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Abstract

Spectral embedding of adjacency or Laplacian matrices of undirected graphs is a common technique for representing a

network in a lower dimensional latent space, with optimal theoretical guarantees. The embedding can be used to estimate

the community structure of the network, with strong consistency results in the stochastic blockmodel framework. One of

the main practical limitations of standard algorithms for community detection from spectral embeddings is that the number

of communities and the latent dimension of the embedding must be specified in advance. In this article, a novel Bayesian

model for simultaneous and automatic selection of the appropriate dimension of the latent space and the number of blocks is

proposed. Extensions to directed and bipartite graphs are discussed. The model is tested on simulated and real world network

data, showing promising performance for recovering latent community structure.

Keywords Community detection · Gaussian mixture modelling · Random dot product graph · Spectral embedding · Stochastic

blockmodel

1 Introduction

A network can be represented as a graph G = (V , E), where

V is a set of nodes and E ⊆ V ×V is a set of edges indicating

the pairs of nodes which have interacted. The graph can be

characterised by the adjacency matrix A ∈ {0, 1}n×n , where

n = |V | and for 1 ≤ i, j ≤ n, Ai j = 1E {(i, j)}, such

that Ai j = 1 if a link between the nodes i and j exists, and

Ai j = 0 otherwise. The graph is said to be undirected if

(i, j) ∈ E ⇐⇒ ( j, i) ∈ E and A is constrained to be

symmetric; otherwise, the graph is said to be directed. It will

be assumed that a node cannot link to itself, implying A is a

hollow matrix.

Latent space models (Hoff et al. 2002) represent a flex-

ible approach to statistical analysis of networks: each node

i is assigned a latent position xi in a d-dimensional latent
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space X, and edges between pairs of nodes are typically

generated independently, with the probability of observing

a link between nodes i and j obtained through a kernel func-

tion ψ : X × X → [0, 1] of the respective latent positions:

P(Ai j = 1) = ψ(xi , x j ). Different ideas and techniques for

embedding observed graphs into low dimensional spaces are

explored in the literature (for a survey, see, for example, Cai

et al. 2018). Random dot product graphs (RDPGs) (Young

and Scheinerman 2007) are a popular class of latent position

models, where X ⊆ R
d , and the function ψ(·) is an inner

product 〈·, ·〉 on X×X. RDPGs are analytically tractable and

have therefore been extensively studied; a survey of the exist-

ing statistical inference techniques is presented in Athreya

et al. (2017).

The stochastic blockmodel (SBM) (Holland et al. 1983) is

the classical statistical model for clustering graphs (Snijders

and Nowicki 1997; Nowicki and Snijders 2001). Assuming

K communities, each node is assigned a community mem-

bership zi ∈ {1, . . . , K } with probabilities θ , from the K −1

probability simplex. The probability of a link only depends on

the community allocations zi and z j of the two nodes. Given a

symmetric matrix B ∈ [0, 1]K×K of inter-community proba-

bilities, then independently P(Ai j = 1) = Bzi z j
. Stochastic

blockmodels have appealing statistical properties, and can

well approximate any independent-edge network model if
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the number of communities is sufficiently large (Bickel and

Chen 2009; Wolfe and Olhede 2013). Stochastic blockmod-

els can also be easily represented as random dot product

graphs: each community is assigned a latent position, which

is common to all the nodes belonging to the cluster, and B is

obtained from the inner products of those positions. Hence,

in this framework, d = rank(B) ≤ K .

Spectral clustering (von Luxburg 2007) provides a consis-

tent statistical estimation procedure for the latent positions

and communities in SBMs (Rohe et al. 2011; Lei and Rinaldo

2015) and more generally in random dot product graphs

(Tang et al. 2013; Sussman et al. 2014). Rubin-Delanchy

et al. (2017) directly links adjacency and Laplacian spec-

tral embedding to the generalised random dot product graph

(GRDPG), an extension of the RDPG, and advocates for

Gaussian mixture modelling (GMM) of the rows of the

embedding. Alternatives to spectral clustering include vari-

ational methods (Celisse et al. 2012) and pseudo-likelihood

approaches (Amini et al. 2013). SBMs have been extended to

the directed case (Wang and Wong 1987; Rohe et al. 2016),

and appropriate embeddings for co-clustering, in most cases

based on the singular value decomposition (SVD), have been

derived in the literature (Dhillon 2001; Malliaros and Vazir-

giannis 2013; Zheng and Skillicorn 2015).

One of the practical issues of spectral embedding, and in

general most graph embedding algorithms, is that it requires

a suitable prespecified latent dimensionality d (usually d ≪
|V |) as input, and, subsequently, a suitable number of clusters

K , conditionally, crucially, on the previous choice of d. For a

practical example of this procedure on a real world network,

see Priebe et al. (2019). In general, in spectral clustering,

similarly to what practitioners do in principal component

analysis (PCA), the investigator examines the scree-plot of

the eigenvalues and chooses the dimension based on the loca-

tion of elbows in the plot (Jolliffe 2002), or uses the eigengap

heuristic (see, for example, von Luxburg 2007). Automatic

methods for thresholding have also been suggested (Zhu and

Ghodsi 2006; Chatterjee 2015). A relevant body of literature

is also devoted to methods for the selection of the number

of communities in stochastic blockmodels (Zhao et al. 2011;

Bickel and Sarkar 2016; Newman and Reinert 2016; Franco

Saldaña et al. 2017; Chen and Lei 2018). Often, practition-

ers simply set d = K , for some d, assuming that B has full

rank in the stochastic blockmodel framework. Under the full

rank assumption, one may estimate d = K as the number

of eigenvalues of A which are larger than
√

n (Chatterjee

2015; Lei 2016). In this work, the problem of selecting d

is approached from the perspective of variable selection in

model based clustering, which is widely studied in the lit-

erature (Fowlkes et al. 1988; Law et al. 2004; Tadesse et al.

2005; Raftery and Dean 2006; Maugis et al. 2009; Witten and

Tibshirani 2010). Similarly, the problem of correctly select-

ing the number of clusters is also common in K -means or

GMMs, since it is usually required to specify a number of

components in the mixture. Usually the parameter is cho-

sen by minimising information criteria (for example, AIC

or BIC). A widely used selection criterion is the Integrated

Classification Likelihood (ICL) of Biernacki et al. (2000).

Exact versions of the ICL based on the adoption of prior

conjugated distributions of the model parameters have been

obtained in the literature (for example, Côme and Latouche

2015; Wyse et al. 2017). Numerous other techniques have

also been proposed for GMMs with unknown number of com-

ponents (Mengersen et al. 1996; Richardson and Green 1997;

Stephens 2000; Nobile 2004; Dellaportas and Papageorgiou

2006; Miller and Harrison 2018).

Clearly, the sequential approach in estimating d and K

is suboptimal, and it is desirable to jointly estimate the two

parameters, a problem which is not explored in the literature.

This article addresses the problem in a Bayesian framework,

proposing a novel methodology to automatically select d and

K , simultaneously. Techniques for selection of K in GMMs

will be incorporated within the spectral embedding frame-

work, allowing for K and d, the number of communities

and latent dimension of the latent positions, to be random

and learned from the data. A structured Bayesian model for

simultaneously inferring the dimension of the latent space,

the number of communities, and the community allocations is

proposed. The model is based on asymptotic results (Athreya

et al. 2016; Rubin-Delanchy et al. 2017; Tang and Priebe

2018) on the leading components of spectral embeddings,

obtained for d fixed and known. The asymptotic theory

is combined with realistic assumptions about the remain-

ing components of the embedding, empirically tested and

justified on simulated data. Furthermore, extensions to the

directed and bipartite case will be discussed. The proposed

model has multiple advantages: the latent dimension d and

number of communities K are modelled separately, and the

Bayesian framework allows for automatic selection of the

two parameters. The model also allows estimation of d even

when d < K , and gives insights on the goodness-of-fit of the

stochastic blockmodel on observed network data, based on

the embedding. The method is tested on simulated data and

applied to real world computer and transportation networks.

It should be noted that Yang et al. (2019) have simultaneously

and independently proposed a similar inferential procedure

within a frequentist framework.

The article is organised as follows: Sect. 2 introduces adja-

cency spectral and Laplacian embeddings and the GRDPG.

The novel Bayesian model for selection of the appropriate

dimension of the latent space is discussed in Sect. 3, followed

by careful illustration of posterior inference procedures in

Sect. 4. Section 5 discusses the effects of the curse of dimen-

sionality on the model, and suggests a remedy. Extensions of

the model are presented in Sect. 6, and results and applica-

tions are finally discussed in Sect. 7.
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2 GRDPG and spectral embeddings

In this work, the stochastic block model will be interpreted

as a specific case of a generalised random dot product graph

(GRDPG) (Rubin-Delanchy et al. 2017). For d > 0, let

d+, d− be non-negative integers such that d+ + d− = d.

Let X ⊆ R
d such that ∀ x, x

′ ∈ X, 0 ≤ x
⊤I(d+, d−)x

′ ≤ 1,

where

I(p, q) = diag(1, . . . , 1,−1, . . . ,−1)

with p ones and q minus ones. Let F be a probability

measure on X, A ∈ {0, 1}n×n be a symmetric matrix and

X = (x1, . . . , xn)⊤ ∈ X
n . Then (A, X) ∼ GRDPGd+,d−(F)

if x1, . . . , xn
iid∼ F and for i < j , independently,

P(Ai j = 1) = x
⊤
i I(d+, d−)x j .

To represent the K -community stochastic blockmodel

with inter-community probabilities B as a GRDPG, F can be

chosen to have mass concentrated on atoms μ1, . . . ,μK ∈
R

d such that μ⊤
i I(d+, d−)μ j = Bi j ∀ i, j ∈ {1, . . . , K }. For

consistent estimation of the latent positions in a SBM, inter-

preted as a GRDPG, Rubin-Delanchy et al. (2017) suggest

to fit a Gaussian mixture model with K components to the

d-dimensional adjacency or Laplacian spectral embedding.

Adjacency spectral embedding (ASE) and Laplacian spec-

tral embedding (LSE) are two common techniques to embed

the adjacency matrix of an undirected graph into a latent

space of dimension d. Suppose A ∈ {0, 1}n×n is a symmet-

ric adjacency matrix of an undirected graph with n nodes.

Then:

Definition 1 (ASE – Adjacency spectral embedding) For

d ∈ {1, . . . , n}, consider the spectral decomposition A =
Ŵ̂�̂Ŵ̂

⊤ + Ŵ̂⊥�̂⊥Ŵ̂
⊤
⊥, where �̂ is a d × d diagonal matrix

containing the top d eigenvalues in magnitude, in decreas-

ing order, Ŵ̂ is a n × d matrix containing the corresponding

orthonormal eigenvectors, and the matrices �̂⊥ and Ŵ̂⊥ con-

tain the remaining n − d eigenvalues and eigenvectors. The

adjacency spectral embedding X̂ = [x̂1, . . . , x̂n]⊤ of A in

R
d is X̂ = Ŵ̂|�̂|1/2 ∈ R

n×d , where the operator | · | applied

to a matrix returns the absolute value of its entries.

Definition 2 (LSE – Laplacian spectral embedding) For

d ∈ {1, . . . , n}, consider the Laplacian matrix L =
D−1/2AD−1/2, D = diag(

∑n
j=1 Ai j ), and its spectral

decomposition L = Ŵ̃�̃Ŵ̃
⊤ + Ŵ̃⊥�̃⊥Ŵ̃

⊤
⊥. The Laplacian

spectral embedding X̃ = [x̃1, . . . , x̃n]⊤ of A in R
d is

X̃ = Ŵ̃|�̃|1/2.

The modified Laplacian D−1/2AD−1/2 (Rohe et al. 2011)

is preferred to In −D−1/2AD−1/2 since the eigenvalues of the

former lie in (−1, 1), providing a convenient interpretation

for disassortative networks (Rubin-Delanchy et al. 2016).

Intuitively, the estimation procedure proposed by Rubin-

Delanchy et al. (2017) holds because, taking a graph with

m nodes, and restricting the attention to the first n nodes,

with n < m, the following central limit theorem holds:

Qm x̂i −→ N{μzi
, m−1�(μzi

)} in distribution for m →
∞, i = 1, . . . , n, where Qm is a matrix from the indefinite

orthogonal group O(d+, d−) and �(μzi
) can be analytically

computed (Rubin-Delanchy et al. 2017). The result holds

for d fixed and known, but in this work it is of interest to

treat d as a random, unknown parameter. If a m-dimensional

embedding is considered, with m > d, then asymptotic

theory implies an approximate normal distribution with non-

zero means and a full covariance within each cluster for the

top-d components of the embedding; but, to the best of our

knowledge, no theoretical results have been obtained for the

remaining m−d columns. It is therefore necessary to propose

a model for the remaining part of the embedding, which will

be carefully described in Sect. 3, and empirically justified

and assessed in Sect. 7.1.

3 A Bayesianmodel for SBM embeddings

For simplicity, the embeddings will be generically denoted

as X = [x1, . . . , xn]⊤ ∈ R
n×m, xi ∈ R

m for some m,

d ≤ m ≤ n. In this article, m is always assumed to be

fixed and obtained from a preprocessing step. Choosing an

appropriate value of m is arguably much easier than choosing

the correct d, and, in the proposed model, the correct d can

be recovered for any choice of m, as long as d ≤ m. Let

X:d denote the first d columns of X, and Xd: the m − d

remaining columns. The notation xi,:d denotes the first d

elements (x1, . . . , xd) of the vector xi , and similarly xi,d:
denotes the last m − d elements (xd+1, . . . , xm). Suppose a

latent dimension d, K communities, and latent community

assignments z = (z1, . . . , zn). The latent positions of nodes

within each community are assumed to be generated from an

m-dimensional community specific Gaussian distribution:

xi |d, zi ,μzi
,�zi

, σ 2
zi

∼ Nm

([

μzi

0

]

,

[

�zi
0

0 σ 2
zi

Im−d

])

. (1)

Following the results in Sect. 2, the initial components xi,:d
are assumed to have unconstrained mean vector μk ∈ R

d

and positive definite d × d covariance matrix �k . In con-

trast, for xi,d:, two constraints are imposed: the mean is an

(m − d)-dimensional vector of zeros, and the covariance

is a diagonal matrix σ 2
kIm−d with positive entries σ 2

k =
(σ 2

k,d+1, . . . , σ
2
k,m). The validation of the model assumptions

will be discussed in details in Sect. 7.1. Assuming group-

specific covariances σ 2
k for Xd: adds extra complexity to the
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model, and implies that d cannot take the simple interpreta-

tion of being the number of dimensions relevant for clustering

(see, for example, Raftery and Dean 2006). However, empir-

ical evidence, discussed in Sects. 5 and 7.1, suggests that the

last m − d components of the embedding contain a cluster

structure which reflects the communities in the top-d dimen-

sions. Following the discussion in the previous sections, the

parameter d actually represents the dimension of the latent

positions that generate the network, equivalent to the rank of

the unobserved matrices E(A) and B ∈ [0, 1]K×K .

In order to complete the model specification, conjugate

priors can be placed on the parameters as follows:

(μk,�k)|d
i id∼NIWd(0, κ0, ν0 + d − 1,�d),

σ 2
k, j

i id∼ Inv-χ2(λ0, σ
2
0 ), j = d + 1, . . . , m,

d|z ∼Uniform{1, . . . , K∅},

zi |θ
i id∼Multinoulli(θ), i = 1, . . . , n,

θ |K ∼Dirichlet (α/K , . . . , α/K ) ,

K ∼Geometric(ω), (2)

where, if nk =
∑n

i=1 1k{zi } is the size of community k,

K∅ =
∑K

k=1 1N+{nk} is the number of non-empty com-

munities. In (1), NIWd denotes the d-dimensional normal

inverse Wishart distribution, and Inv-χ2 is a scaled inverse

chi-square distribution with λ0 degrees of freedom and scal-

ing parameter σ 2
0 .

Yang et al. (2019) have simultaneously and independently

proposed a model similar to (1) in a frequentist framework,

reaching similar assumptions. The conjecture on the distri-

bution of Xd: is essentially the same, except for the choice

of the diagonal elements of the cluster-specific covariance

matrix: Yang et al. (2019) use a common variance parameter

σ 2
k for the last m − d columns of the embedding, whereas a

(m − d)-dimensional vector of variances σ 2
k is used in this

paper. Additionally, as a second difference from Yang et al.

(2019), the full model proposed here will also incorporate a

second-level community cluster structure on these vectors of

variances, which will be introduced in Sect. 5.

Note that the condition d ≤ K is explicitly enforced in (1).

More specifically, d ≤ K∅, which avoids an artificial match-

ing between d and K using empty clusters, which are given

non-zero probability mass under the Dirichlet-Multinoulli

prior on (θ , z). One can also model d and K separately in an

analogous way, changing the prior p(d) to, for example,

d ∼ Geometric(δ), (3)

independently of K and z; this will later be referred to as the

unconstrained model. The alternative prior (3) is particularly

useful in practical applications and provides a useful inter-

pretation of d: when d ≤ K , then d = rank(B), but when

d > K , this implies that the observed data might deviate

from the stochastic blockmodel assumption, and provides a

useful diagnostic for model validation and goodness-of-fit.

The likelihood associated with the spectral embedding

X ∈ R
n×m obtained from a stochastic blockmodel can be

expressed as:

L(X) =
n

∏

i=1

{

φ(xi,:d ;μzi
,�zi

)

m
∏

j=d+1

φ(xi, j ; 0, σ 2
zi , j )

}

,

where φ(·) denotes the (possibly multivariate) Gaussian

density function. Hence, the posterior distribution, up to a

normalising constant, has form

p({μk}, {�k}, {σ 2
k}, z, θ , K , d|X) ∝ L(X) ×

K
∏

k=1

{

p(μk,�k |d)

m
∏

j=d+1

p(σ 2
k, j |d)

} n
∏

i=1

p(zi |θ)p(K )p(d).

The NIWd(0, κ0, ν0 + d − 1,�d) prior on the pair

(μk,�k) is conjugate and yields a conditional posterior

(μk,�k)|X, z, d ∼ NIWd(m
(k)
:d , κnk

, νnk
+ d − 1, D

(k)
:d ). By

standard methods for inference in a multivariate Gaussian

mixture model with NIW prior, the covariance matrix �k

can be explicitly integrated out from the posterior to obtain

the marginal p(μk |X, z, d) = tνnk
{μk |m(k)

:d , D
(k)
:d /(κnk

νnk
)},

the density of the multivariate Student t distribution with νnk

degrees of freedom, where νnk
= ν0 + nk , κnk

= κ0 + nk ,

m
(k)
:d =

∑

i :zi =k
xi,:d

/

κnk
,

D
(k)
:d = �d +

∑

i :zi =k
xi,:d x

⊤
i,:d − κnk

m
(k)
:d m

(k)
:d

⊤
. (4)

Henceforth, μk can easily be resampled in a simple Gibbs

sampling step, conditional on the actual value of d and on the

community allocations z. In this work, the location vectors

μk are collapsed out too, but the distribution is instructive to

present other distributional results below, and could be also

used if the objective of the analysis is to also recover the

explicit form of the latent positions.

In a multivariate Gaussian model with conjugate NIW

prior, it is also possible to analytically express the marginal

likelihood of the observed data, conditioning on a community

specific Gaussian, on the assignments z and on the dimension

of the latent space d:

p
(

X
(k)
:d

∣

∣

∣
d, z

)

= π−nk d/2 κ
d/2
0 |�d |(ν0+d−1)/2

κ
d/2
nk

|D(k)
:d |(νnk

+d−1)/2

×
d

∏

i=1

Ŵ{(νnk
+ d − i)/2}

Ŵ{(ν0 + d − i)/2} , (5)
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where X
(k)
:d is the subset of rows of X:d such that zi = k.

Given the Inv-χ2(λ0, σ
2
0 ) prior, the posterior for σ 2

j,k

is Inv-χ2(λnk
, s

(k)
j ), where λnk

= λ0 + nk , and s
(k)
j =

{

λ0σ
2
0 +

∑

i :zi =k x2
i, j

}

/λnk
. Similar calculations give the

full marginal likelihood for the remaining portion of the

embedding X
(k)
d: :

p
(

X
(k)
d:

∣

∣

∣
d, z

)

= π−nk (m−d)/2

{

Ŵ(λnk
/2)

Ŵ(λ0/2)

}m−d

×
m

∏

j=d+1

(λ0σ
2
0 )λ0/2

(

λnk
s
(k)
j

)λnk
/2

. (6)

Also, note that the probabilities θ associated to the com-

munity assignment can be easily integrated out, resulting in

the following marginal likelihood, conditional on K :

p(z|K ) = Ŵ(α)
∏K

k=1 Ŵ(nk + α/K )

Ŵ(α/K )K Ŵ(n + α)
. (7)

The distributional results presented in (4), (5), and (7)

(for a proof, see, for example, Murphy 2007) are the build-

ing blocks for the MCMC sampler which is used to make

Bayesian inference on the model parameters of interest.

4 Inference via MCMC

Since the full posterior is not analytically tractable, inference

is performed using MCMC sampling with trans-dimensional

moves (Green 1995). The main objective of the analysis is to

cluster the nodes, and therefore the locations μk , the variance

parameters �k and σ 2
k and the community probabilities θ are

considered as nuisance parameters and integrated out. Essen-

tially, in this type of collapsed Gibbs sampler (Liu 1994), four

moves are available (Richardson and Green 1997), described

in the subsequent four subsections. A similar sampler is used

by Wyse and Friel (2012) to estimate the number of clusters

in stochastic blockmodels.

4.1 Change in the community allocations

A fully collapsed Gibbs update for each community assign-

ment is available:

p(zi = k|z−i , X, d, K ) ∝ p(zi = k|z−i , d, K )

× p(xi |{x j } j �=i :z j =k, d). (8)

In the special case where d = K∅ and nzi
= 1, the full condi-

tional distribution for zi assigns probability one to retaining

the same value since the model does not permit d > K∅.

Otherwise, from (7):

p(zi = k|z−i , d, K ) ∝
n−i

k + α/K

n − 1 + α
. (9)

where n−i
k = nk − 1k(zi ). Similarly, the remaining term

in (8), p(xi |{x j } j �=i :z j =k, d), can be obtained as the ratio of

marginal likelihoods

p(xi |{x j } j �=i :z j =k, d) =
p(xi , {x j } j �=i :z j =k |d)

p({x j } j �=i :z j =k |d)
. (10)

The ratio (10) can be decomposed as the product of two ratios

of marginal likelihoods. Using (5), the first ratio is equivalent

to t distribution (Murphy 2007):

p(xi,:d |{x j,:d} j �=i :z j =k, d) =

tν
n
−i
k

(

xi,:d

∣

∣

∣

∣

∣

m
(k)
:d ,

κ
n−i

k
+ 1

κ
n−i

k
ν

n−i
k

D
(k),−i
:d

)

, (11)

where the additional superscript −i denotes a cluster quan-

tity that is computed excluding the allocation zi of the i-th

node, and tν(·|μ,�) denotes the density function of a (pos-

sibly multivariate) Student’s t distribution with ν degrees of

freedom, location μ, and shape matrix �. The second ratio,

which accounts for the last m − d dimensions, has the form

p(xi,d:|{x j,d:} j �=i :z j =k, d) =
m

∏

j=d+1

tλ
n
−i
k

(

xi, j

∣

∣

∣
0, s

(k),−i
j

)

.

(12)

4.2 Split or merge two communities

To vary the number of communities, move proposals inspired

by Sequentially-Allocated Merge-Split sampling (Dahl 2003;

Jain and Neal 2004) are used here. Two indices i and j are

sampled at random from the n nodes, and without loss of

generality assume zi ≤ z j . If zi = z j , then the single clus-

ter is split, whereas if zi > z j the two clusters are merged.

In both move types, node i will remain in the same cluster,

denoted z⋆
i = zi . In the merge move, all elements of cluster

z j are reassigned to cluster zi (with any higher indexed clus-

ters subsequently decremented). For the split move, node j

is first reassigned to cluster K ⋆ = K + 1 with new alloca-

tion z⋆
j = K ⋆; then, in random order the remaining nodes

currently allocated to cluster zi are randomly reassigned to

clusters zi or K ⋆ with probability proportional to their predic-

tive distribution from the generative model (10). Denoting the

resulting product of renormalised predictive densities from

these reallocations by q(K ⋆, z
⋆|K , z), the acceptance prob-

ability for a split move, for example, is
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α(K ⋆, z
⋆|K , z) =

min

{

1,
p(X|d, K ⋆, z

⋆)p(d|z⋆, K ⋆)p(z
⋆, K ⋆)

p(X|d, K , z)p(d|z, K )p(z, K )q(K ⋆, z
⋆|K , z)

}

.

(13)

The ratio of densities for X in (13) will depend only upon

the rows of the matrix corresponding to the cluster being split

(or similarly, merged), and these expressions will decompose

as a products of terms for the first d and remaning m − d

components [cf. (11), (12)].

4.3 Create or remove an empty community

Adding or removing empty communities whilst fixing z cor-

responds to proposing K ⋆ = K + 1 or K ⋆ = K − 1

respectively, although the latter proposal is not possible if

K = K∅, meaning there are currently no empty communi-

ties. The acceptance probability is simply

α(K ⋆|K ) = min

{

1,
p(z|K ⋆)p(K ⋆)q∅

p(z|K )p(K )

}

,

where the proposal ratio q∅ = 2 if K ⋆ = K∅, q∅ = 0.5 if

K = K∅ and q∅ = 1 otherwise.

4.4 Change in the latent dimension

This move is only required when the latent dimension is

not marginalised out. Given a current value d, a new value

d⋆ is proposed from a density q(d⋆|d) ∝ ξ |d⋆−d|
1D(d⋆)

on a neighbourhood D = {max{1, d − l}, . . . , d − 1, d +
1, . . . , min{d + l, m}}, typically with l ≤ 5 and ξ ∈ (0, 1).

The acceptance ratio reduces to

α(d⋆|d) = min

{

1,
p(X|d⋆, K , z)p(d⋆|z)
p(X|d, K , z)p(d|z)

q(d|d⋆)

q(d⋆|d)

}

.

Notably, if d⋆ > d, the ratio p(X|d⋆, K , z)/p(X|d, K , z)

only depends on the first d⋆ components of the embedding,

since the last m −d⋆ components remain independent by (1).

4.5 Inferring communities

Markov Chain Monte Carlo samplers for mixture models

with varying number of clusters are well known to be affected

by label switching (Jasra et al. 2005), since the likelihood

is invariant to permutations of the cluster labels. However,

the estimated posterior similarity between nodes i and j ,

π̂i j = P̂(zi = z j |X) =
∑M

s=1 1z
(s)
i

{z(s)
j }/M is invariant

to label switching. Communities can be estimated from the

MCMC chains using the posterior similarity matrix {π̂i j } and

the PEAR method (maximisation of the posterior expected

adjusted Rand index, Fritsch and Ickstadt 2009). Alterna-

tively, if a configuration with a fixed number of clusters K is

required, the clusters can been estimated using hierarchical

clustering with average linkage, using 1 − π̂i j as distance

measure (Medvedovic et al. 2004).

5 Second-level clustering of community
variances

Empirical analyses of simulations from the stochastic block-

model show that identifying and clearly separating the K

clusters in Xd: is particularly difficult for the sampler in set-

tings when d ≪ m. The problem is particularly evident when

m = n and d is small. In this case, it has been assessed

empirically that the within-cluster variance of the true com-

munities in simulated datasets seems to converge to similar

values, such that σ 2
k, j ≈ σ 2

ℓ, j for j ≫ d and k �= ℓ. There-

fore, when m is large enough, the selected model tends to

be under-specified: the correct dimension d is identified, but

the true number of communities K is underestimated. This is

also one of the main reasons why it is not advisable to directly

fit a Gaussian mixture model on X ∈ R
n×m and allow K to

be random, ignoring the role of d.

The problem is illustrated in Fig. 1, which shows the

within-cluster variance for each dimension, obtained from

performing ASE for a simulation of n = 500 nodes from

a stochastic block model containing five communities with

well-separated mean locations. In Fig. 1, the clustering struc-

ture z is assumed to be known. More details about simulations

of SBMs are given in Sect. 7.1. In the plot, the within-cluster

variance of three of the five communities of the simulated

graph fluctuate around the same values on each dimension

larger than d. For a dimension larger than approximately 150,

four of the five clusters have approximately the same vari-

ance on the subsequent dimensions. Therefore, when m = n,

the MCMC sampler selects the MAP estimate K̂ = 2 for

parsimony, and increases the variance of the Gaussian dis-

tributions on the first two dimensions, on which the clusters

are well separated.

The solution proposed here is to assume shared variance

parameters between some of the clusters for dimensions

larger than d. Specifically, each community k ∈ {1, . . . , K }
is assigned a second-level cluster allocation vk ∈ {1, . . . , H},
with H ≤ K . If vk = vℓ, then for j > d, σ 2

k, j = σ 2
ℓ, j . For-

mally,

xi |d, K , zi , vzi
∼ Nm

(

[

μzi

0

]

,

[

�zi
0

0 σ 2
vzi

Im−d

])

,

vk |K , H ∼ Multinoulli(φ), k = 1, . . . , K ,

φ|H ∼ Dirichlet (β/H , . . . , β/H) ,
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Fig. 1 Empirical within-block variance and total variance for the

adjacency embedding obtained from a simulated 5-block SBM with

d = 2, n = 500, d means μ1 = [0.7, 0.4],μ2 = [0.1, 0.1],μ3 =

[0.4, 0.8],μ4 = [−0.1, 0.5] and μ5 = [0.3, 0.5], and nk = 100 for

k = 1, . . . , K . The right panel is the left panel plot zoomed in to the

first 25 dimensions

H |K ∼ Uniform{1, . . . , K }.

Essentially, the vector v = (v1, . . . , vK ) defines a cluster-

ing of communities. Note that if H = 1, all the communities

are assigned to the same second-level cluster, and the prob-

lem of selecting d essentially reduces to an ordinal version of

the feature selection problem in clustering (Raftery and Dean

2006). Also, if H = 1, then there is no information about the

clusters in the last m − d components of the embedding.

Under this extended model, the posterior distribution for

σ 2
j,k changes due to the aggregation of communities in the

second level. Under the Inv-χ2(λ0, σ
2
0 ) prior, the posterior

is Inv-χ2(λn•k
, s

(•k)
j ), where n•k =

∑

ℓ:vℓ=k nℓ and

s
(•k)
j =

{

λ0σ
2
0 +

∑

i :zi =k
x2

i j

} /

λn•k
.

Calculations similar to (6) give the correct form of the

marginal likelihood for the right hand side of the matrix,

restricted to a given value of vk . Clearly, φ can be again

marginalised out, yielding the marginal likelihood

p(v|H) = Ŵ(β)
∏H

h=1 Ŵ(
∑K

k=1 1h{vk} + β/H)

Ŵ(β/H)H Ŵ(K + β)
.

The MCMC sampler described in Sect. 4 must be slightly

adapted. For the Gibbs sampling move in Sect. 4.1, the prod-

uct of univariate Student’s t densities in (12) is modified using

the appropriate (λn•k
, s

(•k)
j ) pair. For the change in dimen-

sion, p(X|d, K , z, v) should be computed using the shared

variances and the allocations v. When an empty community is

proposed, as in Sect. 4.3, the ratio p(v⋆|K )/p(v|K ) must be

added, limited to the second level allocation of the additional

community. The value vk for the proposed empty cluster can

be simply chosen at random from {1, . . . , H}. Finally, for the

split-merge move in Sect. 4.2, if zi = z j for the two selected

nodes, then vzi
= vz j

after the split move. Alternatively, if

zi �= z j , then the new value of vk is sampled at random from

vzi
and vz j

.

Finally, three additional moves are required: resampling

the second-level cluster allocations v using a Gibbs sampling

step; proposing a second-level split-merge move; and adding

or removing an empty second-level cluster. When φ and the

parameters of the Gaussian distributions are marginalised

out, the second-level allocations are resampled according to

the following equation:

p(vk = h|v−k, X, z, d, K ) ∝ p(vk = h|v−k, K )

×p

(

X
(k)
d:

∣

∣

∣

∣

{

X
(ℓ)
d:

}

ℓ �=k:vℓ=h
, vk = h, d, K

)

, (14)

where the independence assumption between X
(k)
:d and X

(k)
d:

is used. Similarly to (9):

p(vk = h|v−k, K ) =
∑

ℓ �=k 1h{vℓ} + β/H

K − 1 + β
.

The calculations for the second term in (14) are similar to

(10):

p

(

X
(k)
d:

∣

∣

∣

∣

{

X
(ℓ)
d:

}

ℓ �=k:vℓ=h
, vk = h, d, K

)

=

p

(

X
(k)
d: ,

{

X
(ℓ)
d:

}

ℓ �=k:vℓ=h

∣

∣

∣

∣

vk = h, d, K

)

p

(

{

X
(ℓ)
d:

}

ℓ �=k:vℓ=h

∣

∣

∣

∣

d, K

) ,
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which can be computed using (6). The second-level split-

merge move and the proposal of an empty cluster follows the

same guidelines in Sects. 4.2 and 4.3.

Potentially, the model could be extended further using the

same reasoning: from the plot in Fig. 1, it is clear that the

different clusters begin to share the same variance at different

points in the plot. Empirically, all the variances approxi-

mately converge to the same values at large dimensions, and it

is therefore possible to identify a (K − 1)-vector of discrete

points in {d, d + 1, . . . , m} at which different community

variances coalesce. For the plot in Fig. 1, such vector could

be (d, d, d, 150, n), with d = 2 and n = m = 500.

6 Extension to directed and bipartite graphs

A directed graph G = (V , E) has the property that (i, j) ∈
E ��⇒ ( j, i) ∈ E , meaning the corresponding adjacency

matrix A ∈ {0, 1}n×n is not, in general, symmetric. Directed

graphs are useful for representing directed interaction net-

works, such as email traffic patterns; knowing that individual

i broadcasts emails to individual j does not immediately

imply that j also issues communications to i . In a random

dot product graph context, it can be assumed that each node

has two underlying latent positions xi and x
′
i , characterising,

respectively, its behaviour as a source and as a destination

of the connection. Therefore, P(Ai j = 1) = x
⊤
i x

′
j . For

a stochastic blockmodel P(Ai j = 1) = Bzi z j
= μ⊤

zi
μ′

z j

for latent positions μzi
,μ′

z j
∈ R

d , where the matrix B ∈
[0, 1]K×K is in this case asymmetric.

Definition 3 (Adjacency embedding of the directed graph)

Given a directed graph with adjacency matrix A ∈ {0, 1}n×n ,

and an integer d ∈ {1, . . . , n}, consider the singular value

decomposition

A =
[

Û Û⊥
]

[

D̂ 0

0 D̂⊥

] [

V̂⊤

V̂⊤
⊥

]

= ÛD̂V̂⊤ + Û⊥D̂⊥V̂⊤
⊥,

where D̂ ∈ R
d×d
+ is diagonal matrix containing the top d

singular values in decreasing order, Û ∈ R
n×d and V̂ ∈ R

n×d

contain the corresponding left and right singular vectors, and

the matrices D̂⊥, Û⊥, and V̂⊥ contain the remaining n −
d singular values and vectors. The d-dimensional directed

adjacency embedding of A in R
d , is defined as the pair X̂ =

ÛD̂1/2, X̂′ = V̂D̂1/2.

Writing X = UD1/2 and X′ = VD1/2, the rows of X

characterise the activities of each node as a source, and the

rows of X′ characterise the same nodes as destinations.

The model in (1) can be easily adapted to directed graphs.

Treating the embeddings X and X′ as independent, each is

modelled separately using the same Gaussian structure and

prior distributions (1), except for three parameters which are

initially assumed common to both embeddings: the latent

dimension d, the number of communities K and the vector

of node assignments to those communities, z.

In some contexts it will be more relevant to consider dif-

ferent community membership structures for the same set

of nodes when considering them as source nodes or des-

tination nodes. In this case, let K denote the number of

source communities and K ′ denote the number of destina-

tion communities; similarly let z denote the assignments of

nodes to source communities, and z
′ the allocations to des-

tination communities. The problem of jointly learning z and

z
′ (as well as d) is commonly known as co-clustering, and

the corresponding network model is known as the stochastic

co-blockmodel (ScBM) (Rohe et al. 2016), or Latent Block

Model (LBM) (Govaert and Nadif 2010). Given an asym-

metric matrix B ∈ [0, 1]K×K ′
, then P(Ai j = 1) = Bzi z′

j
.

From a random dot product graph perspective, it is assumed

that Bzi z′
j
= μ⊤

zi
μ′

z′
i

, for some latent positions μzi
,μ′

z′
i

∈ R
d

and d = rank(B) ≤ min(K , K ′).
The Bayesian model for ScBMs can be easily represented

as a separate model for X and X′, of the form given in (1),

with the latent dimension of the embedding d now the only

common parameter. Inference via MCMC can be performed

in an equivalent way to the method described in Sect. 4; the

only difference is in the expression of the acceptance ratio for

a change in the shared latent dimension d, but the procedure

can exploit the results obtained in Sect. 4.4, using the fact

that

p(X, X′|d, K , K ′, z, z
′) =

K
∏

k=1

p
(

X
(k)
:d

∣

∣

∣
d
)

p
(

X
(k)
d:

∣

∣

∣
d
)

×
K ′
∏

k′=1

p
(

X′(k′)
:d

∣

∣

∣
d
)

p
(

X′(k′)
d:

∣

∣

∣
d
)

,

where all the marginal likelihoods can be equivalently

obtained from (5). Furthermore, the model can be appro-

priately modified when d ≪ m to include the second-level

cluster allocations proposed in Sect. 5.

Finally, in bipartite graphs, the observed nodes can be

partitioned into two sets V and V ′, with V ∩ V ′ = ∅ and

E ∩ (V × V ) ∪ (V ′ × V ′) = ∅. Assume that V plays

the role of the set of source nodes and V ′ of the set of

destination nodes. Bipartite graphs are usually represented

by a rectangular bi-adjacency matrix A ∈ {0, 1}n×n′
, with

n′ = |V ′|. In this case, it is still possible to apply the meth-

ods described in this section to the SVD embedding obtained

from the rectangular matrix A. Note that the ScBM extends

trivially to the bipartite graph case, which is essentially a spe-

cial case of a directed graph, with the cluster configurations
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for source and destination nodes now inescapably unrelated

and each node possessing only one latent representation in

R
d .

7 Applications and results

The Bayesian latent feature network models described in

this article have been applied to both simulated and real

world network data from undirected and directed graphs. The

real network data analysed are from an undirected network

obtained from the Santander bikes hires in London, and the

Enron Email Dataset ; details are given in the corresponding

sections.

The model and MCMC sampler have been tested using

different combinations of the hyperparameters, showing

robustness to the prior choice. In absence of strong prior

information about the community structure, it is advisable to

use the usual uniformative values κ0 = ν0 = λ0 = α = β =
1, and ω = δ = 0.1. For the proposal of change in dimen-

sion (cf. Sect. 4.4), ξ = 0.8. Those values have been used as

default settings for the MCMC sampler in the next sections.

Inferential performance is sensitive to extreme values of the

variance parameters, relative to the prior mean, but other-

wise robust. So in practice, the expectation of the prior for

the variance parameters should be chosen to be on the same

scale as the observed data. The cluster configuration could

be suitably initialised using K -means for some pre-specified

K , usually chosen according to the scree-plot criterion. The

second-level clusters have been initialised setting H = K .

In order to set the prior covariances to a realistic value, the

correlations in the �d matrices could be set to zero, and the

elements on the diagonal of �d to the average within-cluster

variance based on the K -means cluster configuration. Sim-

ilarly, the prior σ 2
0 j values could be set to the total variance

on the corresponding column of the embedding.

In Sects. 7.2 and 7.3, the algorithms were initialised using

the above guidelines, and run for a total of M = 500 000

samples with burn-in 25 000, for a number of different chains

to check for convergence.

7.1 Synthetic data andmodel validation

In order to validate the model assumptions in (1), stochastic

blockmodels have been simulated and the fit of the pro-

posed model has been evaluated on the estimated latent

positions. A stochastic blockmodel can be simulated starting

from a matrix B ∈ [0, 1]K×K ′
containing the probabili-

ties of connection between communities, and a vector θ of

community allocation probabilities. For an undirected graph,

K = K ′ and the constraint Bkℓ = Bℓk is imposed; similarly,

for directed graphs with a shared cluster configuration (cf.

Algorithm 1: Simulation of an undirected stochastic

blockmodel.

1 for i = 1, . . . , n, sample zi ∼ Multinoulli(θ),

2 simulate B = {Bkℓ} ∈ [0, 1]K×K , Bkℓ = Bℓk , where,

for k ≤ ℓ, Bkℓ ∼ Beta(a, b) for a, b > 0,

3 obtain a rank-d truncation of B using B̃ = Ŵd�dŴ⊤
d ,

ensuring that B̃kℓ ∈ [0, 1] ∀k, ℓ,

4 obtain the adjacency matrix A ∈ {0, 1}n×n , Ai j = A j i ,

where Ai j ∼ Bernoulli(B̃zi z j
).

Sect. 6), K = K ′. Each element Bkℓ of B could be gener-

ated, for example, from independent beta draws.

The latent dimension d corresponds to the rank of the

matrix B, and a random matrix B generated from independent

beta draws has full rank with probability 1. Therefore, to

simulate d < K a low-rank approximation of B must be

used to generate the embedding. For undirected graphs, a

truncated spectral decomposition can be used: B̃ = Ŵd�dŴ⊤
d

(recall Definition 1). Similarly, for the directed and bipartite

graphs, the truncated SVD is an appropriate approximation:

B̃ = UdDdV⊤
d (see Definition 3). Note that under this low-

rank approximation, it must be checked that each element

B̃kℓ ∈ [0, 1]. The procedure is summarised in Algorithm 1.

The algorithm can be also extended to directed and bipar-

tite graphs. In this section, each element Bkℓ of B was

generated from a Beta(1.2, 1.2) distribution, which produces

communities with a moderate level of separation. For the

given choice of K , the community allocations probabilities

in the simulations were chosen to be θ = (1/K , . . . , 1/K ),

providing balanced clusters.

If a stochastic blockmodel is simulated using Algorithm 1,

all the parameters are known, and the fit of model (1) can be

evaluated using the true underlying cluster allocations z.

7.1.1 Emprical analysis of spectral embeddings

Figure 2 illustrates results for a synthetic undirected stochas-

tic blockmodel with d = 2 and K = 5. Figure 2a shows

the scatterplot of the first two columns of the adjacency

embedding X, coloured using the true underlying commu-

nities. The plot shows well-separated clusters, which can be

suitably modelled using a Gaussian mixture. Figure 2b shows

the scatterplot of the next two dimensions. Clearly, the com-

munity mean locations are significantly different from zero

in just the first two dimensions. This is further illustrated

in Fig. 2c, which plots the empirical within-cluster means

for each dimension, obtained using the known clustering z.

Fig. 2c gives empirical evidence that the form [μ⊤
zi
, 0⊤]⊤ for

the mean of xi in (1) suitably describes what is observed

in SBMs. Similarly, Fig. 2d shows the empirical within-

cluster variances for each dimension, again obtained using
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(a) (b) (c)

(f)(e)(d)

Fig. 2 Adjacency embedding for an undirected graph with n = 2 500 nodes, K = 5, obtained from a symmetric B ∈ [0, 1]K×K with Bkℓ ∼
Beta(1.2, 1.2), θ = (1/K , . . . , 1/K ) and d = 2. For (e) and (f), m = 50 is used

the known values of z from the simulation. In Fig. 2d, the

difference between the within-cluster and overall variance

is evident only in the first two dimensions, after which the

quantities are of the same order of magnitude. The plot also

shows that the within-cluster variances differ across commu-

nities, suggesting that it is appropriate to have cluster-specific

values of σ 2
j,k for j > d; this phenomenon can also be wit-

nessed in Fig. 2b, and Fig. 1 in Sect. 5. Nevertheless, if the

MCMC sampler were run on the simulated data in Fig. 2,

it could also be appropriate to use a second-level clustering

with H = 3, since the variances of three of the five commu-

nities are approximately the same for dimensions larger than

d = 2. Furthermore, for small m and fairly large n, it seems

from Fig. 2d that the vector σ 2
k could be approximated by

a constant σ 2
k as in Yang et al. (2019). However, for small

values of n and large m, as in Fig. 1, parameter vectors σ 2
k

are clearly required. If a constant σ 2
k is used, the inferential

procedure is essentially identical, but (6) should be modified

accordingly.

Figure 2e shows the histogram of the empirical correla-

tion coefficients ρ
(k)
i j , i, j = 1, . . . , m, i < j, for each

community, obtained from the known z. The cluster-specific

correlation coefficients ρ
(k)
12 between X1 and X2 are repre-

sented by bullet points in the plot, suggesting dependence for

at least one of the clusters, confirming the result of Rubin-

Delanchy et al. (2017), and providing further evidence that

cluster-specific full covariance matrices �k should be used

for the covariance of xi in (1). On the other hand, the empir-

ical within-cluster correlations for Xd: tend to be small and

centred around 0, suggesting that the assumption of indepen-

dence is appropriate in that part of the model in (1). Finally,

Fig. 2f plots the marginal log-likelihood as a function of d,

using the known cluster configuration z. The marginal like-

lihood strongly favours the true value d = 2, resulting in a

posterior distribution essentially consisting of a point mass

at the true value.

Figure 3 shows similar results for a simulated bipar-

tite graph with separate community structures for nodes as

sources and destinations, with d = 2, K = 5 and K ′ = 3.

Again, the scatterplot for X′
1 and X′

2 in Fig. 3a are well-

separated and can be easily estimated using the Gaussian

mixture model. Figure 3b, c show the empirical within-

cluster means for each dimension, obtained using z and z
′.

The zero-mean assumption for the columns with index larger

than d seems to hold even for a relatively small number of

nodes per community. Figure 3d, e show the empirical within-
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Simulated adjacency embedding for a bipartite 250 × 300 graph with K = 5 and K ′ = 3, obtained from B ∈ [0, 1]K×K ′
with Bkℓ ∼

Beta(1.2, 1.2), θ = (1/K , . . . , 1/K ), θ ′ = (1/K ′, . . . , 1/K ′), and d = 2. For (f), m = 50

cluster variances for each dimension. Again, it is confirmed

that the variances are different for each community, even

on the last m − d components. The within-cluster variance

on the last m − d also seem to be decreasing, showing that

for small graphs the parameter vector σ 2
k could be prefer-

able to a constant σ 2
k as in Yang et al. (2019). In Fig. 3f, the

marginal likelihood strongly favours the true value d = 2,

which again results in a point mass posterior centred at the

true value. Similar considerations hold for the correlations,

with results which are similar to the plots in Fig. 2e for the

undirected graph.

7.1.2 Model parameter estimation

Table 1 shows the results from inference for model (1) when

applied to SBMs simulated with different values of d and K ,

for all the possible combinations of the models considered

in this article. For each (d, K ) pair, an undirected SBM with

n = 1 000 nodes is generated, and the MCMC sampler is run

three times, each with M = 10 000 samples after a burn-in

of 2 500. The samplers are initialised using the guidelines

discussed in the introduction to Sect. 7. The table reports

the averaged values of d, K∅ and H∅ obtained from the

MCMC chains. The posterior mean values of d and K which

are obtained are extremely close to the true values, implying

that the results support the proposed model.

From Table 1, the performance of adjacency and Laplacian

spectral embedding for recovering d, K and z seems to be

equivalent. Similar results for A and L are also obtained for

the application on real data in Sect. 7.2. Note that, for fixed

values of K , Priebe et al. (2019) demonstrate that, in practical

applications, LSE tends to better capture the affine struc-

ture in stochastic blockmodels, whereas ASE better identifies

the core-periphery structure. Also, Table 1 shows that the

constrained and unconstrained models seem to give an equiv-

alent performance. The difference between the constrained

model (2) and unconstrained model (3) will be more evi-

dent in Sects. 7.2 and 7.3, where the data might deviate from

the stochastic blockmodel assumption. Overall, for synthetic

data, the model seems robust and able to detect the correct d

and K in a variety of different settings.

7.1.3 Second-level clustering

It is also possible to evaluate the effect of the second-order

clustering for estimation of the community structure z, and

the parameters d and K . For the same simulated graph, the

MCMC sampler has been run with and without the second
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Table 1 Results of the inferential procedure for undirected SBMs sim-

ulated using different (d, K ) pairs

(d, K ) Model m = 25

d̄ K̄∅ H̄∅

(2, 2) constrained, ASE 2.00 2.00 1.99

unconstrained, ASE 2.00 2.00 1.99

constrained, LSE 2.01 2.03 1.99

unconstrained, LSE 2.02 2.02 1.99

(2, 5) constrained, ASE 2.00 5.05 1.77

unconstrained, ASE 2.00 5.07 1.80

constrained, LSE 2.05 5.10 3.11

unconstrained, LSE 2.07 5.11 3.10

(6, 7) constrained, ASE 6.00 7.04 2.10

unconstrained, ASE 6.00 7.05 2.20

constrained, LSE 6.00 7.10 2.47

unconstrained, LSE 6.00 7.07 2.39

(9, 9) constrained, ASE 8.97 9.01 2.08

unconstrained, ASE 9.00 9.01 1.98

constrained, LSE 9.00 9.02 2.12

unconstrained, LSE 9.00 9.04 2.11

(9, 12) constrained, ASE 9.00 12.02 1.96

unconstrained, ASE 9.00 12.01 1.90

constrained, LSE 9.00 12.03 2.60

unconstrained, LSE 9.00 12.02 2.53

(10, 15) constrained, ASE 10.00 14.78 1.25

unconstrained, ASE 10.00 14.11 1.27

constrained, LSE 10.00 14.81 1.81

unconstrained, LSE 10.00 15.01 1.87

Table 2 Results for the MCMC sampler on simulated undirected SBMs

for different values of m, with and without second order clustering

(d, K ) m H random H = K

d̂ K̂∅ H̄∅ ARI d̂ K̂∅ ARI

(3, 5) 15 3 5 1.669 1.000 3 5 1.000

50 3 5 1.577 1.000 3 4 0.768

150 3 5 1.467 1.000 3 4 0.768

500 3 5 1.006 1.000 3 4 0.768

(9, 12) 15 9 12 1.979 1.000 9 12 1.000

50 9 12 1.912 1.000 9 12 1.000

150 9 12 1.875 1.000 9 11 0.942

500 9 12 1.388 1.000 9 5 0.517

order clustering, using the same settings as the simulation

in Table 1. Note that the absence of second order clustering

corresponds to the case H = K . The procedure is repeated

for different values of m, for n fixed, to study the effect of

second-order clustering when m is increased. The results of

the simulations are summarised in Table 2 for two different

simulated graphs. The table reports the maximum a posteriori

(MAP) values of d and K∅, and the adjusted Rand index

(ARI) (Hubert and Arabie 1985) for the estimated clustering

of the nodes, obtained setting K∅ to its MAP estimate. For

simplicity, only the results for the unconstrained model using

ASE are reported. For the case when H is unknown, the table

reports the posterior mean of H∅.

In all the simulation settings, the model was able to recover

the correct values of d, but when m is large, only the second-

order clustering model allows K to be estimated correctly.

When the second-order clustering is not used and m is very

large relative to d and K , the MAP estimate K̂∅ tends to

be underestimated, and the inferred clustering structure is

therefore also negatively affected. Also, the table shows that

as m → n, the estimated value of H∅ tends to decrease

towards 1. Hence, to reduce the computational burden for

large m, it would be possible to set H = 1, corresponding

to the scenario σ 2
k = σ 2 ∀k, studied in Raftery and Dean

(2006) in the context of variable selection in GMMs. Table 2

also suggests that the model with second-order clustering is

robust to the choice of m. This is one of the main advantages

of the proposed model: the correct d can be recovered for

any choice of m, provided d ≤ m. Choosing an upper bound

m is easier than choosing the correct d, especially because

of the robustness of the model. On the other hand, choosing

large values of m makes the MCMC sampler computationally

more expensive. A suitable choice would be to set m based

on common criteria to obtain d (for example, the profile like-

lihood criterion of Zhu and Ghodsi 2006). For a given value

d⋆ obtained using such criterion, it would be appropriate to

choose m > d⋆, and then correct the initial estimate of d

using the proposed model.

7.2 Undirected graphs: Santander bikes

The Santander Cycle hire scheme is a bike sharing system

implemented in central London. Transport for London peri-

odically releases data on the bike hires1. Considering this as

a network, the nodes correspond to bike sharing stations, and

an undirected edge between stations i and j is drawn if at

least one ride between the two stations is completed within

the time period considered. In this example, one week of

data were considered, from 5 September until 11 Septem-

ber, 2018. The total number of stations used, n = 783; the

total number of undirected edges |E | = 96 060, implying the

adjacency matrix is fairly dense. Note that it is possible to

collect and return the bike to the same docking station. Those

edges, amounting to less than 1% of |E |, have been removed,

since our modelling framework is specifically developed for

hollow binary matrices.

1 The data are available at the following URL: https://cycling.data.tfl.

gov.uk/, powered by TfL Open Data.
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(a) (b) (c)

Fig. 4 Posterior distributions and scree-plots for the Santander bike network data using adjacency and Laplacian embeddings, for the unconstrained

model (3). The dashed line in a and b, and the large bullet point in c represent MAP estimates of d

The results of the Bayesian inferential procedure, using

the unconstrained prior (3) for d, applied to the adjacency

and Laplacian embeddings for the Santander bike network

are presented in Fig. 4. The initial value of K was set to

10, with m = 25, but similar estimates were obtained using

different starting points for K and different values of m.

It is interesting to note the different shapes of the poste-

rior barplots of K∅ and H∅, Figs. 4a, b showing that the

second-level clustering is crucial to obtain a more accu-

rate model fit when the adjacency embedding is used. On

the other hand, for the Laplacian embedding, the posteri-

ors for K∅ and H∅ are extremely similar, suggesting that

the second-level clustering is not required for m = 25. The

MAP values d = 11 (adjacency) and d = 12 (Laplacian)

correspond to the elbow in the scree-plots (see Fig. 4c for

A).

Note that, especially in the case of the adjacency embed-

ding, d and K have similar values, showing that the two

graphs might be well described by a stochastic blockmodel.

Similarly, the constrained model with d ∼ Uniform{1, . . . ,

K∅} (1) returns the same MAP estimates for d, but the con-

straint d ≤ K∅ results in a larger number of small clusters;

the posterior of K∅ essentially reduces to the rescaled prob-

ability mass function obtained from the unrestricted model,

constrained such that d ≤ K∅, since the posterior for d is

approximately a point mass.

The resulting estimated clustering for the unconstrained

model (3) based on the adjacency embedding and K = 11

(the MAP for d), plotted in Fig. 5, shows a clear struc-

ture: the largest communities have approximately the same

extension, with a few exceptions. This is expected, since

the bikes are free for the first 30 minutes and have limited

speed, and are therefore used for small distance journeys.

Two clusters are significantly smaller than the others, and

correspond to touristic areas around Westminster, Covent

Garden and Buckingham Palace. On the other hand, two

clusters have a large geographical extension, and cover the

East and West London areas. For the adjacency embedding,

the MAP clustering obtained from the restricted model is

almost identical. The PEAR method (Fritsch and Ickstadt

2009) suggests K = 7 communities instead. Similarly, if the

Laplacian embedding is used, the MAP clustering structure

suggested by PEAR has K = 7 communities for the uncon-

strained model (3) and K = 12 for the constrained model

(1).

7.3 Directed graphs: Enron email dataset

Next, the algorithm is applied to a directed network: the

Enron Email Dataset2. The Enron database is a corpus of

emails sent by the employees of the Enron corporation. The

version of the Enron data which has been analysed here is

described in Priebe et al. (2005), and consists of n = 184

nodes and 3 010 directed edges. A directed edge i → j is

drawn if the employee i sent an email to the employee j .

The results of analysing this network are presented in

Fig. 6. The initial value of K was set to 10, with m = 25,

but again similar results were obtained using different start-

ing points for K and different values of m. The plots in

Figs. 6b, c report the estimated posterior distributions of

K∅ and H∅ for the constrained (1) and unconstrained (3)

models. Interestingly, the MAP estimate for d coincides with

the MAP estimate for K in the unconstrained model, which

is promising. For the constrained model, the MAP for K

exceeds the MAP for d by 1, allowing for rank(B) < K .

Overall, d and K have similar values, showing that the

graph might be well described by a directed stochastic block-

model.

2 The entire version of the data is available at the following URL:

https://www.cs.cmu.edu/~./enron/.
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Fig. 5 Santander bike sharing stations in London and maximum a posteriori estimates of the cluster allocations of the stations, obtained using

hierarchical clustering with distance 1 − π̂i j , K = 11. Stations in the same convex hull share the same cluster

The posterior distributions for K∅ and H∅ in Fig. 6b,

c are fairly different, showing that the second-level cluster-

ing might be relevant for this model. Inference on the model

without second-level clustering confirms this impression: the

posteriors for K∅, presented in Fig. 6d, e have a more sym-

metric shape, and the MAP latent dimension is d = 6. As

before, the MAP for K is d+1 = 7, providing some evidence

for the possibility rank(B) < K .

From Fig. 6a, the selected MAP values d = 6 and d = 9

for the models with and without second-level clustering seem

to be a tradeoff between the two most popular criteria for

selection of the appropriate latent dimension: the eigengap

heuristic suggests d = 5 if the second largest difference is

considered, and the elbow in the scree-plot is approximately

located around d ≈ 15.

8 Conclusion

In this article, a novel Bayesian model has been proposed

for automatic and simultaneous estimation of the number

of communities and latent dimension of stochastic block-

models, interpreted as special cases of generalised random

dot product graphs. The Bayesian framework allows the

number of communities K and latent dimension d to be

treated as random variables, with associated posterior distri-

butions. The postulated model is based on asymptotic results

in the theory of network embeddings and random dot product

graphs, and has been validated on synthetic datasets, show-

ing good performance at recovering the latent parameters and

communities. The model has been extended to directed and

bipartite graphs, using SVD embeddings and allowing for

co-clustering.

Overall, the main advantage of the proposed methodology

is to allow for an arbitrarily large value of m, the number of

columns (dimension) of the embedding at the first stage of

the analysis, and then to treat d and K separately, allowing

for the case d = rank(B) < K , which is often overlooked in

the literature. Problems arising from overspercification of m

are tackled using a second-level clustering procedure. Also,

the model provides an automated procedure and criterion to

select the dimension of the embedding and an appropriate

number of communities. If d is not constrained to be less

than or equal to K , the model also provides empirical evi-
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(a) (b) (c)

(e)(d)

Fig. 6 Scree-plot of singular values of A and posterior distributions of K∅, H∅ for the Enron data. The large bullet points in a, and the dashed

lines in b–e represent MAP estimates of d

dence of the goodness-of-fit of a stochastic blockmodel for

the observed data. Results on real world network data sets

show encouraging results in recovering the correct d, when

compared to commonly used heuristic methods, and the com-

munity structure.

Supplementary material

The python code and datasets are available at https://www.

github.com/fraspass/sbm.
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