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This article describes a Bayesian approach to estimating the spectral density of a stationary time series. A nonparametric prior on the spectral
density is described through Bernstein polynomials. Because the actual likelihood is very complicated, a pseudoposterior distribution is
obtained by updating the prior using the Whittle likelihood. A Markov chain Monte Carlo algorithm for sampling from this posterior
distribution is described that is used for computing the posterior mean, variance, and other statistics. A consistency result is established for
this pseudoposterior distribution that holds for a short-memory Gaussian time series and under some conditions on the prior. To prove this
asymptotic result, a general consistency theorem of Schwartz is extended for a triangular array of independent, nonidentically distributed
observations. This extension is also of independent interest. A simulation study is conducted to compare the proposed method with some
existing methods. The method is illustrated with the well-studied sunspot dataset.
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1. INTRODUCTION

Spectral analysis is a useful tool in the study of a stationary
time series. Let {Xt ; t = 0,±1, . . .} be a covariance stationary
time series with autocovariance function γ (r) = E(XtXt+r ).
The second-order properties of the time series, under mild con-
ditions that primarily exclude purely periodic components, are
completely described by the spectral density function

f ∗(ω∗) = 1

2π

∞∑

r=−∞
γ (r)e−i rω∗

, −π < ω∗ ≤ π. (1)

Parametric estimation of spectral density is mostly based on
autoregressive moving average (ARMA) models with data-
dependent order selection. However, these methods tend to
produce biased results when the ARMA approximation to the
underlying time series is poor.

The nonparametric estimation procedures mostly use the idea
of smoothing the periodogram
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. (2)

For a fixed ω∗ ∈ (0,π), In(ω
∗) has an asymptotic exponen-

tial distribution with mean f ∗(ω∗). Moreover, the covariance
between the periodogram ordinates evaluated at two different
frequencies that are at least 2π/n apart is of the order n−1.
Thus the periodogram, as a process, is randomly fluctuating
around the true spectral density. This is the motivation for
smoothing the periodogram. Because exponential distributions
form a scale family, smoothing is typically applied to the log-
periodogram to obtain an estimate of the log-spectral density.
Early smoothing techniques were based on kernel smoothers.
Smoothing splines for this purpose were suggested by Cogburn
and Davis (1974). Wahba (1980) proposed a regression based
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method in which the estimator was obtained by spline smooth-
ing the log-periodogram with a data-driven smoothing parame-
ter.

The least squares-type smoothing techniques do not use the
additional information of the limiting independent exponential
distribution. Let ω∗

l = 2πl/n and Ul = In(ω
∗
l ), l = 1, . . . , ν,

where ν = νn = �(n − 1)/2� is the greatest integer less than or
equal to (n − 1)/2. Then the joint distribution of (U1, . . . ,Uν)

may be approximated by the joint distribution of ν inde-
pendent exponential random variables with mean f ∗(ω∗

l ) for
the lth component. Whittle (1957, 1962) proposed a “quasi-
likelihood,”

Ln(f
∗|X1, . . . ,Xn) =

ν∏

l=1

1

f ∗(ω∗
l )

e−Ul/f
∗(ω∗

l ), (3)

known as the Whittle likelihood in the literature. One advantage
of the Whittle likelihood is that it directly involves f , whereas
the true likelihood involves f indirectly through the autoco-
variances. Chow and Grenander (1985) used a sieve method to
obtain a nonparametric maximum likelihood estimator (MLE)
based on the Whittle likelihood. Pawitan and O’Sullivan (1994)
defined a penalized MLE as the maximizer of the Whittle like-
lihood with a roughness penalty. A polynomial spline-fitting
approach was described by Kooperberg, Stone, and Truong
(1995), and a local likelihood technique was used by Fan
and Kreutzberger (1998). Ombao, Raz, Strawderman, and von
Sachs (2001) described a Whittle likelihood-based generalized
cross-validation method for selecting the bandwidth in peri-
odogram smoothing.

Nonparametric Bayesian approaches to the estimation of
a spectral density were studied by Carter and Kohn (1997),
Gangopadhyay, Mallick, and Denison (1998), and Liseo,
Marinucci, and Petrella (2001), who used the Whittle likeli-
hood to obtain a pseudoposterior distribution of f ∗. Carter and
Kohn (1997) induced a prior on the logarithm of f ∗ through an
integrated Wiener process and provided elegant computational
methods for computing the posterior. Liseo et al. (2001) consid-
ered a Brownian motion for the spectral density and modified
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it around the zero frequency to incorporate the long-range de-
pendence. Gangopadhyay et al. (1998) fitted piecewise polyno-
mials of a fixed low order to the logarithm of f ∗ while putting
priors on the number of knots, the location of the knots, and the
coefficients of the polynomials. Although these methods were
applied to some real and simulated data, their theoretical prop-
erties are unknown. Only an asymptotic result was provided by
Liseo et al. (2001) under a parametric assumption that the time
series is a fractional Gaussian noise process.

The goals of the present article are to develop a nonpara-
metric Bayesian method for the estimation of the spectral den-
sity and to prove consistency of the posterior distribution. The
essential idea behind the construction of the prior probability
is that the normalized spectral density is a probability den-
sity on a compact interval. A nonparametric prior is thus con-
structed using Bernstein polynomials in the spirit of Petrone
(1999a,b). A pseudoposterior is obtained by updating the prior
using the Whittle likelihood. A Markov chain Monte Carlo
(MCMC) algorithm for sampling from this pseudoposterior is
then described using the Sethuraman (1994) representation of
a Dirichlet process. First, a general result is obtained that gives
sufficient conditions for posterior consistency for a triangular
array of independent, nonidentically distributed observations.
Consistency of the pseudoposterior distribution of the spectral
density is then established by verifying the conditions of this
result and invoking a contiguity argument. Such use of a con-
tiguity argument in proving posterior consistency result is new
and may also be applied for different problems.

The article is organized as follows. The prior, together with
the preliminaries on the Bernstein polynomial priors, are intro-
duced in Section 2. An MCMC method for sampling from the
posterior distribution is described in Section 3. Results of a sim-
ulation study and the analysis of the sunspot data is presented
in Section 4. In Section 5 our method is justified through con-
sistency of this pseudoposterior distribution. The general con-
sistency result is presented and proved in the Appendix A, and
the proof of consistency of the spectral estimates is presented
in Appendix B.

2. BERNSTEIN POLYNOMIAL PRIOR

2.1 Preliminaries: Bernstein Polynomial Prior in
Density Estimation

The Bernstein polynomial prior was developed by Petrone
(1999a,b) to describe a nonparametric prior for probability den-
sities on the unit interval. It is a mixture prior of beta kernels
where the choice of the kernel is motivated by the fact that the
mixtures of beta densities with only integer parameters can ap-
proximate any continuous density on [0,1]. For any distribution
function G with a continuous density q on [0,1],

b(ω; k,G) =
k∑

j=1

G

(
j − 1

k
,
j

k

]
β(ω; j, k − j + 1) (4)

converges uniformly to q(ω), where G(u,v] = G(v) − G(u)

and β(ω;a, b) = �(a+b)
�(a)�(b)

ωa−1(1 − ω)b−1 is the beta density
with parameters a and b.

Motivated by the uniform approximation property, Vitale
(1975) suggested a density estimator based on the Bernstein

kernel. In the Bayesian context, Petrone (1999a,b) defined the
Bernstein polynomial prior as the distribution of the random
density

q(ω) =
k∑

j=1

wj,kβ(ω; j, k − j + 1), (5)

where k has a probability mass function ρ(·) and, given k,
wk = (w1,k, . . . ,wk,k) has a probability distribution on the
k-dimensional simplex

�k =
{

(w1, . . . ,wk) :wj > 0,

k∑

j=1

wj = 1

}
. (6)

In practice, the wj,k ’s are induced by a probability distribution
function G as in (4), and a prior is put on G. Such a con-
struction of the wj,k’s provides a simple MCMC algorithm for
sampling from the joint posterior distribution of (k,G) via data
augmentation, whereas sampling directly from the joint distri-
bution of (k,w) is complicated as the dimension of w changes
with k.

The right side of (5) is referred to as the Bernstein density
of order k with weights wk . Let Bk denote the class of all
Bernstein densities of order k. Then the Bk’s may be viewed
as sieves, and the prior may be thought of as a sieve prior in
the sense of Ghosal, Ghosh, and Ramamoorthi (1997). Petrone
and Veronese (2002) showed that the method of Bernstein ker-
nel approximation may be motivated as a special case of a
more general approximation technique due to Feller (1971,
chap. VII). For the weak topology, the prior has full topological
support if for all k, ρ(k) > 0 and wk has full support on �k with
respect to the Euclidean distance (Petrone 1999a). In fact, any
continuous distribution function is in the Kolmogorov–Smirnov
support of the prior. If the distribution has a continuous and
bounded density, then the conclusion can be strengthened to
the variation metric, and the Bernstein polynomial prior gives
consistent posterior in probability density estimation (Petrone
and Wasserman 2002). The proof uses the techniques devel-
oped by Schwartz (1965), Barron, Schervish, and Wasserman
(1999), and Ghosal et al. (1999).

2.2 Description of the Prior for the Spectral Density

The principal difference in the case of a probability density is
that f ∗ does not integrate to 1. In addition, the domain of f ∗ is
different form that of the beta densities. Because f ∗ is symmet-
ric, we may reparameterize f ∗ by a function f on [0,1] such
that f (ω) = f ∗(πω), 0 ≤ ω ≤ 1. Normalizing f to q = f/τ

with the normalizing constant τ = ∫
f , a prior on f may be

induced by first putting a Bernstein polynomial prior on q and
then putting an independent prior on τ . Thus the prior on f is
described by the following hierarchical scheme:

• f (ω) = τ
∑k

j=1 G((j − 1)/k, j/k]β(ω; j, k − j + 1).
• G has a Dirichlet process distribution with base measure,

α = MG0, where M > 0 is a constant and G0 is a proba-
bility distribution function with Lebesgue density g0.

• k has probability mass function, ρ(k) > 0, for k =
1,2, . . . .

• The distribution of τ has Lebesgue density π on (0,∞).
• G, k, and τ are a priori independent.
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The variance and the frequency components are two different
aspects of a stationary time series that are often a priori unre-
lated. Thus the decomposition of f into τ and q allows one to
individually model the prior beliefs for these two components.
In the absence of any concrete prior knowledge about one com-
ponent, a default prior may be used for that part while still using
an informative prior for the other component. A complete de-
fault prior may be used if no prior information is available.

Any knowledge about τ may be incorporated by centering
the density π about the prior guess while adjusting the variance
to the precision of this guess. A large variance indicates a lack
of confidence in the prior guess. Inverse-gamma distributions
form a two-parameter family that is conjugate, with the para-
meters flexible enough to adjust the prior mean and variance.
A flat default prior is obtained by choosing the scale parameter
very small.

Modeling prior information about q becomes tricky due to
the involvement of the smoothing parameter k. From (4), we
obtain

E
(
q(ω)|k) =

k∑

j=1

G0

(
j − 1

k
,
j

k

]
β(ω; j, k − j + 1), (7)

which is the kth-order Bernstein kernel smoothing of the den-
sity function g0. The larger the k, the less the extent of the
smoothing. The unconditional prior expectation of q is thus the
average of (7) with respect to the prior distribution of k. The
prior variance of q is inversely proportional to (M + 1). Thus
g0 may be set to the prior guess about q while adjusting M

to indicate the faith in this guess. To prevent oversmoothing,
the parameter k should be kept as large as possible, with high
prior probability satisfying the tail conditions of the consistency
theorem. A diffuse prior may be obtained by setting g0 to the
uniform density and M to a small number.

3. A MARKOV CHAIN MONTE CARLO ALGORITHM
FOR SIMULATION FROM THE POSTERIOR

The Whittle likelihood, although an approximate likelihood,
is the Lebesgue density of a probability measure on R

ν given
the parameter f . Thus the pseudoposterior will be proper if the
prior on f is proper. Note that the pseudoposterior is not the
conditional distribution of f given the data (X1, . . . ,Xn) or
given (U1, . . . ,Uν). The expectation of f with respect to this
pseudoposterior distribution, say f̂ , may be used as a Bayes
estimator of f . Finally, f ∗ is estimated by f̂ ∗(ω∗) = f̂ (ω∗/π)

and f̂ ∗(−ω∗) = f̂ ∗(ω∗). The variance and other features of this
posterior distribution may be used for various statistical pur-
poses.

The posterior distribution is analytically intractable, and thus
computations are done via Monte Carlo approximations with
the help of the MCMC method. Using the Sethuraman (1994)
representation for a Dirichlet process, the infinite-dimensional
parameter G is represented as

G =
∞∑

l=1

plδZl , (8)

where p1 = V1, pl = (1 − V1) · · · (1 − Vl−1)Vl for l ≥ 2,
Vl ∼ beta(1,M), Zl ∼ G0, and (Z1,Z2, . . . , V1,V2, . . . ) are

all independent. Thus (G, k, τ ) may be reparameterized as
(Z1,Z2, . . . , V1,V2, . . . , k, τ ).

Because the infinite series in (8) is almost surely convergent,
the random vector (Vl,Zl), as l increases to infinity, will have a
diminishing effect on the prior distribution and thus on the pos-
terior distribution of f . Hence we truncate the series at some
large L. Although the truncation has negligible effect, the ex-
tent of this effect differs from the prior to the posterior. Thus the
truncation point should be chosen based on the posterior distri-
bution according to the tolerance of error in computation, and
L may be determined numerically. The effect of truncation on
the distribution of functionals of a Dirichlet process has been
studied by Muliere and Tardella (1998); however, their results
do not apply to our case, because the posterior distribution of G

is not Dirichlet.
After the truncation, G may be represented as

G =
L∑

l=1

plδZl + (1 − p1 − · · · − pL)δZ0,

where Z0 ∼ G0 and is independent of the other parameters. The
last term is added to make G a distribution function even after
the truncation. Now the problem reduces to a parametric one
with finitely many parameters (Z0,Z1, . . . ,ZL,V1, . . . , VL,

k, τ ). The functional parameter f may be written as a func-
tion of these univariate parameters as

f (ω) = τ

k∑

j=1

wj,kβ(ω; j, k − j + 1),

where wj,k = ∑L
l=0 plI { j−1

k
< Zl ≤ j

k
} and p0 = 1 − p1 −

· · · − pL. The joint posterior density of (Z0,Z1, . . . ,ZL,V1,

. . . , VL, k, τ ) is proportional to
[

ν∏

m=1

1

f (2m/n)
e−Um/f (2m/n)

]
×

[
L∏

l=1

M(1 − vl)
M−1

]

×
[

L∏

l=0

g0(zl)

]
ρ(k)π(τ).

Gibbs sampling techniques are applied for componentwise up-
dating. One may easily sample from the posterior distribution
of the discrete parameter k conditioned on the other parame-
ters. The posterior densities of τ , Zi’s, or Vi ’s, conditional on
the other parameters, are known up to a constant. Thus the
Metropolis algorithm is applied within the Gibbs sampler steps
to update τ , Zi’s, and Vi ’s. If the prior on τ is an inverse-gamma
distribution, then the posterior distribution of τ conditional on
the other parameters is also inverse-gamma, from which exact
samples can be drawn.

The support of Zi ’s and Vi ’s are [0,1]. Given a Vl at the
t th iteration step, sample a “candidate point” V ∗

l from the uni-
form distribution on [Vl − εl,Vl + εl] “modulo the circular unit
interval”; that is, if the sampled point from this uniform dis-
tribution is more than 1, take the decimal part only, and if the
sampled point is negative, add 1 to make it between 0 and 1.
This gives rise to a symmetric “proposal distribution.” The
value of εl should be chosen to match the posterior variance
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of the corresponding Vl , which is usually different for differ-
ent l and may be found numerically for a given dataset. The
variables Zl’s are updated similarly.

The starting values of τ may be set to the sample variance
divided by 2π , whereas the starting value of k may be set
to some large integer K0. The approximate posterior mode of
Zi ’s and Vi ’s given the starting values of τ and k may be consid-
ered the starting values for the respective variables. These may
be obtained by first setting their values to 1/2 and then running
the foregoing updating algorithm for a while with a larger ε and
with fixed (τ, k).

Although we have reduced the problem to a parametric prob-
lem, we do not lose any aspect of the nonparametric model-
ing, because the cutoff points for the number of parameters are
chosen depending on the data. Unlike the frequentist methods,
a large choice of L will not overfit the data. On the contrary,
larger L will always be better in terms of accuracy, because
the true posterior distribution involves all of the Zi ’s and Vi ’s.
However, a very large L increases computing time while adding
little to the precision of the estimator. Liseo et al. (2001) used
a similar idea of reparameterization and truncation to reduce
an infinite-dimensional problem into a finite-dimensional prob-
lem. They considered the Karhunen–Loévé series expansion for
the Brownian motion and the prior for the log spectral density,
then truncated the infinite series to a finite sum.

Although a computationally efficient implementation of the
described MCMC procedure requires some manual input case
by case, a default mechanism may be set only at the expense
of computational time. The εl’s in the proposal distribution of
the Vl ’s and Zl’s are chosen to match the posterior variance of
the corresponding components. From theoretical results in the
parametric literature and some simulation study, we found that
εl = l/(l + 2

√
n ) works well for almost every dataset. From

our simulation study, we found that L = max{20, n1/3} works
very well as a conservative truncation point. The number 20 is
chosen to keep the truncation point sufficiently high in small
samples. The burn-in time and the Monte Carlo sample sizes
may be set large, say 3,000 and 10,000. This will result in a de-
fault mechanism that will work for almost all spectral densities
and all sample sizes without any manual intervention.

4. NUMERICAL ILLUSTRATION

4.1 Simulation Study

This section presents results of a simulation study to compare
the performance of our nonparametric Bayes estimator (BE)
with some existing estimators of the spectral density. The BE
is computed using a diffuse prior. For the Dirichlet distribution
on G, G0 is chosen to be the uniform distribution on [0,1],
whereas M is set to 1, a small number compared with the sam-
ple size. The prior on k is ρ(k) = c exp(−.05k2), and the prior
on τ−1 is exponential with mean 10−20. The MCMC algorithm
is implemented using the default mechanism. Three estimators
are considered for comparison.

Smoothed Periodogram Estimate (SPE). The periodogram
at the discrete Fourier frequencies are smoothed using the
Bartlett–Priestley quadratic kernel w(l) = [1 − (l/L)2] ×
I {|l| < L}. The smoothing parameter L is found by minimizing
the cross-validation score proposed by Hurvich (1985).

Autoregression Spectral Estimate (ARE). An autoregression
(AR) model is fitted to the data, with the order selected by the
Akaike information criterion, and the spectral density of the fit-
ted model is used as the estimate. The parameters of the models
are estimated via the sample version of Yule–Walker equations
that are solved by the Levinson–Durbin algorithm.

Penalized Whittle Likelihood Estimator (PLE). This is the
Whittle likelihood-based estimator proposed by Pawitan and
O’Sullivan (1994). The estimate is obtained with the automatic
selection of the smoothing parameter by using the S–PLUS pro-
gram provided by the authors.

Three different time series models are considered for the sim-
ulation study:

Xt = 1.435Xt−1 − .734Xt−2 + .129Xt−3 + εt , (9)

Xt = .9Xt−4 + .7Xt−8 − .63Xt−12 + εt , (10)

and

Xt = εt +
∞∑

l=1

ψlεt−l , ψl = (−1)l/ l3; (11)

where the εt ’s are iid with mean 0 and variance 1. The two AR
processes in (9) and (10) were first given by Wahba (1980) and
have been used for simulation studies by various authors. The
AR(3) process in (9) and the linear process in (11) have rel-
atively smooth spectral density, whereas the AR(12) process
in (10) has few sharp spikes. Two different distributions are
considered for εt : (a) N(0,1), which is symmetric, and (b) ex-
ponential(1) minus 1, which is positively skewed.

Data from the AR(p) processes are generated with the first
p values of Xt set to 0, and the successive values are generated
from (9) or (10). The first 20,000 values are discarded to reach
stationarity. For the linear process in (11), the infinite sum is
truncated at 1,000 terms for both generating the data and com-
puting the true spectral density.

Datasets are generated for n = 64,128,256, and 512 with
1,000 replicates in each case. All of the estimates are computed
for each sample and compared in terms of the L1-error or inte-
grated absolute error (IAE),

IAE = ‖f̂ ∗ − f ∗‖1 =
∫ π

0
|f̂ ∗(ω) − f ∗(ω)|dω. (12)

The mean L1-errors from these 1,000 replicates are given in
Table 1, and their boxplots are presented in Figure 1.

As expected, the nonparametric estimators (BE, PLE, and
SPE) outperform the ARE in the linear process but underper-
form in the AR(12) process. Surprisingly, they also outperform
the ARE in the AR(3) process for small sample sizes. Per-
haps one reason is that as the MLE, the ARE tries to minimize
the Kullback–Leibler divergence measure for the model, which
may not necessarily minimize the L1-error of the correspond-
ing spectral density estimates. Moreover, in small sample sizes,
the ARE often underestimates the order of the model, leading to
large errors. The nonparametric estimates perform worse than
the ARE in the AR(12) process, due to a smoothing out of the
peaks. The extent of smoothing is greatest for the BE and least
for the SPE. Although the BE mostly detects the peak correctly,
it underestimates the magnitude of a sharp peak, thus leading to
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Table 1. Mean L1-Error From the 1,000 Monte Carlo Replicates

ε l ∼ N(0, 1) ε l ∼ exp(1) − 1

Methods n = 64 n = 128 n = 256 n = 512 n = 64 n = 128 n = 256 n = 512

AR(3) process
BE .7972 .6303 .5376 .4480 .8689 .6785 .5529 .4801
PLE .8803 .6917 .5549 .4228 .9259 .7803 .6344 .4786
SPE 1.1665 .8674 .6266 .4832 1.3454 .9654 .7483 .5399
ARE 1.1608 .8802 .6341 .4621 1.3389 .9741 .7459 .5341

AR(12) process
BE 28.200 19.005 12.981 10.537 28.387 19.009 13.027 10.552
PLE 36.429 20.126 13.127 9.862 36.502 19.736 13.226 9.905
SPE 32.233 19.314 13.809 11.139 32.019 19.466 13.972 11.221
ARE 16.708 13.984 11.231 8.576 16.843 14.283 11.438 8.685

Linear process
BE .2698 .2298 .1914 .1594 .3406 .2619 .2068 .1560
PLE .2812 .2274 .1839 .1486 .3493 .2731 .2044 .1511
SPE .3252 .2597 .2271 .1815 .4064 .3167 .2364 .1736
ARE .4039 .3179 .2475 .2235 .4634 .3663 .2678 .1996

(a) (b)

(c) (d)

(e) (f)

Figure 1. Boxplots of the L1-Errors From the 1,000 Monte-Carlo Replicates. (a) AR(3) process with normal ε i ; (b) AR(3) process with expo-
nential ε i; (c) AR(12) process with normal ε i; (d) AR(12) process with exponential ε i ; (e) Linear process with normal ε i ; (f) Linear process with
exponential ε i . (B = BE; P = PLE; S = SPE; A = ARE.)
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a higher L1-error. In contrast, the PLE and the SPE detect false
spikes in small samples. Boxplots in Figure 1 reveal that the
L1-error of the BE has less variability than the other methods.
In all three processes, the BE outperform the SPE for all sample
sizes and outperforms the PLE for all but very large samples.

4.2 Analysis of the Sunspot Dataset

Here we analyze the sunspot dataset, which consists of the
annual average value of the daily index of the number of
sunspots for the year 1700–1987. A visual study of the time
series plot of these 288 observations reveals a positive skew-
ness. After a square root transformation, the data look more
symmetric and stationary, with a constant mean but no trend.
We subtract the mean and apply the four procedures to produce
the corresponding spectral estimates. The estimates are plotted
in the logarithmic scale in Figure 2(a). All of these estimates
reveal a large peak of the spectral density at about ω0 = .58,
indicating a strong periodic cycle of period length 2π/ω0 ≈ 11.
The ARE has the sharpest peak. The three nonparametric es-
timates have comparable peaks. The BE is found to be much
smoother than the other two nonparametric estimates. A point-
wise 95% credible band is computed from the MCMC samples,
and is plotted on a log scale in Figure 2(b).

5. POSTERIOR CONSISTENCY

Consistency of the posterior distribution is an important
large-sample property for the validation of a Bayesian method.
Because posterior consistency may fail in an infinite-dimensio-
nal model, it is important to check the consistency of any non-
parametric Bayesian procedure. Here we provide assumptions
on the time series and on the prior, which are required for pos-
terior consistency. Let f ∗

0 be the true spectral density and let
f0(ω) = f ∗

0 (πω), 0 ≤ ω ≤ 1.

• Assumptions on the time series:

(M1) The time series is Gaussian with
∑∞

r=0 rα ×
γ (r) < ∞ for some α > 0.

(M2) For all ω∗, f ∗
0 (ω∗) > 0.

• Assumptions on the prior:

(P1) For all k, 0 < ρ(k) ≤ Ce−ck logk for some con-
stants C,c > 0,

(P2) g0 is bounded, continuous, and bounded away
from 0.

(P3) The parameter τ is assumed fixed and known.

The following theorem provides the posterior consistency for
the proposed method.

Theorem 1. Under the foregoing assumptions, for any ε > 0,

�̂n{f ∗ :‖f ∗ − f ∗
0 ‖1 > ε} → 0

in Pn
f ∗

0
-probability, where �̂n is the pseudoposterior distribu-

tion computed using the Whittle likelihood of the periodogram
ordinates (U1, . . . ,Uν) and Pn

f ∗
0

is the actual distribution of the

data (X1, . . . ,Xn).

Remark 1. The conclusion of Theorem 1 still holds if the
degenerated prior on τ is replaced by a sequence of prior dis-
tributions that asymptotically bracket the true value τ0; that is,
the prior support of τ is in [τ0 − δn, τ0 + δn] for some δn → 0.

The assumptions about the time series are commonly used in
the literature. Assumption (M1) in particular implies that f ∗

0 is
bounded continuous and thus is a short-memory process. As-
sumption (M2) holds for an invertible linear process. Condition
(P1) is satisfied if the tail of the prior distribution of k is no
heavier than that of a Poisson distribution. The consistency re-
sult requires only that the prior on G has a full weak support.
Thus the prior could be different from the Dirichlet process.
The hypothesis of Gaussianity is required only to connect the
Whittle likelihood to the true distribution of the data through a
contiguity argument.

The prior for τ is required to sit in a neighborhood of the
true value τ0 because of the lack of a uniformly exponentially
consistent test for testing τ = τ0 against τ > τ0 +ε. A two-stage
empirical Bayes modification, in which a fraction of the sample
is used to determine the neighborhood of τ0 and the remaining
observations are used to update the prior, may be implemented.
However, in our simulations we find that the usual BE performs
well with a flat prior on τ .

To prove the consistency theorem, first a general result
(Thm. A.1) is presented in Appendix A that gives sufficient
conditions for posterior consistency for a triangular array of
independent, nonidentically distributed observations. This re-
sult is then applied to prove posterior consistency assuming that

(a) (b)

Figure 2. Spectral Estimates of the Square-Root–Transformed Sunspot Data in the Logarithmic Scale. (a) All four spectral estimates; (b) point-
wise 95% credible band. ( BE; PLE; SP; AR.)
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the distribution of (U1, . . . ,Uν) is the product measure of inde-
pendent exponential distributions. However, (U1, . . . ,Uν) are
independent exponentials only in an asymptotic sense. The con-
sistency under the true distribution of (U1, . . . ,Uν), and thus
under the true distribution of (X1, . . . ,Xn), is proved using the
contiguity result of Theorem B.1 in Appendix B.

6. CONCLUSIONS

We have proposed a nonparametric Bayesian method for
the estimation of a spectral density of a stationary time se-
ries. Although the consistency result is obtained for Gaussian
time series with variance approximately known, the method is
applicable in a wider context. The simulation results also sup-
port that fact. The prior may be generalized to a random lin-
ear combination of kernels. The coefficients may come from an
independent increment process such as a Lévy process (Hjort
1990). Similar posterior consistency results will still hold pro-
vided that the random process has full weak support. However,
the assumption of known process variance may not be elimi-
nated with such a prior, because that assumption is used to find
an uniformly exponentially consistent test. This is a model re-
striction and not an artifact of the prior elicitation. The compu-
tation will become more prior-specific.

APPENDIX A: A GENERAL CONSISTENCY THEOREM

A celebrated theorem of Schwartz (1965), and its extensions ob-
tained by Barron et al. (1999) and Ghosal et al. (1999) gave suf-
ficient conditions for posterior consistency in terms of existence of
appropriate tests and prior positivity of a neighborhood defined by
the Kullback–Leibler divergence. However, those theorems are limited
to independent and identically distributed (iid) observations. Because
the periodogram ordinates are nonidentically distributed and the dis-
crete Fourier frequencies change with the sample size, an extension of
Schwartz’s result for a triangular array of independent but nonidenti-
cally distributed observations is required.

Here we present such a theorem, which is close in spirit to a sim-
ilar theorem of Amewou-Atisso, Ghosal, Ghosh, and Ramamoorthi
(2003, thm. 2.1). There are, however, some important differences.
Amewou-Atisso et al. (2003) assumed stronger conditions and con-
clude almost sure convergence, whereas we consider only convergence
in probability, and the corresponding relaxed conditions are easier to
verify for our problem. Further, the result of Amewou-Atisso et al.
(2003) is tailor-made for regression and semiparametric problems, in
which only weak consistency for the nonparametric part is usually suf-
ficient. In contrast, we consider a curve estimation problem, and hence
we need to address convergence issues in stronger topologies. This
compels us to use sieves like those of Barron et al. (1999) and Ghosal
et al. (1999) for the existence of tests.

Theorem A.1. Let Zi,n be independently distributed with density
pi,n(·; θ) i = 1, . . . , rn , with respect to a common σ -finite measure,
where the parameter θ belongs to an abstract measurable space �. The
densities pi,n(·, θ) are assumed to be jointly measurable. Let θ0 ∈ �

and let �̄n and Un be two subsets of �. Let θ have prior � on �.
Put Ki,n(θ0, θ) = Eθ0(�i(θ0, θ)) and Vi,n(θ0, θ) = varθ0(�i(θ0, θ)),
where �i(θ0, θ) = log(pi,n(Zi,n; θ0)/pi,n(Zi,n; θ)). The following
conditions hold:

(C1) Prior positivity of neighborhoods. Suppose that there exists a
set B with �(B) > 0 such that

(a) 1
r2
n

∑rn
i=1 Vi,n(θ0, θ) → 0 for all θ ∈ B , and

(b) lim infn→∞ �({θ ∈ B : 1
rn

∑rn
i=1Ki,n(θ0, θ) < ε}) > 0

for all ε > 0,

(C2) Existence of tests. Suppose that there exists test functions
{�n}, subsets �n ⊂ �̄n , and constants C1,C2, c1, c2 > 0
such that

(a) Eθ0�n → 0,
(b) supθ∈U c

n∩�n
Eθ (1 − �n) ≤ C1e−c1rn , and

(c) �(�̄n ∩ �c
n) ≤ C2e−c2rn .

Then

�
(
θ ∈ Uc

n ∩ �̄n

∣∣Z1,n, . . . ,Zrn,n

) → 0 (A.1)

in Pn
θ0

-probability.

Usually this theorem is applied for �̄n = � for all n. If, however,
condition (C2) can be verified only on a part of �, which may possi-
bly depend on n, then the foregoing formulation may be useful. In this
case, however, the final conclusion should then be complemented by
showing that �(�̄c

n|Z1, . . . ,Zrn) → 0 in Pn
θ0

-probability by some al-
ternative method. Posterior consistency is proved by choosing a fixed
neighborhood Uc

n , whereas the rate of convergence is obtained by
choosing a shrinking neighborhood.

Condition (C1) asserts that every Kullback–Leibler neighborhood
of θ0 has positive prior probability and thus ensures that the true pa-
rameter value is not excluded from the prior support. Condition (C2)
asserts that, given a neighborhood Un of the true parameter value θ0 in
some topology of interest, except in a set �c

n with exponentially small
prior probability, the model can separate θ0 from a θ ∈ Uc

n through an
exponentially powerful test.

Proof of Theorem A.1. For ease of notation, we drop the second
subscript n from the observations. Also, we write r for rn. Note that,
because 0 ≤ �n ≤ 1 and 0 ≤ �(θ ∈ Uc

n |Z1, . . . ,Zr ) ≤ 1, we have

�(θ ∈ �̄n ∩Uc
n |Z1, . . . ,Zr )

≤ �n + (1 − �n)�(θ ∈ �̄n ∩Uc
n |Z1, . . . ,Zr ).

The first term on the right side goes to 0 in Pn
θ0

-probability by (C2)(a).
The second term is bounded above by

(
(1 − �n)

∫

U c
n∩�n

r∏

i=1

pi(Zi, θ)

pi(Zi, θ0)
d�(θ)

+
∫

�̄n∩�c
n

r∏

i=1

pi(Zi, θ)

pi (Zi, θ0)
d�(θ)

)

×
(∫

�

r∏

i=1

pi(Zi, θ)

pi (Zi, θ0)
d�(θ)

)−1

.

We show that the two terms in the numerator are exponentially small
and that

eβr

∫

�

r∏

i=1

pi(Zi, θ)

pi(Zi, θ0)
d�(θ) → ∞ (A.2)

in Pn
θ0

-probability for all β > 0. Then the result follows.
By Fubini’s theorem, for any nonnegative function ψn of (Z1, . . . ,

Zr ) and subset H of �,

Eθ0

[∫

H

r∏

i=1

pi(Zi, θ)

pi(Zi, θ0)
ψn(Z1, . . . ,Zr ) d�(θ)

]

≤
∫

H
Eθ (ψn)d�(θ).
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Hence, by Conditions (C2)(b) and (c),

Eθ0

[
(1 − �n)

∫

�n∩U c
n

r∏

i=1

pi(Zi, θ)

pi(Zi, θ0)
d�(θ)

]

≤ sup
θ∈�n∩U c

n

Eθ (1 − �n) ≤ C1e−c1r

and

Eθ0

[∫

�̄n∩�c
n

r∏

i=1

pi(Zi, θ)

pi (Zi, θ0)
d�(θ)

]
≤ �(�̄n ∩ �c

n)

≤ C2e
−c2r .

For (A.2), observe that by Chebyshev’s inequality, for all θ ∈ B ,

Pθ0

{∣∣∣∣∣
1

r

r∑

i=1

�i(θ0, θ) − 1

r

r∑

i=1

Ki(θ0, θ)

∣∣∣∣∣ ≥ ε

}
≤ 1

r2ε2

r∑

i=1

Vi(θ0, θ).

Fix ε > 0. Let Wn be the set
{

(θ, z1, . . . , zr ) : θ ∈ B,

∣∣∣∣∣
1

r

r∑

i=1

�i(θ0, θ) − 1

r

r∑

i=1

Ki(θ0, θ)

∣∣∣∣∣ < ε

}
.

Let δ > 0 to be chosen later and put

Vn = {
(z1, . . . , zr ) :�

(
W

(z1,...,zr )
n

)
> (1 − δ)�(B)

}
,

where W
(z1,...,zr )
n is the (z1, . . . , zr )-section of Wn . Let Wn,θ denote

the θ -section of Wn . Thus by (C1)(a), for all θ ∈ B , Pn
θ0

(Wn,θ ) → 1.
Now by Markov’s inequality and Fubini’s theorem,

Pn
θ0

(V c
n ) = Pn

θ0

{
�

(
W

(Z1,...,Zr )
n

)
< (1 − δ)�(B)

}

≤ 1

δ�(B)

∫
�

(
B ∩ (

W
(z1,...,zr )
n

)c)
dPn

θ0
(z1, . . . , zr )

= 1

δ�(B)

∫

B
Pn

θ0
(Wc

n,θ ) d�(θ),

which converges to 0 by the dominated convergence theorem.
Let Hn = {θ ∈ B : 1

r

∑r
i=1 Ki(θ0, θ) < ε}. By (C1)(b), �(Hn) ≥

2δ for all sufficiently large n, if δ > 0 is chosen sufficiently small. By
Bonferroni’s inequality, for all (z1, . . . , zr ) ∈ Vn and n ≥ N ,

�
(
W

(z1,...,zr )
n ∩ Hn

) ≥ �
(
W

(z1,...,zr )
n

) + �(Hn) − �(B)

≥ �(B)(1 − δ) + 2δ − �(B) ≥ δ.

Clearly, if (Z1, . . . ,Zr ) ∈ Vn and θ ∈ W
(Z1,...,Zr )
n ∩ Hn, then

r∏

i=1

pi(Zi, θ)

pi (Zi, θ0)
= exp

[
−

r∑

i=1

�i(θ0, θ)

]
≥ e−2εr .

Now if (Z1, . . . ,Zr ) ∈ Vn, then the left side of (A.2) is bounded by

eβr

∫

W
(Z1,...,Zr )
n ∩Cn

r∏

i=1

pi(Zi, θ)

pi(Zi , θ0)
d�(θ) ≥ δ

2
e(β−2ε)r .

We may choose ε < β/2. As Pn
θ0

(Vn) → 1, the assertion holds.

Remark A.1. The foregoing result also holds for a sequence of pri-
ors �n replacing �, provided that (C1)(a) is strengthened to uniform
convergence. The proof is almost identical.

APPENDIX B: PROOF OF THEOREM 1

Theorem 1 is proved by checking the conditions of Theorem A.1.
It is sufficient to prove L1-consistency for the transformed spectral
density f . Thus f plays the role of θ in Theorem A.1 and � is the
space of all nonnegative integrable functions on [0,1]. We consider
consistency with respect to an L1-neighborhood,

U = Un =
{
f :‖f − f0‖1 =

∫ 1

0
|f (ω) − f0(ω)|dω < ε

}
,

for some arbitrary fixed ε > 0.
Let Pn

f ∗
0

denote the actual distribution of the data (X1, . . . ,Xn)

and �n denote the actual distribution of the periodogram ordinates
(U1, . . . ,Uν). Then �n is induced by Pn

f ∗
0

through the periodogram,

and it is sufficient to study convergence under �n . Thus (U1, . . . ,Uν)

play the roles of observations in Theorem A.1. However, Theorem A.1
requires that the Ui ’s be independent, which is only asymptotically
true. A contiguity result from Choudhuri, Ghosal, and Roy (2004) is
presented here that can bridge the gap. Let �̃n denote joint distribution
of independent exponential random variables with means f0(2i/n),
i = 1, . . . , ν.

Theorem B.1. Under assumptions (M1) and (M2), �n and �̃n are
mutually contiguous.

By virtue of this result, “convergence in probability” is the same
under �n and �̃n. Hence it suffices to prove posterior consistency as-
suming that the Ui ’s are independent exponential random variables, in
which case Theorem A.1 is applicable.

B.1 Positivity of the Prior Probabilities

Occasionally, it will be convenient to view f as τq and f0 as τ0q0.
Let Q0 denote the probability measure corresponding to q0. First, we
show that, for every ε > 0,

�{f :‖f − f0‖∞ < ε} > 0, (B.1)

where ‖f − f0‖∞ = sup0≤ω≤1 |f (ω) − f0(ω)|. Because b(·;k,

Q0) → q0 uniformly, choose k such that ‖b(·;k,Q0) − q0‖∞ <

ε/(2τ0). Then

|b(ω;k,G) − b(ω;k,Q0)|

=
∣∣∣∣∣

k∑

j=1

{
G

(
j − 1

k
,
j

k

]
− Q0

(
j − 1

k
,
j

k

]}
β(ω; j, k + 1 − j)

∣∣∣∣∣

≤ k max
1≤j≤k

∣∣∣∣G
(

j − 1

k
,
j

k

]
− Q0

(
j − 1

k
,
j

k

]∣∣∣∣,

as
∑k

j=1 β(ω; j, k + 1 − j) = k. Now if f (ω) = τ0b(ω;k,G), then

‖f −f0‖∞ ≤ τ0‖b(·;k,G)−b(·;k,Q0)‖∞+τ0‖b(·;k,Q0)−q0‖∞.

Because every index k has positive probability under the prior and the
Dirichlet process has full support,
{
(k,G) :

∣∣∣∣G
(

j − 1

k
,
j

k

]
− Q0

(
j − 1

k
,
j

k

]∣∣∣∣ <
ε

2kτ0
, j = 1, . . . , k

}

has positive probability as well. By assumption (P3),
∫
f = τ0 with

prior probability 1, and thus (B.1) follows.
Let ωi = 2i/n denote the ith Fourier frequency, rescaled into [0,1].

Assuming that the Ui ’s are exponential random variables, we have

Ki(f0, f ) = − log

(
1 + f0(ωi) − f (ωi)

f (ωi)

)
+ f0(ωi) − f (ωi)

f (ωi)

and

Vi(f0, f ) =
(

f0(ωi) − f (ωi)

f (ωi)

)2
.
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By assumption (M1), f0 is continuous, and by assumption (M2),
f0 > 0. Hence, f0 is bounded and bounded away from 0 on entire
[0,1]. Let s = inf0≤ω≤1 f0(ω) and

B = {f :‖f − f0‖∞ ≤ s/2}. (B.2)

Then �(B) > 0 by (B.1). For f ∈ B , we have f ≥ s/2 and −1/2 ≤
(f0 − f )/f ≤ 1. Hence,

1

ν2

ν∑

i=1

Vi(f0, f ) ≤ 1

ν2

ν∑

i=1

(
f0(ωi) − f (ωi)

f (ωi)

)2
≤ 1

ν
→ 0

uniformly on B , so that (C1)(a) holds. For (C1)(b), using the inequality
y − log(1 + y) ≤ 2y2 on y ≥ − 1

2 , we have

1

ν

ν∑

i=1

Ki(f0, f ) ≤ 2

ν

ν∑

i=1

(
f0(ωi) − f (ωi)

f (ωi)

)2

≤ 8

s2
‖f − f0‖2∞

on B . Thus (C1)(b) holds.

B.2 Existence of Tests

To find the exponentially powerful consistent tests, consider the
sieves of the form

�n =
kn⋃

j=1

{τ0b(·; j,w) : w ∈ �j }. (B.3)

Thus the elements of �n are Bernstein polynomials of order kn or less,
with nonnegative coefficients, and integrate to τ0. The tuning parame-
ter kn controls both the size and the ability of approximation of the
sieve and is chosen later. Let λ denote the Lebesgue measure on the
real line.

Lemma B.1. Let ε > 0, f and f0 be nonnegative integrable func-
tions on [0,1] with f0 ≤ c, ‖f − f0‖1 > 4ε, and

∫
f = ∫

f0. Let
A = {ω :f (ω) < f0(ω) − ε}. Then λ(A) ≥ ε/c.

Proof. Note that ‖f − f0‖1 = 2
∫
f<f0

(f0 − f ) and, therefore,

2ε <

∫

f<f0

(f0 − f )

=
∫

A
(f0 − f ) +

∫

{f0−ε≤f<f0}
(f0 − f )

≤ cλ(A) + ε.

The result now follows.

Lemma B.2. Let f0 ≤ c be continuous with
∫

f0 = τ0 and f ∈ �n ,
with ‖f − f0‖ > 9ε. Then

#{j :f (ωj ) < f0(ωj ) − ε} ≥ nε

c′ − 2kn

for some constant c′ , where # stands for the cardinality of a set.

Proof. Get k0 be such that ‖f0 − τ0b0‖∞ < ε, where b0 =
b(·;k0,Q0). Then ‖f − τ0b0‖∞ > 9ε − ε = 8ε. Note that b0 is also a
nonnegative integrable function with integral equal to 1 and b0 ≤ c′ for
some c′ . Apply Lemma B.1 to Ã = {ω :f (ω) < τ0b0(ω) − 2ε} to ob-
tain λ(Ã) ≥ 2ε/c′ . Note that on Ã, f (ω) < τ0b0(ω)−2ε < f0(ω)−ε,

so that Ã ⊂ A, where A is as in Lemma B.1. Now f (ω) − τ0b0(ω) is
a polynomial of degree at most max(kn, k0) = kn for large n, so Ã is
the union of at most kn open intervals. Let h1, h2, . . . be the lengths of
these intervals. Because two successive ωi ’s are 2/n apart, any inter-
val of length h will contain at least (nh/2) − 2 many ωi ’s. Therefore,
the number of ωi ’s contained in Ã is at least

∑
j {(nhj/2) − 2} ≥

(nε/c′) − 2kn.

Lemma B.3. Let Yj be independent exponential random variables
with means µj , j = 1, . . . ,m. Consider testing H0 :µj = µ0j against
H1 :µj = µ1j , where µ1j < µ0j − ε for all j and µ0j ≤ a, where
a and ε > 0 do not depend on m. Then there exists a test �m

and constants β1, β2 > 0, depending only on a and ε such that
EP0(�m) ≤ e−β1m and EP1(1 − �m) ≤ e−β2m, where P0 and P1 are
the probability measures under the null and the alternative.

Proof. Consider a test �m that rejects H0 if
∑m

j=1 Yj/µ0j <

m{1 − (ε/2a)}. Under H0, Yj/µ0j , j = 1, . . . ,m, are iid exponen-
tial with parameter 1 that has finite moment-generating function. Thus
the exponential bound for the first kind of error is obtained by standard
large-deviation estimates.

To estimate EP1(1−�m), write Yj /µ0j = (Yj /µ1j )× (µ1j /µ0j ).
The first factor is exponentially distributed with mean 1, and the sec-
ond is µ1j /µ0j ≤ (µ0j − ε)/µ0j ≤ 1 − (ε/a). Under P1, Yj /µ0j is

stochastically smaller than Ỹj , where Ỹj is exponentially distributed

with mean 1 − (ε/a) and the Ỹj ’s are iid. Thus by standard large-
deviation estimates, we obtain

EP1(1 − �m) ≤ Pr

(
m∑

j=1

Ỹj ≥ m

(
1 − ε

2a

))
≤ e−β2m.

Lemma B.4. The ε-covering number N(ε,�n,‖ · ‖∞) of �n in
the supremum norm is given by logN(ε,�n,‖ · ‖∞) ≤ kn log kn +
kn log(5τ0/ε).

Proof. Because β(ω; j, k − j + 1) ≤ k for all k, j , and ω, we
have ‖b(·, kn,w)− b(·, kn,w∗)‖∞ ≤ kn‖wkn

− w∗
kn

‖1, where ‖ · ‖1 is
the �1 norm on the kn-simplex �kn

. It then follows that N(ε,�n,

‖ · ‖∞) ≤ ∑kn

j=1 N(ε/τ0kn,�j ,‖ · ‖1). By lemma A.4 of Ghosal and

van der Vaart (2001), N(ε,�j ,‖ · ‖1) ≤ (5/ε)j−1 for 1 ≤ j ≤ kn.
Thus the estimate follows.

Let a = ‖f0‖∞. Consider the test �n,f , which rejects the simple
null f0 against the simple alternative f if

∑

i∈In,f

Ui

f0(ωi)
> m

(
1 − ε

2a

)
,

where m = m(n,f ) = #In,f and In,f = {i :f (ωi) < f0(ωi) − ε}. If
f ∈ �n and ‖f −f0‖1 > 9ε, then by Lemma B.3, there are some con-

stants β′
1, β′

2 > 0 such that Ef0�n,f ≤ e−β ′
1m and Ef (1 − �n,f ) ≤

e−β ′
2m , where Ef stands for the expectation assuming that the Ui ’s

are independent exponential random variables with mean f (ωi). By
Lemma B.2, for kn ≤ δ1n with sufficiently small δ1 > 0, the forego-
ing bound can be reduced to e−β1n and e−β2n, where β1, β2 > 0 are
constants not depending on f .

To remove the dependence of test functions on f , we use the stan-
dard technique of covering a set by small balls and estimating the cov-
ering numbers. Get f1, . . . , fN ∈ �n with the property that for any
f ∈ �n, there exists an fj such that ‖f − fj‖∞ < ε/2; here N is the
(ε/2)-covering number of �n in sup norm.

If ‖f − fj‖∞ < ε/2, then for every i ∈ In,fj
, f (ωi) <

f0(ωi) − ε/2. Hence Ef (1 − �n,fj
) ≤ e−β ′′n for some constant β′′

depending neither on f nor on fj . Put �n = max{�n,fj
: j =

1, . . . ,N}. Now, by Lemma B.4, for all sufficiently large n,

Ef0(�n) ≤ N(ε,�n,‖ · ‖∞)e−β1n ≤ e2kn logkn−β1n. (B.4)

Clearly, Ef (1−�n) ≤ e−β ′′n, because for any f ∈ �n, ‖f −fj ‖∞ <

ε/2 for some j and Ef (1 − �n) ≤ Ef (1 − �n,fj
).

For the sieve �n in (B.3), let the tuning parameter be chosen as
kn = �δn/ log n�, δ > 0. Then kn log kn ≤ δn for large n, and the right
side of (B.4) tends to 0 for sufficiently small δ. Thus both (C2)(a)
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and (C2)(b) hold. To verify (C2)(c), note that by assumption (P3), the
prior is concentrated on {f :

∫
f = τ0}. Thus we need to check that

ρ(k > kn) is exponentially small, which holds by assumption (P1).

[Received May 2003. Revised March 2004.]
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