gamma distribution:

σ 2(t) ∼ G (α, δ) . (4)

If the underlying asset is an integrated variable, for instance the log of foreign
exchange rates, a discrete time series (y1, . . . , yT ) of aggregated returns yn = x�(tn)−
x�(tn−1) could be used to estimate the unknown parameter θ driving the distributional
law of the underlying asset process, like θ = (α, δ, λ) for a process with marginal
Gamma law.

Parameter estimation for stochastic volatility models is in general known to be a
difficult problem, see e.g. the excellent review in Shephard (1996), and the BNS sto-
chastic volatility model is no exception to this rule. The problem stems from the fact
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Stochastic volatility with marginal Gamma law 161

that the conditional distribution of the aggregated returns yn , although being normal,
depends on the latent processes z(λt) and σ 2(t):

yn|σ 2
n ∼ N

(
µ� + βσ 2

n , σ 2
n

)
, (5)

where � = (tn − tn−1) and σ 2
n may be expressed in the following way (Barndorff-

Nielsen and Shephard 2001):

σ 2
n = 1

λ

[
z(λtn) − z(λtn−1) − (σ 2(tn) − σ 2(tn−1))

]
. (6)

As a consequence the one-step ahead distribution p(yn|y1, . . . , yn−1, θ) of yn given
observations up to tn−1 has no explicit form. Straightforward estimation of θ by max-
imizing the likelihood p(Y |θ) = ∏T

n=1 p(yn|y1, . . . , yn−1, θ), where Y = (y1, . . . ,

yT ), is therefore infeasible. It is common for such incomplete data problems to intro-
duce latent variables X and carry out Bayesian inference for the augmented parameter
vector (X, θ) through Markov chain Monte Carlo (MCMC) methods by sampling X
from the conditional posterior density p(X |θ, Y ) and sampling θ from p(θ |X, Y ).
Both densities are proportional to the augmented posterior density p(X, θ |Y ),

p(X, θ |Y ) ∝ p(Y |X, θ)p(X |θ)p(θ),

where the “ complete data” likelihood p(Y |X, θ) is easily obtained from (5) as
the product of T densities from a normal distribution:

p(Y |X, θ) =
T∏

n=1

fN (yn;µ� + βσ 2
n , σ 2

n ). (7)

p(X |θ) is the “prior density” of the distribution of the latent variables X under
θ , whereas p(θ) is the prior of θ .

Several authors have considered Bayesian estimation of the BNS stochastic vola-
tility model with marginal Gamma law using data augmentation and MCMC methods
(Barndorff-Nielsen and Shephard 2001; Roberts et al. 2004; Griffin and Steel 2006).
Barndorff-Nielsen and Shephard (2001) consider the following set of latent variables
as missing data:

X = (
z(λ�), . . . , z(λT �), σ 2(�), . . . , σ 2(T �)

)
,

which is based on using the timing of the data, namely t = �, . . . , T �, to discretize
the latent processes σ 2(t) and z(λt). This is a natural choice in the light of Eq. (6),
and allows to cast the model into a state space form with the state vector consisting of
the components σ 2(tn), σ 2(tn−1), z(λtn) and z(λtn−1). The problem with this choice,
however, is that the prior distribution p(X |θ) has no simple analytical form. Neverthe-
less, as demonstrated by Griffin and Steel (2006), it is possible to run MCMC based
on a Metropolis-Hastings move by using the prior p(X |θ) as a proposal density, as
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long as it possible to sample X from the prior. Since the ratio of prior and proposal
cancels from the acceptance probability, it is not necessary to evaluate the functional
value of the prior p(X |θ). This strategy, however, limits the class of possible moves
considerably.

Data augmentation based on a latent process X with a simple probabilistic struc-
ture was first suggested in various discussions of the paper by Barndorff-Nielsen and
Shephard (2001). Roberts (2001), Papaspiliopoulos (2001), and Frühwirth-Schnatter
(2001a) all pointed out that for BNS stochastic volatility model with marginal Gamma
law, a timing different from the observation times may be used to discretize the latent
processes z(λt) and σ 2(t). A finite dimensional exact representation of these latent pro-
cesses emerges from the interval representation of a Poisson process, and consequently
exact data augmentation is feasible. Detailed investigations reported in Roberts et al.
(2004), however, revealed that this parameterization which is called the centered one,
is prone to mixing problems for models where α is large. Furthermore, the sampler
tends to be trapped, if started far out in the tails of the posterior distribution. Further-
more, Roberts et al. (2004) and Papaspiliopoulos et al. (2003) show that choices of X
where the prior distribution is independent of the unknown model parameters seem
to be preferable. They introduce a so-called non-centered parameterization where the
latent process X is defined from a marked point process living on a stripe in the real
plane with exponentially distributed marks.

In the present paper we introduce in Sect. 2 an alternative non-centered parame-
terization for data augmentation and MCMC estimation, which is based on a marked
Poisson process living on the real line with uniformly distributed marks. It is a non-cen-
tered parameterization derived from the series representation of the back-ground-driv-
ing Levy process introduced in Rosiński (2001). MCMC estimation will be discussed
in detail in Sect. 3, where we introduce a new method of multiple updating of the
marked Poisson process, which generalizes the single update algorithm of Geyer and
Møller (1994). Section 4 deals with superposition models, where we discuss how the
identifiability problem inherent in the superposition model may be avoided by the use
of a Markov prior. In Sect. 5, we discuss applications to exchange rate data, whereas
Sect. 6 concludes.

2 Data augmentation for OU processes with marginal Gamma law

For Bayesian estimation based on data augmentation and MCMC, we need a rep-
resentation of the BDLP z(λt) and the volatility process σ 2(t) in terms of random
variables with a simple probabilistic structure. In Sect. 2.1 we review data augmenta-
tion based on the interval representation. In Sect. 2.2 we discuss the Rosiński series
representation, which is the basis for our data augmentation scheme.

2.1 The interval representation

For the BNS stochastic volatility model with marginal Gamma law a convenient rep-
resentation is the so-called interval representation (Cox and Isham 1988), which ex-
presses the BDLP and the volatility process on the interval [0, T �] in terms of jump
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times and jump sizes, using the fact that the BDLP is a compound Poisson process
with exponentially distributed jumps. The inter arrival times between two jumps of
the BDLP follow the exponential distribution E (α). Note that the timing of the BDLP
z(λt), introduced by Barndorff-Nielsen and Shephard (2001), is different from the
timing of the volatility process σ 2(t), leading to a marginal distribution that is inde-
pendent of λ. Consequently, the volatility process σ 2(t) jumps at τ1, . . . , τ j , . . ., with
the inter arrival times τ j −τ j−1 being iid exponential E (λα), whereas the BDLP jumps
at λτ1, . . . , λτ j , . . .. To each jump time τ j and λτ j , respectively, corresponds a jump
size J j from the E (δ) distribution.

Let N = #{τ j |τ j ≤ T �} be the number of jumps occurring till T �. Then the
sequences (τ1, . . . , τN ) of jump times and (J1, . . . , JN ) of jump sizes are a complete
description of the latent processes σ 2(t) and z(λt) on the interval [0, T �]:

z(λt) =
Nt∑

j=1

J j , (8)

σ 2(t) = exp(−λt)σ 2(0) +
Nt∑

j=1

exp
{−λ(t − τ j )

}
J j , (9)

where Nt = #{τ j |τ j ≤ t}. According to representation (9) the volatility at time t is
an exponentially weighted sum of past “shocks” J j with the weight being the smaller
the more time passed since the shock occurred at time τ j .

As mentioned in the introduction, data augmentation could be based on choosing
the jump times and jump sizes as missing data, X = {(τ j , J j ), j = 1, . . . , N }, a
choice which leads to a prior p(X |θ) of closed form:

log p(X |θ) ∝ N log δ − δ

N∑
j=1

J j + N log(λα) − λαT �.

Roberts et al. (2004), however, revealed that this parameterization is prone to mixing
problems for models where α is large.

2.2 Data augmentation based on the Rosiński representation

In this section, we consider a data augmentation method, which is based on a marked
Poisson process X, living on the positive real line (0,∞) with uniformly distributed
marks:

X = {(a j , r j ), j = 1, 2, . . .}, (10)

with a j being the arrival times of a homogeneous Poisson process with unit intensity,
while the marks r j are independent of a j and uniformly distributed on [0, 1]. We
define
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N = #{a j |a j ≤ λαT �} (11)

as the number of all point (a j , r j ) in X which fulfill the condition

a j ≤ λαT �. (12)

The prior p(X |θ) of X is given by:

log p(X |θ) ∝ log 
(N + 1) + N log λαT � − λαT �. (13)

To translate X into the jump times and the jump sizes of the BDLP z(λt) and the
volatility process σ 2(t), we will use the Rosiński representation (Rosiński 2001).

2.2.1 The Rosiński series representation

A useful representation of the processes z(λt) and σ 2(t) is given by the Rosiński
series (Rosiński 2001), as mentioned first by Barndorff-Nielsen and Shephard (2001,
p. 176), and applied by Griffin and Steel (2006) for practical Bayesian estimation.
Both Barndorff-Nielsen and Shephard (2001) and Griffin and Steel (2006) considered
a separate Rosiński representation of the processes σ 2(t) and z(λt) for each obser-
vation interval [(n − 1)�, n�]. The goal of this subsection is to show that a single
Rosiński type representation of the whole processes σ 2(t) and z(λt) on the entire
observation interval t ∈ [0, T �] is available.

Let W be the Lévy measure of z(1) and W −1 denote the inverse of the tail mass
function W +. Then the integral of a positive, integrable function f (s) with respect to
z(s) is representable in law as:

∫ L

0
f (s)dz(s)

L=
∞∑
j=1

W −1(a j/L) f (Lr j ), (14)

where {(a j , r j )} are the points of the process X defined in (10). For the Gamma
marginal law (4) an explicit expression for W −1(x) is available as:

W −1(x) = max

{
0,−1

δ
log

( x

α

)}
. (15)

From (14) and (15) we obtain:

∫ λT �

0
f (s)dz(s)

L=
∞∑
j=1

max

{
0,−1

δ
log

( a j

αλT �

)}
f (λT �r j ). (16)

As a j is an increasing sequence and − log(a j ) is decreasing in a j , all components in
(16) with a j > αλT � are equal to 0. Therefore, only those points (a j , r j ) contribute
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to the integral which fulfill condition (12). Integral (16) may be represented by a finite
sum:

∫ λT �

0
f (s)dz(s)

L=
N∑

j=1

−1

δ
log

( a j

αλT �

)
f (λT �r j ), (17)

with N defined by (11). To represent z(λt) on [0, T �] we use

z(λt) =
∫ λT �

0
f (s)dz(s), (18)

where f (s) = I{s≤λt}(s). Applying (17) we obtain the following finite Rosiński rep-
resentations for z(λt):

z(λt) =
N∑

j=1

−1

δ
log

( a j

αλT �

)
I{T �r j ≤t}(r j ). (19)

Note that the points (a j , r j ) in (19) are ordered with respect to the first coordinate a j .
Now we reorder the points (a j , r j ) according to r j . Let r(1), . . . , r(N ) denote the order
statistics of r1, . . . , rN , let a(1), . . . , a(N ) be the corresponding arrival times. Then

z(λt) =
Nt∑

j=1

−1

δ
log

( a( j)

αλT �

)
, (20)

where Nt = #{r( j)|T �r( j) ≤ t}. Similarly, to represent σ 2(t) on [0, T �] we use:

σ 2(t) = exp(−λt)σ 2(0) +
∫ T �

0
f (s)dz(λs) = exp(−λt)σ 2(0)

+
∫ λT �

0
f (s′/λ)dz(s′),

where f (s) = exp{−λ(t − s)}I{s≤t}(s). Applying (17) and reordering as above we
obtain the following finite Rosiński representation of the volatility process:

σ 2(t) = exp(−λt)σ 2(0) −
Nt∑

j=1

exp{−λ(t − T �r( j))}1

δ
log

( a( j)

αλT �

)
. (21)

2.2.2 Data augmentation

To implement data augmentation based on the marked Poisson process X defined in
(10), a relation has to established between the points in X and the jump times and
the jump sizes of the volatility process. By comparing the Rosiński representation
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(20) and (21) with the interval representation (8) and (9) we find how the arrival
times {a j , j = 1, 2, . . .} of the latent process X could be used to determine the num-
ber N of jumps in the volatility process on the interval [0, T �] as well as their sizes
{J j , j = 1, . . . , N }, whereas the marks {r j , j = 1, . . . , N } could be used to determine
the arrival times {τ j , j = 1, . . . , N } of these jumps.

More precisely, let N be defined by (11), let r(1), . . . , r(N ) denote the order statis-
tics of the marks r1, . . . , rN , and let a(1), . . . , a(N ) be the corresponding sequence of
arrival times. The ordered marks r( j) of X translate into the jump times τ j , whereas
the corresponding arrival times a( j) translate into the jump sizes J j of the volatility
process in the following way:

J j = −1

δ
log

( a( j)

λαT �

)
, (22)

τ j = T �r( j). (23)

To complete the definition of the missing data, we have to add the unobservable vol-
atility σ 2(0) at time t = 0 as an additional component. As Roberts et al. (2004),
we parameterize σ 2(0) = X0/δ in terms of a standard volatility X0. An equivalent
transformation allows us to express the volatility process σ 2(t) and the BDLP z(λt)
being independent of δ for arbitrary t :

σ 2(t) = σ̃ 2(t)/δ , z(λt) = z̃(λt)/δ .

Consequently, σ 2
n in (6) factorizes as σ 2

n = σ̃ 2
n (α, λ)/δ with

σ̃ 2
n (α, λ) = 1

λ

[
z̃(λtn) − z̃(λtn−1) − (σ̃ 2(tn) − σ̃ 2(tn−1))

]
. (24)

3 MCMC estimation through data augmentation based on the Rosiński
representation

In this section we will discuss Bayesian estimation of the BNS stochastic volatility
model with marginal Gamma law using MCMC methods and data augmentation based
on the Rosiński representation as introduced in Sect. 2.2. We will discuss only that case
where the parameters µ and β appearing in (2) are fixed. For returns from exchange
rates, for instance, µ as well as β may be set to 0. This leaves the parameters α, δ and
λ (or some transformations involving only these parameters) to be estimated from the
data. Subsequently, we consider a parameterization in terms of the parameters α and
δ of the marginal Gamma law and the autocorrelation ρ = e−�λ at lag 1.

We assume that all components of θ = (α, δ, ρ) are independent apriori, and use
the following priors, which are closely related to the ones considered by Roberts et al.
(2004) and Griffin and Steel (2006): α ∼ G (a0, A0), δ ∼ G (d0, D0), ρ ∼ B (b0, B0).
Concerning the initial volatility X0, we assume that X0 ∼ G (a0, 1) with a0 being a
fixed or random hyperparameter. In this choice we differ from the work of Roberts et al.
(2004) and Griffin and Steel (2006), who assume that σ 2(0) arises from the stationary
distribution, σ 2(0) ∼ G (α, γ ), and consequently X0 ∼ G (α, 1). We found that this
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stationary prior introduced quite a bias for highly persistent volatility processes, and
that a non-stationary prior is preferable.

MCMC estimation iterates between the three following sampling steps:

1. sample the latent marked Poisson process X from the conditional posterior
p(X |θ, X0, Y ),

2. sample the initial volatility X0 from the conditional posterior p(X0|θ, X, Y ),
3. sample θ from the conditional posterior p(θ |X, X0, Y ).

We will provide more details in the following sections.

3.1 Sampling the missing data

Sampling realizations of the latent process X = {(a j , r j ), j = 1, 2, . . .} from
p(X |X0, θ, Y ) is crucial for efficient estimation of the model. Conditional on holding
θ fixed, the missing data X consist of two parts X1 and X2 with the following prop-
erties. The first part, defined by X1 = {(a j , r j )|a j ≤ λαT �}, translates through the
Rosińksi representation (20) and (21) into the jump times and jump sizes in the volatil-
ity representation (9). We will use the notation V(X1, θ) to refer to the corresponding
jump times and jump sizes. The second part, defined by X2 = {(a j , r j )|a j > λαT �},
does not influence the likelihood p(Y |X, X0, θ), when holding θ fix:

p(Y |X, X0, θ) = p(Y |V(X1, θ), X0, θ).

Therefore the posterior of X takes the form:

p(X |X0, θ, Y ) = p(X1|θ, X0, Y )p(X2|θ),

where

p(X1|θ, X0, Y ) ∝ p(Y |V(X1, θ), X0, Y )p(X1|θ).

Hence X1 and X2 are independent conditional on θ , and sampling of X is carried out
in two blocks:

(a1) sample X1 from p(X1|θ, X0, Y ),
(a2) sample X2 from p(X2|θ).

As the conditional posterior of X2 is equal to the prior p(X2|θ) of X2 given θ , MCMC
sampling of X2 is straightforward. We sample X2 = {(a j , r j ), j = N +1, N +2, . . .}
as aN+ j = λαT � + ã j , where ã j are the arrival times of a Poisson process with
intensity 1, and rN+ j ∼ U [0, 1], j = 1, 2, . . ..

When sampling X1 from p(X1|θ, X0, Y ), we choose with probability 0.5 one of the
following moves: a global death with immigration move where the number of jumps
changes, and a local multiple displacement move, where the number of jumps remains
unchanged and the likelihood changes only locally. Both moves are generalizations of
the corresponding single update moves suggested by Roberts et al. (2004). To improve
mixing, we conclude each draw by a Metropolis-Hastings move, which updates all
jump times in a similar way as in Roberts et al. (2004).
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3.1.1 Death with immigration move

This is a global move where the number N of jumps changes. At each move, each
pair (a j , r j ), j = 1, . . . , N , is deleted with a certain probability pd . The total number
of deleted points is denoted by Nd . New points (anew

j , rnew
j ), j = 1, 2, . . . , Nb, are

added with a certain birth rate pb, by proposing the number of new points Nb from
a Poisson distribution with intensity λαT �pb. The new number of jumps is equal to
N new = N + Nb − Nd .

The new arrival times anew
j , j = 1, 2, . . . , Nb, are proposed as the order statistics

of Nb random numbers being uniformly distributed on [0, λαT �]. An equivalent way
of proposing anew

j , j = 1, 2, . . . , Nb, jointly with Nb, is to sample anew
j as the arrival

times of a Poisson process with intensity pb, which is then truncated at λαT �. In any
case, the new marks rnew

j , j = 1, 2, . . . , Nb, are proposed as iid draws from a uniform
distribution. Note that this implies following proposal density q(N new|N ) for the new
number of jumps N new, given that the current number of jumps is equal to N :

q(N new|N ) = e−λαT �pb

min(N ,N new)∑
i=0

(λαT �pb)
N new−i


(N new − i + 1)

(
N
i

)
(1 − pd)i pN−i

d ,

whereas the new arrival times and the new marks are sampled from the prior. Let Xnew
1

denote the collection of all pairs (a j , r j ) that were not deleted in the first step and all
pairs (anew

j , rnew
j ) that were added in the second step. The acceptance rate for a move

from X1 to Xnew
1 is given by min(1, rX ) with

rX = p(Y |V(Xnew
1 , θ), X0, θ)q(N |N new)

p(Y |V(X1, θ), X0, θ)q(N new|N )
(λαT �pb)

(N new−N ) 
(N new + 1)


(N + 1)
. (25)

We would like to mention that the algorithm of Geyer and Møller (1994) which is
applied in Roberts et al. (2004) results as that special case of the methods described
in this subsection, where with probability 0.5 one selects either (Nd = 1, Nb = 0) or
(Nd = 0, Nb = 1).

Our algorithm is more flexible, as it allows deleting and adding of more than one
point. There are two parameters for tuning this move, namely the death rate pd and
the birth rate pb. Increasing any of these rates will decrease the acceptance rate of the
move. We observed a certain sensitivity to choosing appropriate rates for high intensity
processes. To achieve more robustness, we found it useful to work with random rates
pd and pb, rather than with fixed ones. At each MCMC draw, we sample pd and pb

independently from a uniform distribution over [0, pmax].

3.1.2 Local multiple displacement move

Next we consider a local move within a subset of the whole space that leaves the like-
lihood unchanged outside this subset. The move usually operates on more than one
point simultaneously, and is a direct extension of the single local displacement move
suggested in Roberts et al. (2004). Rather than moving directly the points of X1, we
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operate for this move on the jump times and jump sizes of the volatility process given
by V = {(τ j , J j ), j = 1, . . . , N }. The latent process V is then updated by modifying
all jump times and jump sizes within a block [τa, τb] by the following local multiple
displacement move.

We displace all jumps times within the block [τa, τb], i.e. τa < τ j < τb, randomly:
τ new

j ∼ U[τa, τb] and define the new jump sizes by:

J new
j = e−λ(τ new

j −τ j ) J j .

All jump times and jump sizes outside the block [τa, τb] remain unchanged: τ new
j = τ j ,

J new
j = J j . This choice leaves the volatility σ 2(t) unchanged outside [τa, τb]:

σ 2(t) =
Nt∑

j=1

J new
j e−λ(t−τ new

j ) =
Nt∑

j=1

J j e
−λ(t−τ j ),

for all t < τa and t > τb. The acceptance rate of a move from V to Vnew =
{(τ new

j , J new
j ), j = 1, . . . , N } is given by min(1, rX ) with

rX = p(Y |Vnew, X0, θ)

p(Y |V, X0, θ)
exp

{
−δ

∑
(J new

j − J j ) − λ
∑

(τ new
j − τ j )

}
. (26)

If the new jump times and jump sizes are accepted, they are matched back to X1
through the appropriate transformation, based on the Rosiński representation:

a j = exp(−δ J new
( j) )λαT �, (27)

r j = τ new
( j)

T �
, (28)

where J new
(1) , . . . , J new

(N ) denote the order statistics of the jump sizes J new
1 , . . . , J new

N
and the same ordering is applied to τ new

1 , . . . , τ new
N to obtain τ new

(1) , . . . , τ new
(N ) .

It remains to discuss how to choose the block [τa, τb]. In order to include multiple
jumps, the whole path is divided at each scan of the MCMC sampler into blocks,
with the block length as well as the number of blocks being random. To this aim we
first select the average block length to be B, and define the boundaries between the
blocks as the arrival times of a Poisson process with intensity 1/B, running till �T .
Obviously the first block starts at 0, whereas the last block ends at �T . Note that the
actual number of blocks changes, with the expected number of blocks being equal to
T/B. Then we select one block randomly and update all jump times and jump sizes
within this block simultaneously by the multiple displacement move described above.
This move is tuned by selecting the average block length B (measured in multiples of
�), where an increase of the average block length B will reduce the acceptance rate.
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3.1.3 Blocked Metropolis-Hastings-update of the jump sizes

To improve mixing, we implemented a blocked Metropolis-Hastings update of all jump
sizes, conditional on the current number of jumps and current jump times, which is a
slight modification of the update suggested by Roberts et al. (2004). For each jump
size J j , a new jump size J new

j is proposed according to log-normal random walk
Metropolis Hastings algorithm:

log J new
j = log J j + ξ j , ξ j ∼ N

(
0, c2

ξ

)
.

The acceptance rate of a move from V = {(τ j , J j ), j = 1, . . . , N } to Vnew =
{(τ j , J new

j ), j = 1, . . . , N } is given by min(1, rX ) with

rX = p(Y |Vnew, X0, θ)

p(Y |V, X0, θ)
exp

⎧⎨
⎩

N∑
j=1

ξ j − δ

N∑
j=1

(J new
j − J j )

⎫⎬
⎭ . (29)

We select the variance c2
ξ of the proposal in such a way that the expected prior ratio is

not too small, i.e. equal to a value not to far from 1, say γ = 0.8:

c2
ξ = 2 log(1 − log(γ )/N ).

3.2 Sampling the model parameter θ

MCMC estimation requires sampling θ conditional on X and X0 from p(θ |X, X0, Y ).
As in Roberts et al. (2004), the parameters (α, δ) are sampled jointly, conditional on
holding λ fixed, whereas λ is sampled in a single-move manner conditional on knowing
(α, δ).

We use a Metropolis-Hastings-step with a normal random walk proposal for log α,
by proposing a new value αnew from log αnew ∼ N (log α, ca)). Then δnew is sampled
from the conditional posterior density p(δ|X, X0, Y, αnew, λ) which is the density of
the Gamma-distribution G (dT , DT (αnew, λ)), with dT = d0 + T/2 and

DT (α, λ) = D0 + 1

2

T∑
n=1

y2
n

σ̃ 2
n (α, λ)

, (30)

where σ̃ 2
n (α, λ) is defined in (24). (αnew, δnew) is accepted with probability min{1, rθ }

where rθ = w(αnew)/w(α) and

w(α) = p(α)α∏T
n=1

√
σ̃ 2

n (α, λ)DT (α, λ)dT
. (31)

We use a Metropolis-Hastings-step with a normal random walk proposal for updating
λ, by proposing λnew ∼ N (λ, cl). This corresponds to a log random walk proposal
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for ρnew = exp(−�λnew). The new parameter θnew = (α, δ, ρnew) is accepted with
probability min{1, rρ} where

rρ = p(Y |X, X0, θ
new)p(X |θnew)p(ρnew)ρnew

p(Y |X, X0, θ)p(X |θ)p(ρ)ρ
. (32)

ca and cl influence the possible relative changes of αnew and ρnew, compared to α and
ρ. Choosing ca = 0.1 and cl = 0.003, as we will do in Sect. 5, implies that αnew lies
with probability 0.95 within the range of ±62 percent of α, whereas ρnew lies with
the same probability within the range of ±10 percent of ρ.

3.3 Updating the initial volatility

Finally we update the initial volatility X0, by proposing Xnew
0 from a proposal density

q(Xnew
0 |X0). The acceptance probability of Xnew

0 is equal to min{1, r0} where:

r0 = p(Y |Xnew
0 , X, θ)p(Xnew

0 )q(X0|Xnew
0 )

p(Y |X0, X, θ)p(X0)q(Xnew
0 |X0)

.

If the lag 1 autocorrelation ρ = e−λ� is smaller than 0.5, we propose Xnew
0 from the

prior, q(Xnew
0 |X0) = p(Xnew

0 ), in which case r0 simplifies to the ratio of the two like-
lihoods. Otherwise we propose Xnew

0 from a log random walk proposal, log Xnew
0 ∼

N (log X0, c0), in which case the ratio of the proposal densities is equal to Xnew
0 /X0.

3.4 A simulation study

In order to access the performance of the Rosiński parameterization with multiple
updates in comparison to the non-centered parameterization introduced by Roberts
et al. (2004), we repeated some of the simulation experiments studied in that paper.
For all simulations T = 500, � = 1, and δ = 10, whereas four different scenarios are
obtained by combining λ = 0.03 and λ = 0.1 with α = 2/3 and α = 2.

We use the same priors as Roberts et al. (2004), namely a G (1, 0.01)-prior for α

and δ, and a G (1, 1)-prior for λ, which is equal to the B (1, 1)-prior on ρ = e−λ.
Finally, we choose the same starting values, namely (α, δ, λ) = (10, 10, 1). We ran
both algorithms for 1 million iterations, removed the first 50,000 draws as burn-in,
and stored every 100th iteration.

To monitor converge, we found it useful not only to consider the posterior draws
of α, δ, λ, and transformations of these parameters such as the mean α/δ, the variance
α/δ2 and the lag 1 autocorrelation ρ of the latent volatility process, but also further
statistics involving the latent processes z(λt) and σ 2(t). Two particularly useful quan-
tities are the number N = #{τ j |τ j ≤ T �} of jumps and z(λT �) = ∑N

j=1 J j , the
total jump mass of the BDLP, both of which are directly available at each MCMC
draw.

Figures 1 and 2 show for all four simulated series the estimated autocorrelation func-
tion of N and z(λT �), obtained after removing the burn-in sample and thinning as
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Fig. 1 Simulation study: autocorrelation function of the number N of jumps under data augmentation
based on the Rosiński representation (thick line) and the non-centered parameterization of Roberts et al.
(2004) (thin line), obtained from 1 million MCMC draws, after a burn-in of 50,000 draws, thinning one
every hundred; true value of λ equal to 0.03 (left hand side) and 0.1 (right hand side), true value of α equal
to 2/3 (top) and 2 (bottom)

explained above. We find that the mixing behavior of the latent processes, measured by
these two statistics, is better under data augmentation based on the Rosiński represen-
tation, which is combined with the multiple updating algorithm for the latent process
X introduced in Sect. 3.1, than under the non-centered parameterization Roberts et al.
(2004). The better mixing properties under the Rosiński representation result from
the prior correlation, introduced through the latent process a j , between increasing
or decreasing N and adding or deleting small jumps, only. This allows larger steps
through the parameter space in comparison to the non-centered parameterization of
Roberts et al. (2004), where new jumps are sampled from the exponential prior.

4 Superposition models

The model defined above implies that the log of the autocorrelation function of the
squared returns decays exponentially which is not in accordance with the empirical
autocorrelation of returns from financial time series. To obtain a model with a more
flexible autocorrelation structure, Barndorff-Nielsen and Shephard (2001) suggested to
combine various independent OU-processes to form a so-called superposition model.
The log price x�(t) is modelled as solution of the SDE (2), where σ 2(t) is the sum of
independent OU process with marginal Gamma law:
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Fig. 2 Simulation study: autocorrelation function of the total jump mass z(λT ) under data augmentation
based on the Rosiński representation (thick line) and the non-centered parameterization of Roberts et al.
(2004) (thin line), obtained from 1 million MCMC draws, after a burn-in of 50,000 draws, thinning one
every hundred; true value of λ equal to 0.03 (left hand side) and 0.1 (right hand side), true value of α equal
to 0.03 (top) and 0.1 (bottom)

σ 2(t) =
k∑

i=1

σ 2
i (t)

dσ 2
i (t) = −λiσ

2
i (t)dt + dzi (λi t). (33)

zi (λt) is a Lévy process with independent, strictly positive increments consisting
entirely of jumps and the marginal law of σ 2

i (t) is a G (αi , δi )-distribution.
If all δi ≡ δ, then the marginal law of σ 2(t) is a G (∑

i αi , δ
)
-distribution, otherwise

it is a finite mixture of Gamma distributions. If all αi ≡ α, whereas the δi s are different,
then it is possible to write the model as a weighted sum of independent OU process
with identical marginal Gamma law:

σ 2(t) =
k∑

i=1

wiσ
2
i (t),

where σ 2
i (t) ∼ G (α, δ), 1/δ = ∑

i 1/δi , and wi = δ/δi . Obviously,
∑

i wi = 1.
The superposition model is identified only up to relabelling the indices of the com-

ponents, as the observed returns follow a normal distribution as in (6) with
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σ 2
n =

k∑
i=1

1

λi

[
zi (λi tn) − zi (λi tn−1) − (σ 2

i (tn) − σ 2
i (tn−1))

]
(34)

being invariant to relabelling the components of the superposition model. For k = 2, for
instance, the likelihood function p(Y |θ) is the same for any pair θ = (α1, δ1, ρ1, α2, δ2,

ρ2) and θ� = (α2, δ2, ρ2, α1, δ1, ρ1), where ρi = e−�λi , and consequently exhibit
two equivalent modal regions, with each mode corresponding to one way of labelling
the components. In general, when fitting a superposition model of k processes to data
generated from such a model, the likelihood function has k! modes.

The consequences this kind of unidentifiability has on MCMC estimation within a
Bayesian approach is well-known for mixture models, see for instance Stephens (2000)
and Frühwirth-Schnatter (2001b), and similar issues are relevant for the superposition
of OU processes. The posterior distribution p(α1, δ1, ρ1, . . . , αk, δk, ρk |Y ) inherits
the multimodality of the likelihood function, if the latter is combined with a prior that
is invariant to relabelling the components, for instance with the independence prior

p(α1, δ1, ρ1, . . . , αk, δk, ρk) =
k∏

i=1

p(αi )p(δi )p(ρi ), (35)

where for each OU process the priors of αi , δi and ρi are chosen as in Sect. 3. When
sampling from this posterior, the MCMC sampler will stick at one of the modes, if
the modes of the posterior are well-separated, in which case we may use the MCMC
draws for parameter estimation by taking ergodic averages. If the modes are not well-
separated, label switching between the modes is likely to take place, which renders
parameter estimation based on ergodic averages useless. Whether the modes are well-
separated or not, depends on the data as well as on the differences between the true
parameters in relation to the information contained in the data, and is not under the
control of the investigator.

Asymmetric prior distributions can often help to make the posterior distribution
unimodal, if they are introduced for a parameter that is different between the differ-
ent processes. In the financial applications of the superposition model reported in
Barndorff-Nielsen and Shephard (2001) and Roberts et al. (2004), the processes differ
mainly in λi . Thus we replace the independence prior (35) by an asymmetric prior
which takes the form:

p(α1, δ1, ρ1, . . . , αk, δk, ρk) = p(ρ1, . . . , ρk)

k∏
i=1

p(αi )p(δi ), (36)

where

p(ρ1, . . . , ρk) = p(ρ1)

k∏
i=2

p(ρi |ρi−1). (37)
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We choose a marginal B (b1, B1)-prior for ρ1, whereas

ρi |ρi−1 ∼ ρi−1B (bi , Bi ) . (38)

This prior generalizes the Markov prior, suggested by Roeder and Wasserman (1997)
for univariate mixtures of normal distributions, to superposition models of OU
processes. The Markov prior (38) induces an ordering on the decay factors given
by

e−λ1� > · · · > e−λk�,

and leads to a posterior density that is no longer invariant to relabelling the compo-
nents. For bi = Bi = 1, i = 1, . . . , k, for instance, a uniform prior over λ1 < · · · < λk

results.
For MCMC estimation of the superposition model we introduce a latent process Xi

and an initial standardized volatility X0,i for each OU-process. Each component Xi and
each initial standardized volatility X0,i is sampled separately, conditional on knowing
the remaining components. Various blocking strategies could be used for updating the
parameters. For k = 2, for instance, when δi ≡ δ, we sample α1, α2 and δ jointly, by
proposing αnew

1 and αnew
2 independently from a log random walk proposal, whereas δ is

sampled from the conditional posterior p(δ|X1, X2, X0,1, X0,2, α
new
1 , αnew

2 , λ1, λ2),
which remains a Gamma distribution. λ1 and λ2 are sampled in a single move manner,
using a Metropolis-Hastings update with a random walk proposal.

5 Application to real data

We fitted the BNS stochastic volatility model to a series of daily exchange rates of
the Swiss franc to the US dollar, provided by Robert Tompkins. The data cover the
period from January 2, 1985 to December 13, 1999, thus T = 3778 and � = 1. The
daily aggregate returns are derived after scaling the log-prices by a factor 100, hence
returns are measured in percentage terms.

First we consider a single OU-process with marginal Gamma law. Computations
are based on following priors: α ∼ G (1, 1), δ ∼ G (1, 0.01), ρ = e−λ� ∼ B (1, 1),
and X0 ∼ G (1, 1). We started MCMC estimation from two different starting values,
namely (α, δ, λ) = (1, 1, 0.3) and (α, δ, λ) = (1, 2, 0.15). Starting values for the
jump times and the jump sizes were simulated from the prior p(X |α, δ, λ). We tuned
the moves on the latent process X by choosing pmax = 0.03, and B = 40, whereas
the variances in the proposals for α, λ and X0 are equal to ca = 0.1, cl = 0.003 and
c0 = 2.

We experienced some difficulties with the algorithm of Roberts et al. (2004) when
fitting a single OU process to this time series, which failed to converge within 1 million
iterations from the second starting value. For both starting values, the non-centered
parameterization based on the Rosińki representation converged quickly to the same
modal region of the posterior, see Fig. 3 for the MCMC draws obtained from the
second starting value.
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Fig. 3 10,000 posterior draws of δ, α, and λ obtained from fitting a single OU model to the Swiss franc/US
dollar series (original chain of 1 million thinned one every hundred); autocorrelation and histograms obtained
after removing the initial 500 draws

Table 1 Posterior parameter summaries obtained from fitting a single OU model to the Swiss franc/US
dollar series

Parameter Posterior mean Posterior median Standard deviation

δ 5.34 5.3 0.768
α 3.32 3.3 0.439
λ 0.0493 0.0483 0.0146
α/δ 0.624 0.623 0.0396
α/δ2 0.12 0.118 0.0219
λα 0.164 0.16 0.053
e−λ 0.952 0.953 0.0139

Concerning the mixing behavior, the MCMC chain mixes acceptably for the param-
eters α and δ, governing the marginal law, see Fig. 3, as well as for the corresponding
mean α/δ and the corresponding variance α/δ2 (figures not reported). We observe
in general a poorer mixing behavior for λ, see again Fig. 3, and consequently for
the intensity αλ and the lag 1 autocorrelation e−λ (figures not reported). Posterior
summaries for various parameters are reported in Table 1.

We may combine the Rosiński representation with single updating as in Geyer and
Møller (1994) and Roberts et al. (2004) rather than multiple updates, however, our
experience is that this leads to slower convergence, if the sampler is started far out in
the tails of the posterior distribution.

Next we considered the superposition of two OU-process with marginal Gamma
laws with δ1 = δ2 = δ. Estimation is based on the priors δ ∼ G (1, 0.01), αi ∼
G (1, 1), ρi ∼ B (1, 1), and X0,i ∼ G (1, 1), for i = 1, 2. To check convergence, we
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Fig. 4 15,000 posterior draws of δ, α1 and λ1 obtained from fitting a superposition OU model to the
Swiss franc/US dollar series (original chain of 1.5 million thinned one every hundred); autocorrelation and
histograms obtained after removing the initial 2,000 draws

considered again two different starting values, namely (δ, α1, α2, λ1, λ2) = (1, 1, 0.1,

0.01, 10) and (δ, α1, α2, λ1, λ2) = (1, 1, 1, 0.1, 5). Again, the non-centered parame-
terization based on the Rosińki representation converged rather quickly to the same
modal region of the posterior from both starting values, however mixing is much
slower for the superposition model than for the single OU-model, see Fig. 4.

Posterior summaries for the parameters are given in Table 2. We find that the two
processes differ mainly in the memory parameter λ1 and λ2, whereas the difference
in the volatility of volatility parameters α1 and α2 is not very pronounced. The second
process is a high activity process with 2.3 expected jumps per day, see also Fig. 5
showing the posterior mean of each volatility process, Eσ 2

i (t)|Y , i = 1, 2, as well as
the observed squared returns y2

n .

6 Concluding remarks

In the present paper practical Bayesian estimation of the BNS stochastic volatil-
ity model with marginal Gamma laws has been studied. A parameterization of an
OU process with marginal Gamma law based on the Rosiński representation
(Rosiński 2001) has been considered, which has the advantage of being a non-centered
parameterization in the sense of Roberts et al. (2004). As in Roberts et al. (2004), the
parameterization is based on a marked Poisson process, however the process lives
on the positive real line, rather than on the two-dimensional space [0, T ] × (0,∞).
The arrival times a j of the Poisson process are used twice to define both the number
of jumps and the jump sizes. This parameterization has the advantage of automatic
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Table 2 Posterior parameter summaries obtained from fitting a superposition OU model to the Swiss
franc/US dollar series

Parameter Posterior mean Posterior median Standard deviation

δ 1.65 1.66 0.267
α1 0.279 0.269 0.0751
λ1 0.0173 0.017 0.003
α2 0.642 0.643 0.1
λ2 3.66 3.53 0.835
α1/δ 0.171 0.167 0.0422
α1/δ2 0.108 0.102 0.0377
λ1α1 0.00482 0.00462 0.00149
e−λ1 0.983 0.983 0.00294
α2/δ 0.391 0.392 0.0253
α2/δ2 0.246 0.237 0.0514
λ2α2 2.29 2.26 0.364
e−λ2 0.0343 0.0292 0.0235
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Fig. 5 Posterior mean of the each volatility processes, Eσ 2
1 (t)|Y (top), Eσ 2

2 (t)|Y (middle) in comparison

to the observed squared returns y2
n (bottom) obtained from fitting a superposition OU model to the Swiss

franc/US dollar series

thinning (deleting small jumps) when decreasing N , and of adding small jumps, when
increasing N . In the later case, a proposal with new jumps is more likely to be accepted
than the proposal used in Roberts et al. (2004), where new jumps are sampled from
the exponential prior. Simulation experiments as well the analysis of real exchange
rate confirmed this expectation.

Finally, we developed an MCMC scheme which enables multiple updates of the
latent point process X . At each MCMC draw we add and delete more than one point
from our latent point process, which is particularly useful for high intensity processes.
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