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Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size,

group means and their difference, standard deviations and their difference, and the normality of the data.

The method handles outliers. The decision rule can accept the null value (unlike traditional t tests) when

certainty in the estimate is high (unlike Bayesian model comparison using Bayes factors). The method

also yields precise estimates of statistical power for various research goals. The software and programs

are free and run on Macintosh, Windows, and Linux platforms.
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One of the most frequently encountered scientific procedures is

a comparison of two groups (e.g., du Prel, Röhrig, Hommel, &

Blettner, 2010; Fritz, Morris, & Richler, 2012; Wetzels et al.,

2011). Given data from two groups, researchers ask various com-

parative questions: How much is one group different from an-

other? Can we be reasonably sure that the difference is non-zero?

How certain are we about the magnitude of difference? These

questions are difficult to answer because data are contaminated by

random variability despite researchers’ efforts to minimize extra-

neous influences on the data. Because of “noise” in the data,

researchers rely on statistical methods of probabilistic inference to

interpret the data. When data are interpreted in terms of meaning-

ful parameters in a mathematical description, such as the differ-

ence of mean parameters in two groups, it is Bayesian analysis that

provides complete information about the credible parameter val-

ues. Bayesian analysis is also more intuitive than traditional meth-

ods of null hypothesis significance testing (e.g., Dienes, 2011).

This article introduces an intuitive Bayesian approach to the

analysis of data from two groups. The method yields complete

distributional information about the means and standard deviations

of the groups. In particular, the analysis reveals the relative cred-

ibility of every possible difference of means, every possible dif-

ference of standard deviations, and all possible effect sizes. From

this explicit distribution of credible parameter values, inferences

about null values can be made without ever referring to p values as

in null hypothesis significance testing (NHST). Unlike NHST, the

Bayesian method can accept the null value, not only reject it, when

certainty in the estimate is high. The new method handles outliers

by describing the data as heavy tailed distributions instead of

normal distributions, to the extent implied by the data. The new

method also implements power analysis in both retrospective and

prospective forms.

The analysis is implemented in the widely used and free pro-

gramming languages R and JAGS and can be run on Macintosh,

Linux, and Windows operating systems. Complete installation

instructions are provided, along with working examples. The pro-

grams can also be flexibly extended to other types of data and

analyses. Thus, the software can be used by virtually anyone who

has a computer.

The article is divided into two main sections, followed by

appendices. The first section introduces the Bayesian analysis and

explains its results through examples. The richness of information

provided by the Bayesian parameter estimation is emphasized.

Bayesian power analysis is also illustrated. The second section

contrasts the Bayesian approach with the t test from NHST. This

section points out not only the relative poverty of information

provided by the NHST t test but also some of its foundational

logical problems. An appendix is provided for readers who are

familiar with a different Bayesian approach to testing null hypoth-

eses, which is based on model comparison and uses the Bayes

factor as a decision statistic. This appendix suggests that Bayesian

model comparison is usually less informative than the approach of

Bayesian parameter estimation featured in the first section.

The perils of NHST and the merits of Bayesian data analysis

have been expounded with increasing force in recent years (e.g.,

W. Edwards, Lindman, & Savage, 1963; Kruschke, 2010a, 2010b,

2011c; Lee & Wagenmakers, 2005; Wagenmakers, 2007). Never-

theless, some people have the impression that conclusions from

NHST and Bayesian methods tend to agree in simple situations

such as comparison of two groups: “Thus, if your primary question

of interest can be simply expressed in a form amenable to a t test,

say, there really is no need to try and apply the full Bayesian

machinery to so simple a problem” (Brooks, 2003, p. 2694). This

article shows, to the contrary, that Bayesian parameter estimation

provides much richer information than the NHST t test and that its

conclusions can differ from those of the NHST t test. Decisions

based on Bayesian parameter estimation are better founded than

those based on NHST, whether the decisions derived by the two

methods agree or not. The conclusion is bold but simple: Bayesian

parameter estimation supersedes the NHST t test.
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The New Approach: Robust Bayesian Estimation

Bayesian Estimation Generally

Bayesian inference is merely the reallocation of credibility

across a space of candidate possibilities. For example, suppose a

crime is committed, and there are several possible suspects who

are mutually unaffiliated. When evidence implicates one suspect,

the other suspects are exonerated. This logic of exoneration is

merely reallocation of belief, based on data. The complementary

reallocation applies when data exonerate some suspects: Suspicion

in the remaining suspects increases. Just as the fictional detective

Sherlock Holmes said (Doyle, 1890), when you have eliminated

the impossible, all that remains, no matter how improbable, must

be the truth.

In the context of data analysis, the phenomenon to be explained

is a pattern in noisy numerical data. We describe the pattern with

a mathematical model such as linear regression, and the parameters

in the model, such as the slope in linear regression, describe the

magnitude of the trend. The space of possible “suspects” for

describing the data is the space of values for the parameters. In

Bayesian estimation, we reallocate belief toward the parameter

values that are consistent with the data and away from parameter

values that are inconsistent with the data.

A Descriptive Model for Two Groups

The first step of most statistical analyses is specifying a descrip-

tive model for the data. The model has parameters that are mean-

ingful to us, and our goal is to estimate the values of the param-

eters. For example, the traditional t test uses normal distributions

to describe the data in each of two groups. The parameters of the

normal distributions, namely the means (�1 and �2) and the

standard deviations (�1 and �2), describe meaningful aspects of

the data. In particular, the difference of the mean parameters (�1 �

�2) describes the magnitude of the difference between central

tendencies of the groups, and the difference of the standard-

deviation parameters (�1 � �2) describes the magnitude of the

difference between the variabilities of the groups. Our main goals

as analysts are to estimate those magnitudes and to assess our

uncertainty in those estimates. The Bayesian method provides

answers to both goals simultaneously.

I assume that the data are measured on a metric scale (e.g.,

response time, temperature, weight) for both of two conditions or

groups. To describe the distribution of the data, the traditional t test

assumes that the data in each group come from a normal distribu-

tion (Gosset, 1908). Although the assumption of normality can be

convenient for mathematical derivations, the assumption is not

necessary when using numerical methods as will be used here, and

the assumption is not appropriate when the data contain outliers, as

is often the case for real data. A useful way to accommodate

outliers is by describing the data with a distribution that has taller

tails than the normal distribution. An often-used distribution for

this application is the t distribution, treated here as a convenient

descriptive distribution of data and not as a sampling distribution

from which p values are derived. In other words, I am using the t

distribution merely as a convenient way to describe data; I am not

using the t distribution to conduct a t test. There is a large literature

on the use of the t distribution to describe outliers (e.g., Damgaard,

2007; Jones & Faddy, 2003; Lange, Little, & Taylor, 1989; Meyer

& Yu, 2000; Tsionas, 2002; Zhang, Lai, Lu, & Tong, in press).

Methods of estimation that accommodate outliers are known as

robust.

Figure 1 shows examples of the t distribution, superimposed

with a normal distribution. The relative height of the tails of the t

distribution is governed by a parameter denoted by the Greek letter

� (nu), which can range continuously from 1 to infinity. When � is

small, the t distribution has heavy tails, and when � is large (e.g.,

100), the t distribution is nearly normal. Therefore I will refer to �

as the normality parameter in the t distribution. (Traditionally, in

the context of sampling distributions, this parameter is referred to

as the degrees of freedom. Because I will not be using the t

distribution in that context, I will not be using that potentially

misleading nomenclature.) The t distribution can describe data

with outliers by setting � to a small value, but the t distribution can

also describe data that are normal, without outliers, by setting � to

a large value. Just like the normal distribution, the t distribution

has a mean parameter � and a standard deviation parameter �.

In the present model of the data, I will describe each group’s

data with a t distribution, with each group having its own mean

parameter and standard deviation parameter. Because outliers are

usually relatively few in number, I will use the same � parameter

for both groups so that both groups’ data can inform the estimate

of �. Thus, my description of the data uses five parameters: the

means of the two groups (�1 and �2), the standard deviations of

the two groups (�1 and �2), and the normality of the data within

the groups (�). I will use Bayesian inference to estimate the five

parameters.

As discussed above, Bayesian inference is reallocation of cred-

ibility toward parameter values that are consistent with the data. To

carry out Bayesian inference, one must start with a distribution of

credibility across parameter values that expresses previous knowl-

edge about the parameter values without the newly collected data.
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Figure 1. Examples of the t distribution, for different values of the �

parameter. When � is small, the t distribution has heavier tails than the

normal distribution. (For these examples, the mean parameter � is set to

zero, and the standard deviation parameter � is set to 1.0.)

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

574 KRUSCHKE



This allocation is called the prior distribution. The prior distribu-

tion must be acceptable to the skeptical scientific audience of the

analysis. The prior cannot, therefore, trivially presume the desired

outcome. The prior can be informed by previous findings if doing

so would be appropriate for the purposes and audience of the

analysis. Because this article is about general techniques, not a

specific application domain, the prior distributions here are made

very broad and vague, thereby expressing great prior uncertainty in

the values of the parameters. This specification of an uncertain

prior implies that the prior has minimal influence on the estimates

of the parameters, and even a modest amount of data will over-

whelm the prior assumptions when one is doing Bayesian param-

eter estimation.

Figure 2 depicts the descriptive model along with the prior

distribution on its parameters. The ith datum from group j is

denoted as yji at the bottom of the diagram. The data are described

by t distributions, depicted in the middle of the figure. The prior

distribution is indicated at the top of the figure. In particular, the

prior on the mean parameters, �1 and �2, is assumed to be a very

broad normal distribution, depicted in the diagram by an iconic

normal shape. To keep the prior distribution broad relative to the

arbitrary scale of the data, I have set the standard deviation S of the

prior on � to 1,000 times the standard deviation of the pooled data.

The mean M of the prior on � is arbitrarily set to the mean of the

pooled data; this setting is done merely to keep the prior scaled

appropriately relative to the arbitrary scale of the data. Thus, if y

were a measure of distance, the scale could be nanometers or

light-years and the prior would be equally noncommittal. The prior

on the standard deviation parameter is also assumed to be non-

committal, expressed as a uniform distribution from a low value L,

set to one thousandth of the standard deviation of the pooled data,

to a high value H, set to one thousand times the standard deviation

of the pooled data. Finally, the � parameter has a prior that is

exponentially distributed, which spreads prior credibility fairly

evenly over nearly normal and heavy tailed data. The exact prior

distribution on � is shown in Appendix A.

Flexibility: Variations and extensions. The default form of

the analysis program uses a noncommittal prior that has minimal

impact on the posterior distribution. Users can modify the program

to specify other prior distributions if they like, as explained in

Appendix B. This flexibility is useful for checking the robustness

of the posterior against reasonable changes in the prior. The

flexibility is also useful in applications that allow strongly in-

formed priors based on publicly accessible previous research.

The default form of the analysis program uses t distributions to

describe the shape of the data in each group. Users can modify the

program to specify other shapes to describe the data. For example,

if the data are skewed, it might be useful to describe the data with

a log-normal distribution. Appendix B shows how to do this.

Robust Bayesian estimation can be extended (in the program-

ming languages R and JAGS) to research designs with a single

group or with multiple groups. In the case of data from a single

group, including the case of a single group of difference scores

from repeated measures on the same subjects, a modified model

merely estimates �, �, and � of the group. For multiple groups, on

the other hand, the model of Figure 2 can be extended in two ways.

First, of course, every group is provided with its own �j and �j

parameters but with � shared by all groups. Second, and impor-

tantly, the model can be provided with a higher level distribution

across the group means, if desired. This higher level distribution

describes the distribution of the �j across groups, wherein the

overall mean of the groups is estimated, and the between-group

variability is estimated. A major benefit of the hierarchical struc-

ture is that the estimates of the distinct group means undergo

“shrinkage” toward the overall mean, to an extent determined by

the actual dispersion across groups. In particular, when several

groups have similar means, this similarity informs the higher level

distribution to estimate small variability between groups, which, in

turn, pulls the estimate of outlying groups toward the majority of

the groups. The magnitude of shrinkage is informed by the data:

When many groups are similar, there is more shrinkage of outlying

groups. Shrinkage of estimates is a natural way to mitigate false

alarms when considering multiple comparisons of groups, because

shrinkage can restrain chance conspiracies of rogue data. Specifi-

cation of hierarchical structure can be useful for sharing of infor-

mation across group estimates, but it is not necessary and is only

appropriate to the extent that the top-level distribution is a useful

description of variability across groups.

Note that shrinkage is caused by the hierarchical model struc-

ture, not by Bayesian estimation. Non-Bayesian methods such as

maximum likelihood estimation also show shrinkage in hierarchi-

cal models, but Bayesian methods are particularly flexible and

allow many complex nonlinear hierarchical models to be easily

implemented. For example, the extended model can also place a

higher level distribution on the group standard deviations

Figure 2. Hierarchical diagram of the descriptive model for robust

Bayesian estimation. At the bottom of the diagram, the data from Group 1

are denoted y1i and the data from Group 2 are denoted y2i. The data are

assumed to be described by t distributions, as indicated by the arrows

descending from the t-distribution icons to the data. The � symbol (tilde)

on each arrow indicates that the data are randomly distributed, and the

“. . .” symbol (ellipsis) on the lower arrows indicates that all the yi are

distributed identically and independently. The two groups have different

mean parameters (�1 and �2) and different standard deviation parameters

(�1 and �2), and the � parameter is shared by both groups, as indicated by

the split arrow, for a total of five estimated parameters. The parameters are

provided with broad, noncommittal prior distributions, as indicated by the

icons in the upper part of the diagram. The prior distributions have

histogram bars superimposed on them to suggest their representation by a

very large random sample and their correspondence to the histograms of

the posterior distributions in Figures 3–5. S � standard deviation; M �

mean; L � low value; H � high value; R � rate; unif � uniform; shifted

exp � shifted exponential; distrib. � distribution.
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(Kruschke, 2011b, Section 18.1.1.1), so that every group has its own

estimated standard deviation, but the various group estimates mutu-

ally inform each other so that some degree of homogeneity of vari-

ance can be enforced to the extent that the data suggest it. Complex

nonlinear hierarchical models can be very challenging for NHST

procedures because of the difficulty of generating sampling distribu-

tions for computing p values from nested models. Further details

regarding so-called hierarchical Bayesian analysis of variance

(ANOVA) are provided by Gelman (2005, 2006); Gelman, Hill, and

Yajima (2012); and Kruschke (2010a, 2010b, 2011b). Complete pro-

grams are provided by Kruschke (2011b; e.g., programs

ANOVAonewayJagsSTZ.R and ANOVAtwowayJagsSTZ.R).

Summary of the model for Bayesian estimation. The model

describes the data with five parameters: a mean and standard

deviation for each group and a normality parameter shared by the

groups. The prior allocation of credibility across the five-

parameter space is very vague and wide, so that the prior has

minimal influence on the estimation, and the data dominate the

Bayesian inference. Bayesian estimation will reallocate credibility

to parameter values that best accommodate the observed data. The

resulting distribution is a joint distribution across the five param-

eters, thereby revealing combinations of the five parameter values

that are credible, given the data.

The Mechanics of Bayesian Estimation

As described earlier, Bayesian inference simply reallocates

credibility across the parameter values in the model, given the

data. The mathematically correct way to reallocate credibility is

provided by a formula called Bayes’ rule (Bayes & Price, 1763). It

is based on a simple relationship between conditional probabilities,

but it has tremendous ramifications when applied to parameters

and data. Denote the set of data as D, which consists of all the

observed yji from both groups. Bayes’ rule derives the probability

of the parameter values given the data, in terms of the probability

of the data given the parameter values and the prior probabilities of

the parameter values. For our descriptive model in Figure 2,

Bayes’ rule has the following form:

p��1, �1, �2, �2, v�D�
Ç

posterior

� p�D��1, �1, �2, �2, v�
Ç

likelihood

� p��1, �1, �2, �2, v�
Ç

prior

� p�D�
Ç

evidence

(1)

In words, Bayes’ rule in Equation 1 simply states that the posterior

credibility of the combination of values 	 �1, �1, �2, �2, � 
 is

the likelihood of that combination times the prior credibility of that

combination, divided by the constant p(D). Because it is assumed

that the data are independently sampled, the likelihood is the

multiplicative product across the data values of the probability

density of the t distribution in Figure 2. The prior is the product of

the five independent parameter distributions in the upper part of

Figure 2. The constant p(D) is called the evidence or the marginal

likelihood by various authors. Its value is computed, in principle,

by integrating the product of the likelihood and prior over the

entire parameter space. The integral is impossible to compute

analytically for many models, which was a major impediment to

the widespread use of Bayesian methods until the development of

modern numerical methods that obviate explicit evaluation of

p(D).

The posterior distribution is approximated to arbitrarily high

accuracy by generating a large representative sample from it,

without explicitly computing p(D). A class of algorithms for doing

so is called Markov chain Monte Carlo (MCMC) methods, and

those methods are used here. The MCMC sample, also called a

chain of values because of the way the values are generated,

provides many thousands of combinations of parameter values,

	�1, �1, �2, �2, �
. Each combination of values is representative

of credible parameter values that simultaneously accommodate the

observed data and the prior distribution. The thousands of repre-

sentative parameter values are summarized graphically by a his-

togram, as shown in the prior distributions of Figure 2 and in

subsequent depictions of posterior distributions. From the MCMC

sample, one can easily ascertain any aspect of the credible param-

eter values in which one might be interested, such as the mean or

modal credible value and range of credible values. Importantly,

one can also examine the credible difference of means by com-

puting �1 � �2 at every combination of representative values, and

one can do the same for the difference of standard deviations.

Several examples are provided below.

For computing the Bayesian inference, I will use the program-

ming language called R (R Development Core Team, 2011) and

the MCMC sampling language called JAGS, accessible from R via

a package called rjags (Plummer, 2003). The programs are written

in the style of programs in a recent textbook (Kruschke, 2011b).

All the software is free. The software is easy to install, and it is

easy to run the programs, as explained at http://www.indiana.edu/

�kruschke/BEST/, where “BEST” stands for Bayesian estimation.

With the software and programs installed, running an analysis is

easy. For a complete example, open the file BESTexample.R in

R and read the comments in that file.

There are just four simple steps in conducting an analysis.

First, one loads the relevant programs into R using the com-

mand source (“BEST.R”). Second, the data for the two groups

are entered as vectors in R, denoted y1 and y2. Third, the

MCMC chain is generated using the command mcmcChain �

BESTmcmc(y1,y2). Fourth, the results are plotted, using the

command BESTplot(y1,y2,mcmcChain). Examples of results

are presented below.

Digression: Technical details of MCMC sampling. The

process of MCMC sampling generates a large representative sam-

ple of credible parameter values from the posterior distribution.

The bigger the sample is, the better it represents the underlying

posterior distribution. The program defaults to an MCMC sample

size of 100,000. This sample size, also called chain length, is

adequate for typical applications.

It is important not to confuse the MCMC “sample” of parameter

values with the “sample” of empirical data. There is one sample of

data, which remains fixed regardless of the MCMC sample size. A

longer MCMC chain merely provides a higher resolution repre-

sentation of the posterior distribution of parameter values, given

the fixed data.

Because the MCMC process generates a random sample of

credible parameter values, its results will be slightly different on

repeated analyses of the same data. These small variations are of

no consequence in most applications. If, however, the user requires

more stability in the MCMC approximation of the posterior, it is
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easy to specify a larger chain length. The analysis program takes

proportionally longer time to generate a longer chain. The user is

encouraged to use as long a chain as possible.

The goal of the MCMC process is to generate an accurate and

reliable representation of the posterior distribution. Unfortunately,

MCMC algorithms can suffer from clumpiness (technically called

autocorrelation) in the chains that they generate. One way of

diluting clumpiness is by thinning the chain, which means using

only every kth step in the chain, where k is an arbitrary number

chosen judiciously by the user. Although the thinned chain has less

clumpiness, it also is much shorter than the original chain and

therefore has less reliable estimates of posterior characteristics. It

turns out that in most typical applications, clumpiness can be

adequately smoothed simply by running a long chain without

thinning, and the long chain produces reliable estimates of the

posterior distribution (e.g., Jackman, 2009, p. 263; Link & Eaton,

2012). Therefore the program defaults to no thinning, although the

user can thin if desired.

Assessing Null Values

Psychologists and researchers in various other disciplines have

been trained to frame research questions in terms of whether or not

a null value can be rejected. For example, when investigating two

groups, the goal is framed as trying to reject the null hypothesis

that the two groups have equal means. In other words, the “null

value” for the difference of means is zero, and the goal is to reject

that value as implausible.

One problem with framing research this way, with the goal of

rejecting a difference of zero, is that theories can be expressed very

weakly yet still be confirmed (Meehl, 1967, 1997). For example, a

theorist could claim that a drug increases intelligence and have the

claim confirmed by any magnitude of increase, however small,

that is statistically greater than zero. Strong theories, by contrast,

predict particular magnitudes of difference or predict specific

forms of relation between variables (e.g., Newtonian mechanics).

Scientists who pursue strong theories therefore need to estimate

parameter values, not merely reject null values. Bayesian estima-

tion is an excellent tool for pursuing strong theories.

Bayesian estimation can also be used to assess the credibility of

a null value. One simply examines the posterior distribution of the

credible parameter values and sees where the null value falls. If the

null value is far from the most credible values, one rejects it.

Examples are provided later.

Bayesian estimation also can accept the null value, not only

reject it. The researcher specifies a region of practical equivalence

(ROPE) around the null value, which encloses those values of the

parameter that are deemed to be negligibly different from the null

value for practical purposes. The size of the ROPE will depend on

the specifics of the application domain. As a generic example,

because an effect size of 0.1 is conventionally deemed to be small

(Cohen, 1988), a ROPE on effect size might extend from �0.1 to

0.1. When nearly all of the credible values fall within the ROPE,

the null value is said to be accepted for practical purposes. Exam-

ples are provided later in the article. The use of a ROPE is

described further by Kruschke (2011a, 2011b) and in additional

settings by Carlin and Louis (2009); Freedman, Lowe, and Ma-

caskill (1984); Hobbs and Carlin (2007); and Spiegelhalter, Freed-

man, and Parmar (1994). Independently of its use as a decision tool

for Bayesian analysis, use of a ROPE has also been suggested as

a way to increase the predictive precision of theories (J. R. Ed-

wards & Berry, 2010).

There is a different Bayesian approach to the assessment of null

values, which involves comparing a model that expresses the null

hypothesis against a model that expresses all possible parameter

values. The method emphasizes a statistic called the Bayes factor,

which is the overall likelihood of the data for one model relative to

the overall likelihood of the data for the other model. In the

Bayes-factor approach, parameter estimates are not emphasized.

Moreover, the value of the Bayes factor itself can be very sensitive

to the choice of prior distribution in the alternative model. Al-

though the Bayes-factor approach can be appropriate for some

applications, the parameter-estimation approach usually yields

more directly informative results. Interested readers can find more

details in Appendix D.

Examples of Robust Bayesian Estimation

I now discuss three examples of robust Bayesian estimation. The

first considers two groups of moderate sample sizes, in which there

are different means, different standard deviations, and outliers. The

second considers two groups of small sample sizes in which

the Bayesian analysis concludes that the means are not credibly

different. The third considers two groups of large sample sizes in

which the Bayesian analysis concludes that the group means are

equal for practical purposes. In all three cases, the information

provided by the Bayesian analysis is far richer than the information

provided by an NHST t test, and in all three cases the conclusions

differ from those derived from the NHST t test. Results from the

corresponding NHST t tests are discussed later in the article.

Different means and standard deviations with outliers: Fig-

ure 3. Consider data from two groups of people who take an IQ

test. Group 1 (N1 � 47) consumes a “smart drug,” and Group 2

(N2 � 42) is a control group that consumes a placebo. Histograms

of the data appear in the upper right panels of Figure 3. (The data

for Figure 3 were generated randomly from t distributions. The

exact data are provided in the example of running the free software

at http://www.indiana.edu/�kruschke/BEST/.) The sample mean

of Group 1 is 101.91 and the sample mean of Group 2 is 100.36,

but there is a lot of variability within groups, and the variances of

the two groups also appear to differ. There also appear to be some

outliers. Are these groups credibly different?

Robust Bayesian estimation yields rich information about the

differences between groups. As explained above, the MCMC

method generates a very large number of parameter combinations

that are credible, given the data. These combinations of parameter

values are representative of the posterior distribution. Figure 3

shows histograms of 100,000 credible parameter-value combina-

tions. It is important to understand that these are histograms of

parameter values; they are not histograms of simulated data. The

only histograms of data appear in the top right panels of Figure 3

that are labeled with y on their abscissas, and these data are fixed

at their empirically observed values. All the other histograms

display 100,000 parameter values from the posterior distribution,

given the single set of actual data. In particular, the five histograms

in the left column of Figure 3 show the posteriors corresponding to

the five prior histograms in Figure 2. For example, the wide

uniform prior on �1, shown in the left of Figure 2, becomes the
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smoothly peaked and relatively narrow posterior distribution in the

middle left of Figure 3.

Each histogram is annotated with its central tendency, with the

mean used for distributions that are roughly symmetric and the

mode used for distributions that are noticeably skewed. Each

histogram is also marked with its 95% highest density interval

(HDI), which is a useful summary of where the bulk of the most

credible values falls. By definition, every value inside the HDI has

higher probability density than any value outside the HDI, and the

total mass of points inside the 95% HDI is 95% of the distribution.

The numbers displayed in the plots of Figure 3 are rounded to three

significant digits to save display space.

The upper left panel of Figure 3 shows that the mean of the

credible values for �1 is 101.55 (displayed to three significant

digits as 102), with a 95% HDI from 100.81 to 102.32, and the

mean of the MCMC chain for �2 is 100.52, with a 95% HDI from

100.11 to 100.95. Therefore, the difference �1 � �2 is 1.03 on

average, as displayed in the middle plot of the right column. One

sees that the 95% HDI of the difference of means falls well above

zero, and 98.9% of the credible values are greater than zero.

Therefore one can conclude that the groups’ means are, indeed,

credibly different. It is important to understand that the Bayesian

analysis yields the complete distribution of credible values, but a

separate decision rule converts the posterior distribution to a

discrete conclusion about a specific value.

The Bayesian analysis simultaneously shows credible values of

the standard deviations for the two groups, with histograms plotted

in the left column of Figure 3. The difference of the standard
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95% HDI
1.27 2.93

Group 2 Std. Dev.
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1 2 3 4 5

mode = 0.981

95% HDI
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σ1 − σ2
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0.168 1.9

Effect Size
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2) 2
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0.0716 1.24

Figure 3. Top right shows histograms of the data in the two groups, with representative examples of posterior

predictive (Post. Pred.) distributions superimposed. Left column shows marginals of the five-dimensional posterior

distribution, corresponding to the five prior histograms in Figure 2. Lower right shows posterior distribution of

differences and effect size. HDI � highest density interval; w. � with; Std. Dev. � standard deviation.
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deviations is shown in the right column, where it can be seen that

a difference of zero is not among the 95% most credible differ-

ences, and 99.5% of the credible differences are greater than zero.

Thus, not only is the mean of the first group credibly larger than

the mean of the second group, the standard deviation of the first

group is also credibly larger than the standard deviation of the

second group. In the context of the smart drug consumed by Group

1, this result means that the drug increased scores on average, but

the drug also increased the variability across subjects, indicating

that some people may be adversely affected by the drug and others

may be quite positively affected. Such an effect on variance has

real-world precedents; for example, stress can increase variance

across people (Lazarus & Eriksen, 1952).

The lower right panel of Figure 3 shows the distribution of

credible effect sizes, given the data. For each credible combination

of means and standard deviations, the effect size is computed as

��1 � �2�/���1
2

� �2
2�/2. The histogram of the 100,000 credible

effect sizes has a mode of 0.622, with the shape shown in Figure 3,

and a 95% HDI that excludes zero.1

The lower left panel of Figure 3 shows credible values of the

normality parameter in the t distribution. The values are shown on

a logarithmic scale, because the shape of the t distribution changes

noticeably for values of � near 1 but changes relatively little for

� 
 30 or so (see Figure 1). On a base-10 logarithmic scale,

log10(�) � 0 means � � 1, log10(�) � 1 means � � 10, and

log10(�) � 2 means � � 100. The histogram shows that log10(�)

has values close to zero, which means that the credible t distribu-

tions are large tailed to accommodate outliers in the data.

The upper right panels of Figure 3 show a smattering of credible

t distributions superimposed on histograms of the data. The curves

are produced by selecting several random steps in the MCMC

chain and at each step plotting the t distribution with parameters

	 �1, �1, � 
 on the Group 1 data and plotting the t distribution

with parameters 	 �2, �2, � 
 on the Group 2 data. By visually

comparing the data histogram and the typical credible t distribu-

tions, one can assess whether the model is a reasonably good

description of the data. This type of assessment is called a poste-

rior predictive check (Gelman, Carlin, Stern, & Rubin, 2004;

Gelman & Shalizi, 2012; Gelman & Shalizi, in press; Guttman,

1967; Kruschke, in press; Rubin, 1984). We see from the plots that

the credible t distributions are a good description of the data. (In

fact, the fictitious data were generated from t distributions, but for

real data one never knows the true generating process in nature.)

The posterior predictive check can be useful for identifying cases

in which data are strongly multimodal instead of unimodal or

strongly skewed instead of symmetric, or with two groups that

have very different kurtosis instead of the same kurtosis. In these

cases one may seek a more appropriate model. Fortunately, it is

easy to modify the programs so they use different models; see

Appendix B.

Small sample sizes: Figure 4. Consider a case of small-

sample data, with N1 � 8 and N2 � 8, as shown in Figure 4.

Although the sample means of the two groups are different, the

posterior distribution reveals great uncertainty in the estimate of

the difference of means, such that a difference of zero falls within

the 95% HDI (middle panel of right column). As is shown

later, the traditional NHST t test comes to a different conclusion

about the difference of means (with p 	 .05). The posterior

distribution on the effect size also shows that an effect size of zero

falls within the 95% HDI (lowest panel of right column). The

posterior distribution on the normality parameter has a mode of

log10(�) � 1.45, which corresponds to � � 28 and which can be

seen in Figure 1 to be nearly normal. Compared with the prior on

� (see Figure A1 in Appendix A), the posterior on � has ruled out

extremely heavy tails, but otherwise remains very uncertain.

Accepting the null with large sample sizes: Figure 5. As

the sample size gets larger, the precision of the parameter estimates

also increases, because sampling noise tends to cancel out. If one

defines a ROPE around the null value, the precision of the estimate

might be fine enough that the 95% HDI falls entirely within the

ROPE. If this happens, it means that the 95% most credible values

are practically equivalent to the null value. This condition can be

a criterion for accepting the null value. Notice that if the ROPE is

relatively wide and the 95% HDI is very narrow, the 95% HDI

could fall entirely within the ROPE and yet also exclude zero. This

is not a contradiction. It simply means that the credible values of

the parameter are non-zero, but those non-zero values are so small

that they have no practical importance.

Figure 5 shows a case of accepting the null value. The difference

between means is nearly zero, but most important, the 95% HDI of

the difference falls entirely within a ROPE that extends from �0.1

to 0.1. The same is true of the difference in standard deviations,

where, in fact, 100% of the posterior (i.e., all of the 100,000

representative values) falls inside the ROPE. It is important to

understand that Bayesian estimation provides a complete distribu-

tion over possible differences, but the decision rule is auxiliary and

concludes that for practical purposes one accepts the null value.

Bayesian estimation allows one to make this conclusion by

virtue of the fact that it provides an explicit posterior distribution

on the differences, given the data. Without the explicit posterior

distribution, one could not say whether the estimate falls within the

ROPE. The decision procedure based on Bayesian estimation

allows one to accept the null value only when there is high enough

precision in the estimate, which typically can happen only with

relatively large sample sizes.

In contrast, the NHST t test has no way of accepting the null

hypothesis. Even if one were to define a ROPE, the confidence

interval from the NHST t test does not provide the information one

needs. The NHST t test and confidence interval are discussed at

length in a subsequent section.

Power Analysis for Bayesian Estimation

Researchers can have various goals when analyzing their data.

One important goal is to obtain a precise estimate of the descrip-

1 The effect size is defined here as ��1 � �2�/���1
2

� �2
2�/2, because I

take the perspective that the effect size is merely a re-description of the

posterior distribution. In principle, many different data sets could have

generated the posterior parameter distribution, and therefore the data

should not be used in re-describing the posterior. Nevertheless, some

users may prefer to compute an effect size in which the estimates are

weighted by the sample sizes in the groups: � � (�1 – �2)/

���1
2�N1 � 1� � �2

2�N2 � 1�/�N1 � N2 � 2� (Hedges, 1981; Wetzels et al.,

2009). This form does not change the sign of the effect size, merely its

magnitude, so the proportion of the posterior distribution of the effect size

that is greater (or less) than zero remains unaffected.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

579BAYESIAN ESTIMATION SUPERSEDES THE T TEST



tive parameters. Success in achieving this goal can be expressed as

the width of the 95% HDI being less than some criterial maximum.

Other goals regard specific parameter values of interest, such as

null values. For example, the analyst can assay whether the 95%

HDI falls entirely outside or inside the ROPE and thereby declare

the null value to be rejected or accepted. The Bayesian posterior

distribution provides complete information to address these goals.

With these various goals for analysis in mind, the analyst may

wonder what is the probability of achieving them, if the sampled

data were generated by hypothetical parameter values. A tradi-

tional case of this issue is NHST power analysis. In NHST, the

power of an experiment is the probability of rejecting the null

hypothesis if the data were generated from a particular specific

alternative effect size. The probability of rejecting the null, for data

sampled from a non-zero effect, is less than 100% because of

random variation in sampled values, but it is at least 5% because

that is the conventionally tolerated false alarm rate from the null

hypothesis.

Power can be assessed prospectively or retrospectively. In ret-

rospective power analysis, the effect size is estimated from an

observed set of data, and then the power is computed for the

sample size that was actually used. In prospective power analysis,

the effect size is hypothesized from analogous previous research or

intuition, and the power is computed for a candidate sample size.

Prospective power analysis is typically used for sample size de-

termination, because the analyst can plan a sample size that yields

the desired power (for the assumed hypothesis). In the context of

NHST, many authors have pointed out that prospective power
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Figure 4. Top right shows histograms of data in the two groups, with representative examples of posterior

predictive distributions (Post. Pred.) superimposed. Left column shows marginals of the five-dimensional

posterior distribution. Lower right shows posterior distribution of differences and effect size. HDI � highest

density interval; w. � with; Std. Dev. � standard deviation.
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analysis provides useful information, but retrospective power anal-

ysis (that uses only the data from a single experiment) provides no

additional information that is not already implicit in the p value

(e.g., Gerard, Smith, & Weerakkody, 1998; Hoenig & Heisey,

2001; Nakagawa & Foster, 2004; O’Keefe, 2007; Steidl, Hayes, &

Schauber, 1997; Sun, Pan, & Wang, 2011; Thomas, 1997). Ret-

rospective power analysis can, however, at least make explicit the

probability of achieving various goals in the given experiment,

even if that information is not useful for additional inference from

the given data.

In either retrospective or prospective power analyses, NHST

uses a point value for the hypothetical effect size. In Bayesian

power analysis, one uses an entire distribution of parameters

instead of a single point value for the effect size. Thus, every value

of effect size is considered but only to the extent that it is consid-

ered to be credible. NHST power analysis can consider various

point values, such as the end points of a confidence interval, but

the different point values are not weighted by credibility and

therefore can yield a huge range of powers. As a consequence,

NHST power analysis often yields extremely uncertain results

(e.g., Gerard et al., 1998; Miller, 2009; Thomas, 1997), but Bayes-

ian power analysis yields precise estimates of power. A later

section describes NHST power analysis in more detail, and the

remainder of this section describes Bayesian power analysis.

For Bayesian retrospective power analysis, the distribution of

credible parameter values is the posterior distribution from an
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Figure 5. Top right shows histograms of data in the two groups, with representative examples of posterior

predictive distributions (Post. Pred.) superimposed. Left column shows marginals of the five-dimensional

posterior distribution. Lower right shows posterior distribution of differences and effect size. HDI � highest

density interval; w. � with; Std. Dev. � standard deviation; ROPE � region of practical equivalence.
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observed set of data. At every step in the MCMC chain of the

posterior, the analyst uses that step’s parameter values to simulate

new data, then does a Bayesian analysis of the simulated data, and

then checks whether the desired goals are achieved. The process is

illustrated in Figure 6, and the caption provides more details. From

the many simulations, the proportion of times that each goal is

achieved is used to estimate the probability of achieving each goal.

The mechanics of the process are explained in detail in Chapter 13

of Kruschke (2011b) and are illustrated with examples in Kruschke

(2010a, 2010b). The issue has been explored in technical detail in

various domains (e.g., Adcock, 1997; De Santis, 2004, 2007;

Joseph, Wolfson, & du Berger, 1995a, 1995b; Wang & Gelfand,

2002; Weiss, 1997).

For prospective power analysis, the same process is executed

but starting with hypothetical data instead of actual data. The

hypothetical data are designed to represent ideal results for a large

experiment that perfectly reflects the hypothesized effect. From the

large set of idealized data, a Bayesian analysis reveals the corre-

sponding parameter distribution that is credible. This parameter

distribution is then used as the expression of the hypothesis in the

left side of Figure 6. A major advantage of this approach is that

researchers can usually intuit hypothetical data much more easily

than hypothetical parameter values. The researcher merely needs

to generate hypothetical data from an idealized experiment, instead

of trying to specify abstract distributions of parameters and their

trade-offs in high-dimensional space. This approach is also quite

general and especially useful for more complex situations involv-

ing models with many parameters.

Example of Bayesian prospective power analysis. To fa-

cilitate the generation of idealized data for prospective power

analysis, a program accompanying this article generates simulated

data from two groups. Details are provided in Appendix C. The

user specifies the means and standard deviations of the two nor-

mally distributed groups and the sample size for each group. The

user also specifies the percentage of the simulated data that should

come from outlier distributions, which have the same means as the

two groups but a larger standard deviation, which is also specified

by the user. As an example, suppose the researcher is contemplat-

ing the effect of a smart drug on IQ scores. He or she assumes that

the control group has a mean of 100 and standard deviation of 15

and the treatment group will have a mean of 108 and standard

deviation of 17, with scores normally distributed in each group.

Moreover, the researcher hypothesizes that 10% of the data will

consist of outliers, simulated as coming from the same group

means but with twice as large a standard deviation. An idealized

experiment would perfectly realize these hypothetical values in a

large sample size, such as 1,000 per group. The sample size

expresses the confidence in the hypothesis: The larger the sample

size, the higher the confidence. Figure 7 shows an example of such

idealized data. The researcher can easily inspect this figure to

check that it accurately represents the intended hypothesis.

The idealized data are then submitted to a Bayesian analysis so

that the corresponding parameter distribution can be derived. The

resulting posterior distribution, shown in Figures 8 and 9, reveals

the parameter uncertainty implicit in the idealized data set, for all

the parameters including the normality parameter, which might be

particularly difficult to specify by prior intuition alone. The pos-

terior distribution also captures joint dependencies of credible

parameter values, as revealed in Figure 9, where it can be seen that

the standard deviation (�1 and �2) and normality (�) parameters

are correlated with each other. This correlation occurs because

higher values of normality, which posit small-tailed data distribu-

tions, require larger standard deviations to accommodate the out-

liers in the data. Although it is fairly easy for a researcher to intuit,

generate, and check idealized data as in Figure 7, it is probably

considerably more difficult for a researcher to intuit, generate, and

check idealized joint parameter values to express the hypothesis as

in Figure 9.

Another benefit of this approach is that the researcher’s cer-

tainty in a hypothesis is expressed in terms of concrete sample size,

not in terms of spread in an abstract parameter space. The sample

size for the idealized data directly indicates the amount of data in

fictitious previous research that provides support for the hypoth-

esis. The example in Figure 7 used 1,000 values in each group to

Figure 6. Flowchart for estimating Bayesian power. At the left, a hypothetical distribution of parameter values

is used to repeatedly generate representative credible parameter values. For each set of parameter values, a

simulated sample of data is generated from the model. Then Bayes’ rule is applied to derive the posterior

distribution from the simulated data and assay whether the various goals have been achieved for that sample.

Across many replications of simulated experiments, the probability of achieving each goal is estimated to

arbitrarily high accuracy.
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represent a fairly large previous study. If the analyst wanted to

express even stronger certainty in the hypothesis, a larger sample

size could be used for the idealized data. The larger sample size

will yield narrower parameter distributions in the Bayesian anal-

ysis.

The creation of a hypothetical parameter distribution for pro-

spective power analysis is analogous to eliciting a prior distribu-

tion from expert informants. The method advocated here, in which

the informant generates hypothetical data from which a parameter

distribution is derived, is analogous to the equivalent prior sample

(EPS) method proposed by Winkler (1967) for eliciting the prior in

estimating the bias of a coin. The method advocated here is

consistent with the advice of Garthwaite, Kadane, and O’Hagan

(2005):

As a guiding principle, experts should be asked questions about

quantities that are meaningful to them. This suggests that questions

should generally concern observable quantities rather than unobserv-

able parameters, although questions about proportions and means also

might be considered suitable, because psychological research suggests

that people can relate to these quantities. . . . Graphical feedback is an

important component . . . and it seems to provide a potentially pow-

erful means of improving the quality of assessed distributions. (pp.

689, 692)

A reader might wonder why we go through the effort of creating

a parameter distribution to generate simulated data if we already

have a way of generating simulated data for the idealized experi-

ment. The answer is that the idealized data are generated from a

punctate parameter value without any uncertainty expressed in that

parameter value. It is the idealized sample size that expresses the

intuitive certainty in the hypothesized parameter value and, sub-

sequently, the Bayesian posterior from the idealized sample that

expresses the parameter uncertainty. Thus, the process goes from

easily intuited certainty expressed as idealized sample size to

less easily intuited uncertainty expressed as a multidimensional

parameter distribution. The resulting parameter distribution can be

visually examined for consistency with the intended hypothesis.

With the hypothetical parameter distribution now established, I

proceed with the power analysis itself. To estimate the probability

of achieving the goals, one steps through the credible combinations

of parameter values in the MCMC chain. At each step, the chain

specifies a combination of parameter values, 	�1, �1, �2, �2, �
,

which one uses to generate a simulated set of data from the model.

For experiments in which data are sampled until a threshold

sample size, those sample sizes should be used for the simulated

data. For experiments in which data are sampled until a threshold

duration elapses, the simulated data should produce random sam-

ple sizes to mimic that process (e.g., with a Poisson distribution;

Sadiku & Tofighi, 1999). In the analyses presented here (and in the

programs available at http://www.indiana.edu/�kruschke/BEST/),

I assume fixed sample sizes, merely for simplicity. For each set of

simulated data, a Bayesian analysis is conducted to produce a

posterior distribution on the parameters given the simulated data.

Each of the goals can then be assessed in the posterior distribution.

This process repeats for many steps in the MCMC chain from the

original analysis. The software commands for executing the power

analysis are explained in Appendix C.

The underlying probability of achieving each goal is reflected

by the proportion of times that the goal is achieved in the simulated

replications. The estimate of the underlying probability is itself a

Bayesian estimation from the proportion of successes in the sim-

ulated replications. One assumes a noncommittal uniform prior on

the power, and therefore the posterior distribution on power is a

beta distribution (e.g., Chapter 5 of Kruschke, 2011b). As the

number of replications increases, the beta distribution gets nar-

rower and narrower, which is to say that the estimate of power gets

more and more certain. The 95% HDI of the posterior beta distri-

bution is used to summarize the uncertainty in the estimated

power. Notice that the accuracy of the power estimate is limited in

practice only by the number of simulated replications. In principle,

the power estimate is precise because it integrates over the entire

hypothetical parameter distribution.

Suppose I think that a realistic sample size for my study will

have N1 � N2 � 50. Suppose I have several goals for the analysis,

selected here more for illustrative purposes than for realism. With

regard to the magnitude of �1 � �2, suppose I would like to show

that its 95% HDI excludes a ROPE of (�1.5, 1.5), which is to say

that there is difference between means that is credibly different

than 1.5 IQ points. I may also desire a minimum precision on the

estimate of �1 � �2, such that its 95% HDI has width less than 15

IQ points (i.e., one standard deviation of the normed background

population). I may have analogous goals for the difference of

standard deviations and for the effect size. The results of running

1,000 simulated experiments are shown in Table 1, where it can be

seen that the estimated probability that the 95% HDI on the

difference of means excludes a ROPE of (�1.5, 1.5) is only

40.1%. There are fairly tight bounds on this estimate because 1,000

simulated experiments were run. Similarly, the estimated proba-

bility that the 95% HDI on the effect size excludes zero is only

54.4%. The prospective power analysis reveals that even if the

hypothetical effect of the smart drug were perfectly supported by

Simulated Data
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Figure 7. Idealized data used for prospective power analysis. The histo-

grams represent the simulated data values and the curves indicate the

generating distributions, with the taller dashed curve representing the main

generator, the shorter dashed curve representing the outlier distribution,

and the solid curve representing their sum.
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previous research that included 1,000 people in each group, a

novel experiment involving only 50 people in each group would be

underpowered (assuming that a power of at least 80% would be

desired before running an experiment). The researcher could in-

crease power by increasing the novel experiment’s sample size or

by aspiring to an easier goal (e.g., with a smaller ROPE).

Example of Bayesian retrospective power analysis. Retro-

spective power analysis proceeds like prospective power analysis,

but instead of using idealized data, one uses actually observed

data. Recall the example of Figure 3, which involved data from

two groups of subjects who took IQ exams. (Although the data

were fictitious, suppose that they were real for the present illus-

tration.) The first group (N1 � 47) took a smart drug, and the

second group (N2 � 42) was a control. The Bayesian posterior

revealed credibly non-zero differences in the means and the stan-

dard deviations. The posterior also indicated that the effect size

was credibly non-zero. Suppose that the researcher would like to

do a retrospective power analysis for these data, and the researcher

has several goals, with one being that the 95% HDI on the

difference of means is greater than zero. Six goals altogether are
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Difference of Means
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95% HDI
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Group 2 Std. Dev.

σ2
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mode = 15.1

95% HDI
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σ1 − σ2
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mode = 1.79
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2) 2
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Figure 8. Posterior distribution from idealized data in Figure 7, used for prospective power analysis. (The

histograms are a bit choppy because only a short MCMC chain was generated for use in prospective power

analysis.) Figure 9 shows pairwise plots of the five parameters. MCMC � Markov chain Monte Carlo; HDI �

highest density interval; w. � with; Post. Pred. � posterior predictive; Std. Dev. � standard deviation.
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indicated in Table 2. The power analysis generated simulated data

from 1,000 steps in the MCMC chain (selected evenly from across

the entire chain). The analysis revealed that the power for the first

goal, regarding the difference of means being greater than zero,

was 47.4%, with a 95% HDI on the estimate extending from 44.3%

to 50.4%, based on 1,000 simulated replications. If more simulated

replications were used, the bounds on the estimated power would

be tighter. The power for the other goals is indicated in Table 2. It

µ1

98.5 99.5 101.0 14.0 15.0 16.0

1
0

7
1

0
9

9
8

.5
9

9
.5

1
0

1
.0

0.0014 µ2

−0.015 0.02 σ1

1
5

1
6

1
7

1
8

1
4

.0
1

5
.0

1
6

.0

0.0073 0.042 0.29 σ2

107 109

−0.0075 0.0018

15 16 17 18

0.60 0.50

0.8 1.0 1.2

0
.8

1
.0

1
.2

log10(ν)

Figure 9. Posterior distribution from idealized data in Figure 7, used for prospective power analysis. The

pairwise plots of credible parameter values, shown in the upper right panels, reveal correlations in the standard

deviation (�1 and �2) and normality (�) parameters. The numerical correlations are shown in the lower left

panels. It would be difficult to generate this distribution of parameter values directly from intuition, but it is

relatively easy to intuit the idealized data of Figure 7.

Table 1

Bayesian Prospective Power Analysis for Parameter Distribution in Figure 8, Using N1 � N2 � 50

Goal

Based on 1,000 simulated replications

Bayesian power Lower bound Upper bound

95% HDI on the difference of means excludes ROPE of (�1.5, 1.5). 40.1% 37.1% 43.1%
95% HDI on the difference of means has width less than 15.0. 72.6% 69.8% 75.3%
95% HDI on the difference of standard deviations is greater than zero. 10.5% 8.6% 12.4%
95% HDI on the difference of standard deviations has width less than 10.0. 15.8% 13.5% 18.0%
95% HDI on the effect size is greater than zero. 54.4% 51.4% 57.5%
95% HDI on the effect size has width less than 1.0. 97.8% 96.9% 98.7%

Note. “Lower bound” and “Upper bound” refer to limits of the 95% HDI on the beta posterior for estimated power, which get closer together as the number
of simulated replications increases. HDI � highest density interval; ROPE � region of practical equivalence.
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is worth reiterating that these precise power estimates incorporate

the full uncertainty of the parameter estimates and are not based on

a single hypothetical parameter value as in NHST power analysis.

Reporting the Results of a Bayesian Analysis

When the results of a robust Bayesian estimation of groups are

reported, the posterior distribution is summarized in text. Although

there are established conventions for reporting NHST analyses

(e.g., American Psychological Association, 2009), there are not yet

conventions for reporting Bayesian analyses. General guidelines

for reporting a Bayesian analysis are offered by Kruschke (2011b,

Chapter 23). Those guidelines were intended to apply to any

Bayesian analysis and to when the analyst could not assume much

previous knowledge of Bayesian methods in the audience. Hence,

the first recommended points were to motivate the use of Bayesian

analysis, describe the model and its parameters, justify the prior

distribution, and mention the details of the MCMC mechanics. In

the present application, all these points are addressed elsewhere in

this article. Anyone who uses the accompanying program unal-

tered can briefly review the points or simply refer to this article.

(If the user changes the prior or likelihood function in the program,

those changes must be explained, along with assessment of

MCMC convergence.) The essential mission of the analyst’s re-

port, therefore, is to summarize and interpret the posterior distri-

bution. A summary of each parameter can consist of descriptive

values including the central tendency, the 95% HDI, and, if rele-

vant, the percentage of the posterior distribution above or below a

landmark value, such as zero, or within a ROPE. These values are

displayed graphically in Figure 3 and are output in greater numer-

ical precision on the computer console when the program is run.

When making discrete decisions about a null value, the analyst can

explicitly define and justify a ROPE, as appropriate, or leave a

ROPE unspecified so that readers can use their own.

Summary of Bayesian Estimation

I began with a descriptive model of data from two groups,

wherein the parameters were meaningful measures of central ten-

dency, variance, and normality. Bayesian inference reallocates

credibility to parameter values that are consistent with the ob-

served data. The posterior distribution across the parameter values

gives complete information about which combinations of param-

eter values are credible. In particular, from the posterior distribu-

tion one can assess the credibility of specific values of interest,

such as zero difference between means, or zero difference between

standard deviations. One can also decide whether credible values

of the difference of means are practically equivalent to zero, so that

the null value is accepted for practical purposes. (How the Bayes-

ian parameter-estimation approach to assessing null values, de-

scribed here, differs from the Bayesian model-comparison ap-

proach is explained in Appendix D.) The Bayesian posterior

distribution also provides complete information about the preci-

sion of estimation, which can be summarized by the 95% HDI.

The Bayesian posterior distribution can also be used as a com-

plete hypothesis for assessing power, that is, the probabilities of

achieving research goals such as rejecting a null value, accepting

a null value, or reaching a desired precision of estimation. The

power estimation incorporates all the information in the posterior

distribution by integrating across the credible parameter values,

using each parameter–value combination to the extent it is credi-

ble. Appendix C provides some details for using the software to do

power analysis.

The software for computing the Bayesian parameter estimates

and power is free and easy to download from http://www.indiana

.edu/�kruschke/BEST/. Instructions for its use are provided in the

sample programs, and instructions for modifying the programs are

provided in Appendix B.

In the next section, I show that the information provided by the

NHST t test is very impoverished relative to the results of Bayes-

ian estimation.

The NHST t Test

In this section I review the traditional t test from null hypothesis

significance testing (NHST). First I look at the t test applied to the

three examples presented earlier, to highlight differences between

the information and conclusions provided by NHST and Bayesian

estimation. Then I turn to general foundational issues that under-

mine the usefulness of NHST in any application.

Examples of the NHST t Test

Recall the data of Figure 3, in which IQ scores of a smart drug

group were compared against IQ scores of a control group. The

robust Bayesian estimation revealed credible non-zero differences

between means and standard deviations of the groups, along with

heavy tails (non-normality). A complete posterior distribution on

Table 2

Bayesian Retrospective Power Analysis for the Posterior Distribution in Figure 3

Goal

Based on 1,000 simulated replications

Bayesian power Lower bound Upper bound

95% HDI on the difference of means excludes ROPE of (�0.1, 0.1). 47.4% 44.3% 50.4%
95% HDI on the difference of means has width less than 2.0. 59.5% 56.5% 62.6%
95% HDI on the difference of standard deviations excludes ROPE of (�0.1, 0.1). 62.9% 59.9% 65.9%
95% HDI on the difference of standard deviations has width less than 2.0. 72.9% 70.1% 75.6%
95% HDI on the effect size excludes ROPE of (�0.1, 0.1). 38.2% 35.2% 41.2%
95% HDI on the effect size has width less than 0.2. 0.1% 0.0% 0.3%

Note. “Lower bound” and “Upper bound” refer to limits of the 95% HDI on the beta posterior for estimated power, which get closer together as the number
of simulated replications increases. HDI � highest density interval; ROPE � region of practical equivalence.
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the effect size was also generated. Bayesian retrospective power

analysis (see Table 2) indicated that the 95% HDI on the effect size

would be greater than zero on 49% of replications, with tight

bounds on the estimate established by 1,000 simulated replica-

tions.

I now consider the results of an NHST t test applied to the data

of Figure 3, which yields t(87) � 1.62, p � .110, with a 95%

confidence interval on the difference of means from �0.361 to

3.477. These results, and the results of all t tests reported in this

article, use the Welch (1947) modification to degrees of freedom

for producing the p value and confidence interval, to accommodate

unequal variances. According to conventional decision criteria

(i.e., p 	 .05), the result implies that the two group means are not

significantly different, contrary to the conclusion reached by the

Bayesian analysis.

The NHST t test tells nothing about the difference between the

standard deviations of the two groups, which in the samples are

6.02 and 2.52, respectively. To test the difference of standard

deviations, I have to conduct an additional NHST F test of the ratio

of variances, which yields F(46, 41) � 5.72, p 	 .001. However,

by conducting a second test on the same data, according to NHST

criteria I need to control for the additional possibility of false alarm

by using a stricter criterion to reject the null hypothesis in either

test. For example, I could apply a Bonferroni correction to the two

tests, so that I would require p 	 .025 to declare significance

instead of p 	 .050. Notice that the differences between groups

remain fixed, but the criterion for declaring significance changes

depending on whether or not I intend to test the difference between

sample variances. Corrections for multiple comparisons are dis-

cussed more below, in the context of showing how p values change

under various other changes of intention.

Unfortunately, the results from both NHST tests are suspicious,

because both tests assume normally distributed data, but the actual

data apparently have outliers. In this context of NHST, the appear-

ance of outliers was judged qualitatively. I could run an additional

test of normality, but this would incur an additional penalty in

setting a stricter criterion for significance in the other tests. The

problem with outliers is that conventional p values are computed

on the basis of sampling distributions drawn from null hypotheses

that have normal distributions. Sampling distributions generated

from non-normal distributions yield different p values (for inter-

active examples in Excel, see Kruschke, 2005). Although the t test

for difference of means tends to be fairly robust against violations

of normality (e.g., Lumley, Diehr, Emerson, & Chen, 2002, and

references cited therein), the F test for difference of variances can

be strongly affected by violations of normality (e.g., Box, 1953;

Pearson, 1931).

A standard way to address violations of distributional assump-

tions in NHST is to use resampling methods. In resampling,

instead of assuming a particular distributional form in the popu-

lation, one substitutes the data themselves for the population.

Under the null hypothesis, the data from the two groups represent

the same underlying population, and therefore the data are pooled.

A sampling distribution is generated by repeatedly drawing sam-

ples of sizes N1 and N2 randomly, with replacement, from the

pooled population and computing the difference of sample means

or difference of sample standard deviations in every replication.

Across many replications (i.e., 100,000 for the results reported

here), a p value is computed as the proportion of randomly gen-

erated samples in which the sample difference exceeds the differ-

ence in the actual data, multiplied by two for a two-tailed test.

With the data from Figure 3, a resampling test of the difference of

means yields p � .116, which is very close to the result of the

conventional t test, but a resampling test of the difference of

standard deviations yields p � .072, which is much larger than the

result of the conventional F test. The latter also implies that the

two standard deviations are not significantly different, contrary to

the conventional F test (and contrary to the Bayesian estimation).

Corrections for multiple comparisons must still be applied when

interpreting the p values. To recapitulate, even with resampling,

which avoids parametric distributional assumptions, both the dif-

ference of means and the difference of standard deviations are

deemed to be nonsignificant, unlike in Bayesian estimation.

Consider now the example of Figure 4, which involved small

samples (N1 � N2 � 8). An NHST t test of the data yields t(14) �

2.33, p � .035, with 95% confidence interval on the difference of

means from 0.099 to 2.399. Notice that the conclusion of signif-

icance (i.e., p 	 .05) conflicts with the conclusion from Bayesian

estimation in Figure 4, in which the 95% HDI on the difference of

means included zero. The Bayesian estimate revealed the full

uncertainty in simultaneously estimating five parameters from

small samples, and the NHST t test relied on a point null hypoth-

esis assuming normal distributions.

Finally, consider the example of Figure 5, which involved large

samples (N1 � 1,101, N2 � 1,090). An NHST t test yields

t(2189) � 0.01, p � .99, and a 95% confidence interval on the

difference of means from �0.085 to 0.084. According to NHST,

we cannot accept the null hypothesis from this result; we can say

only that it is highly probable to get a difference of means from the

null hypothesis that is greater than the observed difference of

means. (In fact, according to NHST, it is so unlikely to get such a

small difference of means that we should reject some aspect of the

null hypothesis, such as the assumption of independence.) The

Bayesian estimation showed that the 95% HDI was completely

contained within a ROPE from �0.1 to 0.1, thereby accepting the

null value for practical purposes. (NHST has problems when

pursuing an analogous decision rule regarding the relation of the

confidence interval and a ROPE, as is discussed below.)

In all three cases, NHST and Bayesian estimation came to

different conclusions. It would be wrong to ask which conclusion

is correct, because for real data we do not know the true state of the

world. Indeed, for many studies, we assume in advance that there

must be some difference between the conditions, however small,

but we go to the effort of obtaining the data in order to assess what

magnitude of difference is credible and whether we can credibly

claim that the difference is not zero or equivalent to zero for

practical purposes. Therefore we should use the analysis method

that provides the richest information possible regarding the answer

we seek. And that method is Bayesian estimation. Bayesian esti-

mation provides an explicit distribution of credibilities across all

possible parameter values in the descriptive model, given the set of

actually observed data. From the posterior distribution, Bayesian

methods use a decision procedure involving the HDI and ROPE to

declare particular values to be credible or not.

In contrast, the method of NHST provides only a point estimate

of the parameter values, namely, the parameter values that mini-

mize the squared deviation or maximize the likelihood. The deci-

sion process in NHST is based on asking what is the probability of
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the data summary statistic (such as t), if the null hypothesis were

true. Answering this question provides little direct information

about the probability of parameter values given the data, which is

what one wants to know. NHST is based on sampling distributions

generated by assuming that the null-hypothesis values of the

parameters are true. Sampling distributions are also the basis of

confidence intervals. As will be shown, for any fixed set of data

there are many different p values and many different confidence

intervals depending on the sampling intentions of the analyst. For

any confidence interval there is no distributional information re-

garding values between its end points. The poverty of information

in the confidence interval also leads to power estimates being very

uncertain. In summary, not only is the question asked by NHST

not the question one wants answered, but the information provided

by NHST is very impoverished. Thus, whether Bayesian analysis

indicates credible differences when NHST does not (as for the data

of Figure 3), indicates uncertainty when NHST declares signifi-

cance (as for the data of Figure 4), or indicates accepting the null

for practical purposes when NHST cannot (as for the data of

Figure 5), it is Bayesian analysis that directly addresses our ques-

tion and provides richer information.

From the three specific examples reviewed above, I now pro-

ceed to general issues that afflict NHST.

A p Value Depends on Sampling Intentions

In the NHST t test, an observed t value is computed from the

data, which I will denote tobs. The value of tobs is a direct algebraic

function of the data values, which can be computed regardless of

any assumptions about where the data came from, just as a mean

or standard deviation can be computed for any set of data. How-

ever, additional assumptions must be made to compute the p value.

The p value is the probability of getting a t value from the null

hypothesis, as big or bigger than tobs, if the intended experiment

were repeated ad infinitum. The p value indicates the rarity of tobs

relative to the space of all possible t values that might have been

observed from the intended sampling process if the null hypothesis

were true. More formally, the p value is the probability that any

tnull value generated from the null hypothesis according to the

intended sampling process has magnitude greater than or equal to

the magnitude of tobs, which is denoted as p(any �tnull� � �tobs�).
Importantly, the space of all possible tnull values that might have

been observed is defined by how the data were intended to be

sampled. If the data were intended to be collected until a threshold

sample size was achieved, the space of all possible tnull values is

the set of all t values with that exact sample size. This is the

conventional assumption. Many researchers, however, do not in-

tend to collect data with a fixed sample size planned in advance.

Instead, they intend to collect data for a certain duration of time,

such as 2 weeks, and the actual number of respondents is a random

number. In this case, the space of all possible tnull values is the set

of all t values that could be obtained during that time, which could

involve larger or smaller sample sizes. The result is a different

space of possible tnull values than the conventional assumption of

fixed sample size and, hence, a different p value and different

confidence interval. The space of possible tnull values is also

strongly affected by the intention to compare the results with other

groups. This is because additional comparisons contribute more

possible tnull values to the space of all t values that could be

obtained, and consequently the p value and confidence interval

change. There are many different intentions for generating the

space of possible tnull values and, hence, many different p values

and confidence intervals for a single set of data. This section

illustrates this point with several different examples.

The p value for intending to sample until threshold N. The

conventional assumption is that the data collector intended to

collect data until achieving a specific threshold for sample size.

The upper left Panel A of Figure 10 shows the probability of

obtaining t values from the null hypothesis when the threshold

sample sizes are N1 � N2 � 8. The x-axis indicates the value of

tobs. The y-axis is labeled p(any �tnull� 
 �tobs�), which is the p value.

The plot shows that the value of tobs for which p � .05 is tcrit �

2.14. This is the conventional tcrit value reported in many text-

books. For the data of Figure 4, tobs � 2.33 exceeds the critical

value, and p 	 .05.

The p value for intending to sample from multiple groups.

If the data for two groups were collected along with data from

other groups and tests were intended for various combinations of

groups, the space of all possible tnull values is the set of all tnull

values collected across all tests. Because of this increased space of

possible tnull values, the relative rarity of tobs changes, and hence

the p value for tobs changes. This dependence of the p value on the

intention of the experimenter is well recognized by the conven-

tional use of various corrections for different kinds of multiple

comparisons (see, e.g., the excellent summary in Maxwell &

Delaney, 2004). Notice that the data in the original two groups

have not changed when the space of intended comparisons is

enlarged, and notice also that the actual data in any of the groups

are irrelevant; indeed, the data do not even have to be collected.

What matters is the intention that defines the space of possible tnull

values from the null hypothesis.

Suppose, for example, that we collect data until a fixed sample

size is achieved, but for four groups instead of two, and we

conduct two independent NHST t tests. The upper middle Panel B

of Figure 10 shows the probability of obtaining tnull values from

the null hypothesis when the sample sizes for all groups are fixed

at N � 8. The plot shows that the value of tobs for which p � .05

is tcrit � 2.5. In particular, for the data of Figure 4, tobs � 2.33 does

not exceed the critical value, and p 
 .05. Thus, although the data

in Figure 4 have not changed, their p value has changed because it

is computed relative to a different space of possibilities.

The p value for intending to sample until threshold duration.

If the data were collected until a particular duration was reached

(e.g., collecting data until the end of the week), the space of all

possible tnull values from the null hypothesis is the set of all tnull

values that could occur with the variety of sample sizes that may

have been collected by the end of the duration. This is the way

many researchers in the social sciences actually collect data. There

is nothing wrong with this procedure, because each datum is

completely insulated from the others, and the result of each mea-

surement is unaffected by any measurement that was made before

or after. In some respects, sampling for a fixed duration is better

insulated from the data than sampling until N reaches a threshold,

because sampling for a fixed duration means each measurement is

taken without considering any previous measurements at all, but

sampling until N reaches a threshold depends on counting the

previous measurements. The point, though, is that the space of

possible tnull values from the null hypothesis is different when

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

588 KRUSCHKE



intending to sample for fixed duration than when intending to

sample until threshold N, and therefore the p value changes.

The upper right Panel C of Figure 10 shows the probability of

obtaining tnull values from the null hypothesis when the sample

sizes are random with a modal value of 8, with a variety of other

sample sizes possible. It was assumed that the researcher collected

data for 4 hr in a facility that can seat at most 5 subjects per hour.

In any given hour, there are usually about four seats filled, occa-

sionally five seats filled, and often fewer than four seats filled.

(The exact probabilities determine the quantitative results but are

irrelevant to the qualitative argument.) The plot shows that the

value of tobs for which p � .05 is tcrit � 2.41. In particular, for the

data of Figure 4, tobs � 2.33 does not exceed the critical value, and

p 
 .05. Thus, although the data in Figure 4 have not changed,

their p value has changed because it is computed relative to a

different space of possibilities.

The p value for violated intentions: Interruption or windfall.

Because the p value is defined by the space of possible tnull values

generated by the null hypothesis when the intended experiment is

repeated, the p value should be based on the intended sample size,

not merely the actually obtained sample size. This is exactly

analogous to basing corrections for multiple tests on the intended

space of tests.

Consider the case of interrupted research, in which the re-

searcher intended to collect N � 16 per group (say) but was

unexpectedly interrupted, perhaps because of falling ill or because

of computer failure, and therefore collected only N � 8 per group.

Most analysts and all statistical software would use N � 8 per

group to compute a p value. This is inappropriate, however,

because the space of possible tnull values from the null hypothesis

should actually be dominated by the intended sampling scheme,

not by a rare accidental quirk. Suppose that the probability of the

interruption is just 1 in 50 (2%), so that when tnull values are

generated from the null hypothesis, 98% of the time those tnull

values should be based on the intended N � 16, and only 2% of the

time should they be based on the rare occurrence of N � 8. The

resulting p values are shown in the lower left Panel D of Figure 10.

Notice that the critical value is much lower than if the analysis had

inappropriately assumed a fixed sample size of N � 8, indicated by

the dotted curve.

Consider instead a case in which there is a windfall of data,

perhaps caused by miscommunication so two research assistants

collect data instead of only one. That is, the researcher intended to

collect N � 8 per group, but the miscommunication produced N �

16 per group. Most analysts and all statistical software would use

N � 16 per group to compute a p value. This is inappropriate,
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Figure 10. Probability of t values sampled from a null hypothesis for different sampling intentions. indep.

comps. � independent comparisons; obs � observed; crit � critical.
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however, because the space of possible tnull values from the null

hypothesis should actually be dominated by the intended sampling

scheme, not by a rare accidental quirk. Suppose that the probability

of the windfall is just 1 in 50 (2%), so that when tnull values are

generated from the null hypothesis, 98% of the time those tnull

values should be based on the intended N � 8, and only 2% of the

time should they be based on the rare occurrence of N � 16. The

resulting p values are shown in the lower right Panel E of Fig-

ure 10. Notice that the critical value is much higher than if the

analysis had inappropriately assumed a fixed sample size of N �

16, indicated by the dotted curve.

The p value for intending to sample until threshold tobs.

The conventional assumption for sampling data is to continue

sampling until N reaches a fixed threshold. Alternatively, sampling

could continue until tobs reaches a fixed threshold (e.g., �tobs� 


3.0). Notice that I am not conducting a t test with each datum

collected and then stopping if I have achieved significance by a

conventional fixed-N critical value; the case of sequential testing is

considered later. Instead, here I am setting a threshold t value,

fixed at 3.0 (say), and I am observing how big Nobs gets before

exceeding that value. Having exceeded the threshold t value does

not indicate significance. Instead, the question is, How big a

sample does it take to exceed that value? If there is a real differ-

ence between groups, �tobs� should exceed 3.0 after relatively few

data values have been collected, but if there is little difference

between groups, �tobs� will take a long time to exceed 3.0. If �tobs�
exceeds 3.0 with far smaller Nobs than would be expected from the

null hypothesis, I reject the null hypothesis.

Figure 11 shows the p value for Nobs, p(Nnull � Nobs), when the

null hypothesis is true. The p values were computed by Monte

Carlo simulation of 200,000 sequences generated from the null

hypothesis. For each sequence, data were generated randomly

from normal distributions, starting with N1 � N2 � 5, and alter-

nately increasing N in each group until tobs 
 3.0 (to a maximum

of Nobs � N1 � N2 � 52). Across the 200,000 simulated se-

quences, the simulation tallied how many stopped at Nobs � 10,

how many stopped at Nobs � 11, how many stopped at Nobs � 12,

and so on. The p value for Nobs is simply the total proportion of

sequences that stopped at or before that Nobs.

Figure 11 indicates that Ncrit is 45, which means that if �tobs�
exceeds 3.0 by the time Nobs � 45, then p 	 .05 and the null

hypothesis can be rejected. For example, suppose an experimenter

collects data with Nobs � 49 and tobs � 3.06. If the data were

collected until tobs 
 3.0, the p value is not less than .05. But if the

data had been collected with a fixed-N sampling scheme, the p

value would be less than .05.

Sampling until tobs exceeds a threshold might seem to be un-

usual, but it could prove to be efficient in cases of large effect sizes

because small Nobs will be needed to exceed the threshold t. The

scheme is exactly analogous to sampling schemes for estimating

the bias in a coin, as explained for example by Berger and Berry

(1988). To estimate the bias in a coin one could sample until

reaching a threshold number of flips and count the number of

heads, or one could sample until attaining a threshold number of

heads and count the number of flips. The point is that for any given

result involving a specific tobs and Nobs, there is no unique p value

because p is the rarity of the result in the space of possible tnull or

Nnull values sampled from the null hypothesis, and that space

depends on the intention of the data collector.

Conclusion regarding dependence of p value on sampling

intention. This section has emphasized that any specific tobs

and Nobs has many different p values, depending on the sam-

pling intentions of the data collector. Conventional p values

assume that the data collector intended to collect data until Nobs

reached a preset threshold. Conventional methods also recog-

nize that p values change when the intended comparisons

change and therefore prescribe various corrections for various

intended comparisons. This section showed examples of p val-

ues under other sampling intentions, such as fixed duration,

unexpected windfall or interruption, and sampling until thresh-

old tobs instead of sampling until threshold Nobs. Again, the

point is that any specific tobs and Nobs has many different p

values, and therefore basing conclusions on “the” p value and

“the” significance is a misleading ritual.

It is important to recognize that NHST cannot be salvaged by

attempting to fix or set the sampling intention explicitly in ad-

vance. For example, consider two researchers who are interested in

the effects of a smart drug on IQ. They collect data from identical

conditions. The first researcher obtains the data shown in Figure 3.

The second researcher happens to obtain identical data (or at least

data with identical tobs and Nobs). Should the conclusions of the

researchers be the same? Common sense, and scientific acumen,

suggests that the conclusions should indeed be the same because

the data are the same. But NHST says no, the conclusions should

be different, because, it turns out, the first researcher collected the

data with the explicit intention to stop at the end of the week and

compare with another group of data to be collected the next week,

and the second researcher collected the data with the explicit

intention to stop when a threshold sample size of N1 � N2 � 50

was achieved but had an unexpected interruption. Bayesian anal-

ysis, on the other hand, considers only the actual data obtained, not

the space of possible but unobtained data that may have been

sampled from the null hypothesis.
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Figure 11. The p value when the data collection continues until when

�tobs� 
 3.0, starting with N1 � N2 � 5 and increasing N by 1 alternately

in each group. The horizontal dashed line indicates p � .05. (pop. d’�0)

means that population effect size is zero (i.e., the null hypothesis is true).

obs � observed; crit � critical.
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NHST Has 100% False Alarm Rate in Sequential

Testing

Under NHST, sequential testing of data generated from the null

hypothesis will eventually lead to a false alarm. With infinite

patience, there is 100% probability of falsely rejecting the null.

This is known as “sampling to reach a foregone conclusion” (e.g.,

Anscombe, 1954). To illustrate this phenomenon, a computer

simulation generated random values from a normal distribution

with mean zero and standard deviation one, assigning each sequen-

tial value alternately to one or the other of two groups, and at each

step conducting a two-group t test assuming the current sample

sizes were fixed in advance. Each simulated sequence began with

N1 � N2 � 3. If at any step the t test indicated p 	 .05, the

sequence was stopped and the total N (� N1 � N2) was recorded.

Otherwise, another random value was sampled from the zero-mean

normal and included in the smaller group, and a new t test was

conducted. For purposes of illustration, each sequence was limited

to a maximum sample size of N � 5,000. The simulation ran 1,000

sequences.

The results are displayed in the left panel of Figure 12, which

shows the proportion of the 1,000 sequences that had (falsely)

rejected the null with a sample size of N or less. As can be seen,

by the time N � 5, 000, nearly 60% of the sequences had falsely

rejected the null. The increase is false alarm proportion is essen-

tially linear on log(N), and rises to 100% as N grows arbitrarily

large. Intuitively, this 100% false alarm rate occurs because NHST

can only reject the null and therefore must do so eventually.

Bayesian decision making, using the HDI and ROPE, does not

suffer a 100% false alarm rate in sequential testing. Instead, the

false alarm rate asymptotes at a much lower level, depending on

the choice of ROPE. For illustration, again a computer simulation

generated random values from a normal distribution with mean of

zero and standard deviation of one, assigning each sequential value

alternately to one or the other of two groups but at each step

conducting a Bayesian analysis and checking whether the 95%

HDI completely excluded or was contained within a ROPE from

�0.15 to 0.15.

The right panel of Figure 12 shows the results. The false alarm

rate rose to an asymptotic level of 8.7% at a sample size of about

200 per group (400 total). Once the sample size got to approxi-

mately 300 per group (600 total), the 95% HDI became small

enough to fall completely inside the ROPE when the sample means

happened to be nearly equal. When the sample size got to approx-

imately 1,850 per group (3,700 total), the 95% HDI essentially

always fell within the ROPE, correctly accepting the null hypoth-

esis. The qualitative behavior exhibited in the right panel of

Figure 12 is quite general, with the quantitative detail depending

on the width of the ROPE. When the ROPE is wider, the asymp-

totic false alarm rate is lower, and a smaller sample size is required

for the 95% HDI to fall inside the ROPE.

Confidence Intervals Provide No Confidence

The previous sections focused on p values and false alarm rates

in NHST. This section focuses on confidence intervals.

A confidence interval depends on sampling intentions.

There are various equivalent definitions of the confidence interval,

but they all are based on sampling distributions. The most general

and coherent definition is this:

A 95% confidence interval on a parameter is the range of parameter

values that would not be rejected at p � .05 by the observed set of

data.

In the case of the NHST t test, instead of checking merely whether

the null hypothesis, �1 � �2 � 0, can be rejected at p � .05, one

checks whether every other value of �1 � �2 can be rejected at

p � .05. The range of unrejected values is the 95% confidence

interval. This definition is general because it applies to any model

and any stopping rule. And the definition is coherent because it

makes explicit that the confidence interval is directly linked to the

p value.

A crucial implication of the definition is this: When the sam-

pling intention changes, the p value changes and so does the

confidence interval. There is a different 95% confidence interval
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Figure 12. Proportion of decisions when data are sequentially sampled from the null hypothesis and testing is

conducted with every datum. Left panel shows that the probability of false alarm in NHST continually rises with

sample size. Right panel shows that the probability of false alarm in Bayesian analysis asymptotes at a relatively

small value. NHST � null hypothesis significance testing; HDI � highest density interval; ROPE � region of

practical equivalence.
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for every different sampling intention, which includes different

comparison intentions. Standard software packages for NHST

typically implement changes in confidence intervals only for a

subset of multiple-comparison intentions in ANOVA, but the

software should also implement changes in confidence intervals

for other sorts of multiple tests and for sampling intentions other

than threshold sample size.

A confidence interval carries no distributional information.

A confidence interval provides no information regarding which

values within its bounds are more or less credible. In particular, a

confidence interval on the difference of means does not indicate

that a difference of means in its middle is more credible than a

difference of means at its end points.

It is tempting to imbue the confidence interval with distribu-

tional information that is not actually present. As an example of

imposing distributional information on a confidence interval, con-

sider a plot of the p value (for a particular sampling intention) as

a function of the parameter value (e.g., Poole, 1987; Sullivan &

Foster, 1990). Such a graph captures the intuition that some sort of

probability is higher in the middle of the interval than near its ends.

Unfortunately, the plot of p(any �thyp� 
 �tobs�) as a function of

hypothesized �1 � �2 is not a probability distribution at all; for

instance, it does not integrate to one, as probability distributions

must. Moreover, the p value is not the probability of the hypoth-

esized parameter difference conditional on the data, which is

provided only by the Bayesian posterior distribution. More sophis-

ticated forms of the approach construct actual probability distri-

butions over the parameter space, such that different areas under

the distribution correspond to confidence levels (e.g., Schweder &

Hjort, 2002; Singh, Xie, & Strawderman, 2007). These confidence

distributions can correspond exactly with the Bayesian posterior

distribution when using a particular form of noninformative prior

(Schweder & Hjort, 2002, pp. 329–330). But unlike Bayesian

posterior distributions, confidence distributions change when the

sampling intention changes, just as p values and confidence inter-

vals change.

Another way to imbue a confidence interval with a distributional

interpretation is by superimposing a sampling distribution upon it.

In particular, take the sampling distribution of the difference of

sample means from the null hypothesis, denoted p(y�1 � y�2��1 �

�2 � 0), re-center it on the observed difference of sample means,

and then superimpose that distribution on the parameter axis, �1 �

�2 (Cumming, 2007; Cumming & Fidler, 2009). Unfortunately,

this approach already assumes that �1 � �2 has a specific, fixed

value to generate the sampling distribution; hence, the result can-

not represent a probability distribution over other candidate values

of �1 � �2. Moreover, this approach is possible only because the

parameter value � and the sample estimator y� happen to be on

commensurate scales, so the sampling distribution of y�1 � y�2 can

be superimposed on the parameter difference �1 � �2 despite their

different meanings. As an example in which the sampling distri-

bution of an estimator is quite different than the underlying pa-

rameter, consider estimating the probability of left handedness in

a population. The parameter is a value on a continuous scale from

zero to one, and the confidence interval on the parameter is a

continuous subinterval. But the sample estimator is the proportion

of left handers out of the sample size N, and the sampling distri-

bution is a binomial distribution on discrete values 0/N, 1/N, 2/N,

. . ., N/N. There is no way to re-center the discrete sampling

distribution of the observed proportion to produce a continuous

distribution on the parameter scale.

In summary, the classic confidence interval has no distributional

information about the parameter values. A value in the middle of

a confidence interval cannot be said to be more or less credible

than a parameter value at the limits of the confidence interval.

Superimposing a sampling distribution, from a fixed parameter

value, onto the parameter scale says nothing about the probability

of parameter values and is not generally possible. Recent elabo-

rations of the confidence-interval concept into confidence distri-

butions are dependent on the sampling intention of the data col-

lector. Only the Bayesian posterior distribution explicitly indicates

the probability of parameter values without being dependent on

sampling intentions.

ROPE method cannot be used to accept null value in NHST.

Because an NHST confidence interval (CI) has some properties

analogous to the Bayesian posterior HDI, it may be tempting to try

to adopt the use of the ROPE in NHST. Thus, we might want to

accept a null hypothesis in NHST if a 95% CI falls completely

inside the ROPE. This approach goes by the name of equivalence

testing in NHST (e.g., Rogers, Howard, & Vessey, 1993; West-

lake, 1976, 1981). Unfortunately, the approach fails because the

meaning of the CI is not the same as the HDI. In a Bayesian

approach, the 95% HDI actually includes the 95% of parameter

values that are most credible. Therefore, when the 95% HDI falls

within the ROPE, we can conclude that 95% of the credible

parameter values are practically equivalent to the null value. But a

95% CI from NHST says nothing directly about the credibility of

parameter values. Crucially, even if a 95% CI falls within the

ROPE, a change of intention will change the CI and the CI may no

longer fall within the ROPE. For example, if the two groups being

compared are intended to be compared to other groups, then the

95% CI is much wider and may no longer fall inside the ROPE.

Summary regarding NHST confidence interval. In sum-

mary, a confidence interval provides very little information. Its end

points can vary dramatically depending on the sampling intention

of the data collector because the end points of a confidence interval

are defined by p values, which depend on sampling intentions.

Moreover, there is no distributional information regarding points

within a confidence interval, and we cannot say that a parameter

value in the middle of a confidence interval is more probable than

a parameter value at the end of a confidence interval. One conse-

quence of this dearth of information is that the confidence interval

cannot be used with a ROPE to decide to accept the null hypoth-

esis. Another consequence is that power estimates are extremely

uncertain, as is shown next.

In NHST, Power Is Extremely Uncertain

In NHST, power is computed by assuming a punctate value for

the effect size, even though there is uncertainty in the effect size.

In retrospective power analysis, the range of uncertainty in the

NHST power estimate is indicated by computing power at the

limits of the 95% confidence interval on the effect size. Unfortu-

nately, this typically results in a huge range on the power estimate,

rendering it virtually useless, as many authors have pointed out

(e.g., Gerard et al., 1998; Miller, 2009; Nakagawa & Foster, 2004;

O’Keefe, 2007; Steidl et al., 1997; Sun et al., 2011; Thomas,

1997). As an example, recall the data in Figure 3. A traditional

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

592 KRUSCHKE



two-group t test yielded t(87) � 1.62, p � .110, with a 95%

confidence interval on the difference of means from �0.361 to

3.477. (Because these data have outliers, the traditional t test is not

applicable to these data, as discussed earlier in the article, but this

issue is tangential to the points made here about the poverty of

information in an NHST power analysis.) At the point estimate of

the effect size, the power is 35.0%. But at the limits of the 95%

confidence interval on the effect size, the power is 5.0% and

94.0%, which spans almost the full possible range of power. Thus,

NHST power analysis tells us almost nothing about the power of

the experiment. Consider instead the large-sample (N 
 1, 000)

data of Figure 5, which showed essentially no difference between

sample means. The NHST power at the point estimate of the effect

size is 5.0% (i.e., the false alarm rate for the null hypothesis). But

at the limits of the confidence interval on the effect size, the NHST

power is 49.5% and 50.6% (for effects of opposite signs). The

reason that there is such a high probability of rejecting the null,

even at the small limits of the confidence interval, is that a large

sample size can detect a small effect. Thus, even with a huge

sample size, NHST estimates of retrospective power can be very

uncertain. These uncertain power estimates by NHST contrast with

the precise estimates provided by the Bayesian approach.

In prospective power analysis, frequentists can try different

hypothetical parameter values, but because the hypothetical values

are not from a probability distribution, they are not integrated into

a single power estimate. The Bayesian approach to power, illus-

trated in Figure 6, is awkward to implement in a frequentist

framework. The approach requires that the hypothesis is expressed

as a probability distribution over parameters (shown in the leftmost

box of Figure 6), which is shunned in frequentist ontology. Per-

haps more important, even if a frequentist admits a hypothesis

expressed as a probability distribution over parameter values, it is

difficult to imagine where the distribution would come from,

especially for complex multidimensional parameter spaces, if it

were not generated as a Bayesian posterior distribution. Finally,

even if the approach were adapted, with NHST conducted on

simulated data instead of Bayesian analysis, there would still be

the inherent fickleness of the resulting p values and confidence

intervals. In other words, the simulated data could be generated by

one sampling intention, but the NHST could assume many differ-

ent sampling intentions (because the data bear no signature of the

sampling intention), and many different powers could be computed

for the same hypothetical effect size.

Conclusion

In the examples presented above, which contrasted results

from Bayesian estimation (BEST) and the NHST t test, the

advantage of BEST was not solely from model flexibility in

Bayesian software. The main advantage was in Bayesian esti-

mation per se, which yields an explicit posterior distribution

over parameters unaffected by sampling intentions. Recall that

BEST revealed far richer information than the NHST t test even

when parametric modeling assumptions were removed from

NHST by using resampling. A crucial argument against NHST

is completely general and does not rely on any particular

illustrative model, namely, that in NHST p values and CIs are

based on sampling distributions, and sampling distributions are

based on sampling intentions, and different sampling intentions

change the interpretation of data even though the intentions

have no effect on the data.

Some people may have an impression that Bayesian estima-

tion merely substitutes an assumption about a prior distribution

in place of an assumption about a sampling intention in NHST,

and therefore both methods are equally dubious. This perspec-

tive is not correct, because the assumptions of Bayesian esti-

mation are epistemologically appropriate, and the assumptions

of NHST are not.

In NHST, the sampling intentions of the data collector (which

determine the p value and CI) are unknowable and, more impor-

tant, irrelevant. The intentions are unknowable in the sense that

true intentions can be subconscious and hidden from one’s self,

covert and hidden from one’s peers, or overt but changing through

time in response to a dynamic environment. The intentions are

especially unknowable to the data themselves, which are collected

in such a way as to be insulated from the experimenter’s intentions.

More important, because the data were not influenced by the

intentions, the intentions are irrelevant to one’s interpretation of

the data. There is no reason to base statistical significance on

whether the experimenter intended to stop collecting data when

N � 47 or when the clock reached 5:00 p.m.

On the other hand, in Bayesian estimation the prior distribu-

tion is both explicitly presented and relevant. The prior cannot

be chosen capriciously or covertly to predetermine a desired

conclusion. Instead, the prior must be justified to a skeptical

audience. When there is lack of prior knowledge, the prior

distribution explicitly expresses the uncertainty, and modest

amounts of data will overwhelm the prior. When there is

disagreement about appropriate priors, different priors can be

used and the resulting posterior distributions can be examined

and checked for differences in conclusions. When there is

strong prior information, it can be a serious blunder not to use

it. For example, consider random drug or disease tests. Suppose

a person selected at random from a population is tested for an

illicit drug, and the test result is positive. What is the proba-

bility that the person actually used the drug? If the prior

probability of drug use in the population is small (and the test

is realistically imperfect), then the posterior probability that the

person used the drug is also surprisingly small. (e.g., Berry,

2006; Kruschke, 2011b, p. 71). The proper interpretation of the

data (i.e., the test result) depended on the Bayesian incorpora-

tion of prior knowledge. Thus, the prior distribution in Bayesian

estimation is both explicitly justified and epistemologically

relevant.

Some people may wonder which approach, Bayesian or NHST,

is more often correct. This question has limited applicability be-

cause in real research we never know the ground truth; all we have

is a sample of data. If we knew the ground truth, against which to

compare the conclusion from the statistical analysis, we would not

bother to collect the data. If the question of correctness is instead

asked of some hypothetical data generator, the assessment is

confined to that particular distribution of simulated data, which

likely has only limited resemblance to real-world data encountered

across research paradigms. Therefore, instead of asking which

method is more often correct in some hypothetical world of sim-

ulated data, the relevant question is asking which method provides

the richest, most informative, and meaningful results for any set of

data. The answer is always Bayesian estimation.
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Beyond the general points about the relative richness of infor-

mation provided by Bayesian estimation, there are also many

practical advantages to Bayesian estimation over NHST. The soft-

ware for Bayesian estimation (i.e., JAGS/BUGS) is very flexible

and can accommodate realistic data situations that cause difficul-

ties for NHST. For example, the Bayesian software can incorpo-

rate non-normal data distributions, censored data, unequal vari-

ances, unbalanced sample sizes, nonlinear models, and multiple

layers of hierarchical structure in a straightforward unified frame-

work. NHST can have great difficulties with those situations

because it can be problematic to derive sampling distributions for

p values (even when assuming a fixed N sampling intention).

Summary

Some people have the impression that conclusions from NHST

and Bayesian methods tend to agree in simple situations such as

comparison of two groups: “Thus, if your primary question of

interest can be simply expressed in a form amenable to a t test, say,

there really is no need to try and apply the full Bayesian machinery

to so simple a problem” (Brooks, 2003, p. 2694). The present

article has shown, to the contrary, that Bayesian estimation always

provides much richer information than the NHST t test and some-

times comes to different decisions.

Bayesian estimation provides rich and complete information

about the joint distribution of credible parameter values, including

the means, standard deviations, effect size, and normality. Bayes-

ian estimation can accept the null value by using a decision

procedure involving the HDI and ROPE. Bayesian estimation

provides precise power analysis for multiple goals of research.

The NHST t test, on the other hand, has many foundational

problems. The p values on which it bases decisions are ill defined,

as are confidence intervals because they are inherently linked to p

values. Confidence intervals (CIs) carry no distributional informa-

tion and therefore render power to be virtually unknowable be-

cause of its uncertainty. And NHST has no way to accept the null

hypothesis, because a CI changes when the sampling intention

changes, and a CI does not have the meaning of an HDI.

Appendix D explains that Bayesian estimation is typically also

more informative than the Bayesian model-comparison approach,

which involves the Bayes factor. The Bayes factor can be ex-

tremely sensitive to the choice of alternative-hypothesis prior

distribution. The Bayes factor hides the uncertainty in the param-

eter estimation, even concluding substantial evidence for the null

hypothesis when there is great uncertainty.

The software for Bayesian parameter estimation is free, easy to

use, and extendable to complex designs and models (as explained

in the section that described the model and in Appendix B). The

programs can be downloaded from http://www.indiana.edu/

�kruschke/BEST/, where instructions for software installation are

also provided. An extensive introduction to the methods used in

those programs is available in a textbook (Kruschke, 2011b).

All of these facts point to the conclusion that Bayesian param-

eter estimation supersedes the NHST t test.
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Appendix A

The Prior Distribution on �

Figure A1 shows the prior distribution on the normality parameter, �. Mathematically, it is p(���) � (1/�)

exp[�(� � 1)/�] for � � 1 and � � 29. This prior was selected because it balances nearly normal distributions

(� 
 30) with heavy tailed distributions (� 	 30). This prior distribution was chosen instead of several others

that were considered, including various uniform distributions, various shifted gamma distributions, and

various shifted and folded t distributions. It is easy to change this prior if the user desires, as described in

Appendix B.

exponential(λ=29) shifted+1

ν

0 50 100 150 200

mean = 30

95% HDI
1 87.7

log10(ν)
0.0 0.5 1.0 1.5 2.0 2.5

mode = 1.47

95% HDI
0.298 2.08

Figure A1. The prior distribution on the normality parameter �. The upper panel shows the distribution on �,

as graphed iconically in the middle of Figure 2. The lower panel shows the same distribution on log10(�) for easy

comparison with the posterior distributions shown in Figure 3. HDI � highest density interval.

(Appendices continue)
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Appendix B

Modifying the Program for Other Priors or Likelihoods

This appendix explains how to modify the Bayesian estimation

program BEST.R to use other prior distributions or likelihood

functions. This Appendix assumes that the reader is familiar with

the basic operation of the programs available from http://

www.indiana.edu/�kruschke/BEST/. Because of space con-

straints, I must assume that the reader is familiar with the basic

structure of JAGS/BUGS programs, as explained, for example, by

Kruschke (2011b, Chapter 7).

The model of Figure 2 is expressed in JAGS as

model {
for ( i in 1:Ntotal ) {
y�i � dt( mu[x�i], tau[x�i], nu )

}
for ( j in 1:2 ) {

mu[j] � dnorm( muM, muP )
tau[j] 	- 1/pow( sigma[j], 2 )
sigma[j] � dunif( sigmaLow, sigmaHigh )

}
nu 	- nuMinusOne � 1
nuMinusOne � dexp(1/29)

}

where x�i is the group membership (1 or 2) of the ith datum. The

values for the constants in some of the priors are provided by the

data statement later in the program:

muM � mean(y),
muP � 0.000001 * 1/sd(y)ˆ 2,
sigmaLow � sd(y)/1000,
sigmaHigh � sd(y) * 1000

where y is the vector of pooled data. The second line above says

that the precision on the prior for �j, namely muP, is 0.000001

times the precision in the pooled data. The third line above says

that the lowest value considered for �j is the standard deviation

of the pooled data divided by 1,000. The fourth line above says

that the highest value considered for �j is the standard deviation of

the pooled data times 1,000. The prior on � is set in the model

specification above, in the line nuMinusOne � dexp(1/29). The

value 1/29 makes the mean of the exponential to be 29.

If the user has strong previous information about the plausible

values of the means and standard deviations, that information can

be used to set appropriate constants in the prior. It is important to

understand that the prior should be set to be agreeable to a

skeptical audience.

For example, it could be that Group 2 is a control group drawn

from the general population and Group 1 is a novel treatment. In

this case one might have strong prior information about the control

group but not about the novel treatment. In the case of IQ scores,

it is known that the mean of the general population is 100 and the

standard deviation is 15. But one’s particular control group may

deviate somewhat from the general population. Therefore one

might want to change the prior specification in the model to

# Group 1 mean is uncertain:
mu[1] � dnorm(muM, muP)
tau[1] 	- 1/pow(sigma[1], 2)
# Group 1 SD is uncertain:
sigma[1] � dunif(sigmaLow, sigmaHigh)
# Group 2 mean is nearly 100:
mu[2] � dnorm(100, 0.25)
tau[2] 	- 1/pow(sigma[2], 2)
# Group 2 SD is between 10 and 20:
sigma[2] � dunif(10, 20)

In actual research analysis, the user would have to strongly justify

the choice of informed prior, to convince a skeptical audience that

the analysis is cogent and useful.

Changing the likelihood function for the data is also straight-

forward in JAGS. For example, suppose that one wanted to de-

scribe the data with a log-normal distribution instead of with a t

distribution. Then the model specification could be as follows:

model {
for ( i in 1:Ntotal ) {

# log-normal likelihood:
y�i � dlnorm( log(mu[x�i]), tau[x�i] )

}
for ( j in 1:2 ) {

mu[j] � dnorm( muM, muP )
tau[j] 	- 1/pow( sigma[j], 2 )
sigma[j] � dunif( sigmaLow, sigmaHigh )

}
}

Because the log-normal function has no normality parameter �,

that parameter is removed from the prior specification and from

the rest of the program.

JAGS has many different distributions that can be used to define

likelihood functions. For example, for modeling skewed distribu-

tions such as response times, a Weibull distribution could be used

(Rouder, Lu, Speckman, Sun, & Jiang, 2005). If the analyst desires

a likelihood function other than one already built into JAGS, the

Poisson zeros trick can be used to specify virtually any likelihood

function (e.g., Ntzoufras, 2009, p. 276). It is also straightforward

to model censored data in JAGS; search my blog (http://

doingbayesiandataanalysisogspot.com/) with the term “censor” for

a detailed example.

(Appendices continue)
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Appendix C

Doing Power Analysis

Examples for doing power analyses are provided in the program

BESTexamplePower.R. Excerpts from that program are pre-

sented here.

For doing prospective power analysis, the user first creates an

idealized data set that expresses the hypothesis. The function

makeData creates the data in the following code:

prospectData � makeData(

mu1 � 108, # mean of group 1

sd1 � 17, # standard deviation of group 1

mu2 � 100, # mean of group 2

sd2 � 15, # standard deviation of group 2

nPerGrp � 1000, # sample size in each group

pcntOut � 10, # percent from outlier distrib.

sdOutMult � 2.0, # SD multiplier of outlier dist.

rnd.seed � NULL # seed for random number )

# Rename for convenience below:

y1pro � prospectData$y1

y2pro � prospectData$y2

(The resulting data are displayed in Figure 7.) Then the idealized

data are submitted to a Bayesian data analysis. Only a short

MCMC chain is created because it will be used for simulating

experiments, not for creating a high-resolution representation of a

posterior distribution from real data.

mcmcChainPro � BESTmcmc(y1pro, y2pro,

numSavedSteps � 2000)

BESTplot(y1pro, y2pro, mcmcChainPro,

pairsPlot � TRUE)

(The resulting posterior is displayed in Figures 8 and 9.) Then the

power is estimated with the function BESTpower, as follows:

N1plan � N2plan � 50 # specify planned sample size
powerPro � BESTpower(

# MCMC chain for the hypothetical parameters:
mcmcChainPro,
# sample sizes for the proposed experiment:
N1 � N1plan, N2 � N2plan,
# number of simulated experiments to run:
nRep � 1000,
# number of MCMC steps in each simulated run:
mcmcLength � 10000,
# number of simulated posteriors to display:
showFirstNrep � 5,
# ROPE on the difference of means:
ROPEm � c(�1.5, 1.5),
# ROPE on the difference of standard dev’s:
ROPEsd � c(�0.0,0.0),
# ROPE on the effect size:
ROPEeff � c(�0.0,0.0),
# maximum 95% HDI width on the diff. of means:
maxHDIWm � 15.0,
# maximum 95% HDI width on the diff. of SD’s:
maxHDIWsd � 10.0,
# maximum 95% HDI width on the effect size:
maxHDIWeff � 1.0,
# file name for saving results:
saveName � “BESTexampleProPower.Rdata”

)

Retrospective power analysis uses the same call to the function

BESTpower, but it uses an MCMC chain from a previous real

data analysis instead of from a hypothetical data analysis and uses

the actual sample sizes in the experiment rather than planned

sample sizes.

(Appendices continue)
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Appendix D

The Bayes-Factor Approach to Null Hypothesis Testing

The main body of this article explains Bayesian estimation of

parameters in a descriptive model for data from two groups. From

the complete posterior distribution on those parameters, one could

make discrete decisions about the credibility of particular values of

interest, such as null values. The Bayesian estimation approach

provides rich information about the magnitude of the difference

between means, difference between standard deviations, effect

size, and normality.

If the researcher is not interested in estimating effect size or

other aspects of the groups but instead is focused on rejecting or

accepting a specific value relative to a distribution of alternative

values, then there is another Bayesian approach to consider. This

approach is called Bayesian model comparison, and it involves a

statistic called the Bayes factor. I have previously discussed this

topic with different examples (Kruschke, 2011a, 2011b, Chapter

12). Here I focus on the specific case of testing the difference of

means between two groups.

Null Hypothesis Model and Alternative Hypothesis

Model

In the model-comparison approach to null value assessment, one

model expresses the null hypothesis, wherein the only available

value for the difference of means is zero. This model effectively

puts a spike-shaped prior distribution on the difference of means,

such that the prior probability of non-zero differences of means is

zero, and the prior probability density of zero difference of means

is infinity. The second model expresses a particular alternative

hypothesis, wherein there is a complete spectrum of available

values for the difference of means, with a specific prior probability

distribution on those values. The model comparison therefore

contrasts a model that requires the difference to be zero against a

model that allows many non-zero differences with particular prior

credibility.

It is important to emphasize that this method compares the null

hypothesis, expressed as a spike-shaped prior, against a particular

shape of an alternative broad prior, for which there is no unique

definition. The results of the model comparison do not provide an

absolute preference for or against the null hypothesis; instead, the

results indicate only the relative preference for or against the null

with respect to the particular shape of alternative prior. There are

typically a variety of alternative-hypothesis priors, and the relative

preference for the null hypothesis can change dramatically depend-

ing on the choice of alternative-hypothesis prior (e.g., Dienes,

2008; Kruschke, 2011a; Liu & Aitkin, 2008; Vanpaemel, 2010).

This sensitivity to the choice of alternative-hypothesis prior is one

key reason to advise caution when using the Bayes-factor method.

The Bayes-factor method produces merely the relative credibil-

ities of the two priors as descriptions of the data, without (neces-

sarily) producing an explicit posterior distribution on the param-

eter values. Although the Bayes factor can be very sensitive to the

choice of alternative hypothesis prior, the posterior distribution on

the parameter values (as provided by BEST, for example) is

typically very robust against reasonable changes in the prior

when there are realistic numbers of data points. Thus, Bayesian

estimation, with its explicit parameter distribution, not only is

more informative than Bayesian model comparison but is also

more robust.

Bayesian Model Comparison and the Bayes Factor

This section describes the mathematics of Bayesian model com-

parison, which are necessary for summarizing two approaches in

the recent literature. Applying Bayes’ rule (cf. Equation 1 in the

main body of the article) to each model, we have the posterior

probability of models M1 and M2 given by

p�M1�D� � p�D�M1� p�M1���
m

p�D�Mm� p�Mm�

p�M2�D� � p�D�M2� p�M2���
m

p�D�Mm� p�Mm�

(D1)

where Mm denotes model m. Hence,

p�M1�D�

p�M2�D�
�

p�D�M1�

p�D�M2�
Ç

BF

p�M1�

p�M2�
(D2)

where the ratio marked BF is the Bayes factor. Equation D2 shows

that the BF converts the prior odds of the models, p(M1)/p(M2), to

the posterior odds of the models, p(M1�D)/p(M2�D).

As the BF increases greater than 1.0, the evidence increases in

favor of model M1 over model M2. The convention for interpreting

the magnitude of the BF is that there is “substantial” evidence for

model M1 when the BF exceeds 3.0 and, equivalently, “substan-

tial” evidence for model M2 when the BF is less than 1/3 (Jeffreys,

1961; Kass & Raftery, 1995; Wetzels et al., 2011).

The terms of the Bayes factor are the marginal likelihoods

within each model, which are the probability of the data given the

parameter values in the model weighted by the prior probability of

the parameter values:

p�D�Mm� �����d�1 d�2 d�1 d�2

� p�D��1, �2, �1, �2, Mm�
Ç

likelihood

� p��1, �2, �1, �2�Mm�
Ç

prior

(D3)

(Appendices continue)
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Equation 3 includes only the means and standard deviations of the

groups and not a normality parameter �, because the models in the

literature assume normally distributed data. In the present appli-

cation we have two models, namely the null hypothesis Hnull and

the alternative hypothesis Halt, which have identical likelihood

functions (i.e., normal density functions) and differ only in their

prior distributions. In the null model, the prior p(�1, �2, �1,

�2�Hnull) puts zero probability on any parameter combination with

�1 � �2. In the alternative model, the prior p(�1, �2, �1, �2�Halt)

spreads credibility over the full spectrum of combinations of �1

and �2.

The recent literature in psychological sciences includes at least

two versions of Bayesian model comparison applied to two groups.

One approach solved equations for the BF analytically for a

particular choice of prior distribution. A subsequent approach used

an MCMC solution for a more general model. The two approaches

are now summarized.

Analytical Approach to Bayes Factor

An analytical approach was described by Rouder, Speckman,

Sun, Morey, and Iverson (2009). Their descriptive model uses

normal distributions of equal variance in the two groups. Hence,

there are only three parameters to describe the groups, instead of

five parameters as in BEST. The common standard deviation for

the two groups is denoted �, the overall mean across groups is

denoted �, and the difference between groups is denoted �, with

�1 � � � �/2 and �2 � � � �/2. The model is reparameterized

in terms of the effect size: � � �/�. The model for the null

hypothesis assumes � � 0. If this prior distribution on � were

graphed, it would be zero for all values of � except for an infinitely

tall spike at � � 0. The model for the alternative hypothesis

assumes that the prior on the effect size � is a Cauchy(0,1)

distribution, which is equivalent to a t distribution with mean of

zero, standard deviation of one, and � � 1. In both the null and the

alternative hypotheses, the prior on the precision 1/�2 is assumed

to be a gamma distribution with shape and rate parameters set to

0.5 (equivalent to a chi-square distribution with 1 degree of free-

dom), and the prior on � is assumed to be an improper uniform

distribution of infinite width. These assumptions for the prior

distributions follow precedents of Jeffreys (1961) and Zellner and

Siow (1980), and the approach is therefore called the JZS prior by

Rouder et al. (2009).

Dienes (2008, 2011) provided another analytical solution, with

a corresponding online calculator. A strength of the approach is

that it allows a variety of forms for the alternative hypothesis,

including normal distributions with non-zero means. A weakness

is that it assumes a single value for the standard deviation of the

groups, rather than a prior distribution with uncertainty. For suc-

cinctness, its specifics are not further discussed in this article.

MCMC Approach to Bayes Factor

Wetzels, Raaijmakers, Jakab, and Wagenmakers (2009) used a

model with separate standard deviations for the two groups and

evaluated the BF using MCMC methods instead of analytical

mathematics. The model assumes that the data in both groups are

normally distributed. The grand mean � is given a Cauchy(0,1) prior

instead of the improper uniform distribution used by Rouder et al.

(2009). The standard deviations, �1 and �2, each have folded

Cauchy�(0,1) priors instead of the gamma(0.5,0.5) distribution used

by Rouder et al. In the alternative hypothesis, the effect size � has a

Cauchy(0,1) prior, the same as used by Rouder et al. The group means

are �1 � � � �/2 and �2 � � � �/2, where � � ��pooled and

�pooled � ���1
2�N1 � 1� � �2

2�N2 � 1�/�N1 � N2 � 2� (Hedges, 1981).

Instead of deriving the BF analytically, Wetzels et al. (2009)

used MCMC methods to obtain a posterior distribution on the

parameters in the alternative model and then adapted the Savage–

Dickey (SD) method to approximate the Bayes factor (Dickey &

Lientz, 1970). The SD method assumes that the prior on the

variance in the alternative model, at the null value, equals the prior

on the variance in the null model: p(�2�Halt, � � 0) � p(�2�Hnull).

From this it follows that the likelihood of the data in the null model

equals the likelihood of the data in the alternative model at the null

value: p(D�Hnull) � p(D�Halt, � � 0). Therefore, the Bayes factor

can be determined by considering the posterior and prior of the

alternative hypothesis alone, because the Bayes factor is just the

ratio of the probability density at � � 0 in the posterior relative to

the probability density at � � 0 in the prior: BF � p(� � 0�Halt,

D)/p(� � 0�Halt). The posterior density p(� � 0�Halt, D) is approx-

imated by fitting a smooth function to the MCMC sample, and the

prior density p(� � 0�Halt) is computed from the mathematical

specification of the prior.

The SD method can be intuitively related to the ROPE in

parameter estimation. Suppose we have a ROPE on the difference

of means, perhaps from �0.1 to 0.1 as in Figure 5. The Bayes

factor can be thought of as the ratio of (a) the proportion of the

posterior within the ROPE relative to (b) the proportion of the

prior within the ROPE. This ratio is essentially what the SD

method computes when the ROPE is infinitesimally narrow. As is

shown by example later, the proportion of the parameter distribu-

tion inside the ROPE may increase by a substantial factor but still

leave the posterior proportion inside the ROPE very small.

Wetzels et al. (2009) showed that their approach closely mim-

icked the analytical results of Rouder et al. (2009) when the model

was restricted to have equal variances in the two groups. The

approach of Wetzels et al. is more general, of course, because the

model allows different standard deviations in the two groups.

Wetzels et al. also explored applications in which there is a

directional hypothesis regarding the group means, expressed as a

prior on the effect size that puts zero prior probability on negative

effect sizes.

In principle, the implementation by Wetzels et al. (2009) could

be modified to use t distributions to describe the groups instead of

normal distributions. This would make the model similar to the one

used in BEST except for the choice of prior distribution and

reparameterization in terms of effect size. Convergence of BEST

and the approach of Wetzels et al. could also be achieved by

(Appendices continue)
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implementing the Savage–Dickey BF in BEST. The model-

comparison and parameter-estimation approaches can also be com-

bined as different levels in a hierarchical model (Kruschke, 2011a,

2011b, Chapter 12). Although the two approaches can be merged,

there is a crucial difference in emphasis: The model-comparison

approach emphasizes the Bayes factor, whereas the parameter-

estimation approach emphasizes the explicit posterior distribution

on the parameter values.

Examples of Applying the Bayes Factor Method

Consider the data of Figure 3, which involved fictitious IQ

scores of a “smart drug” group and a placebo group. Recall that the

parameter-estimation approach (using t distributions to describe

the data) revealed a credible non-zero difference between means,

a credible non-zero difference between standard deviations, and

explicit distributions on the effect size and all parameters, as well

as a depiction of model distributions superimposed on the data

(i.e., a posterior predictive check).

The model-comparison approaches summarized above (Rouder

et al., 2009; Wetzels et al., 2009) should not be applied to these

data because they are not normally distributed. Of course, we can

only visually guess the non-normality without a model of it, so we

might apply the model-comparison methods anyway and see what

conclusions they produce. The analytical BF method of Rouder et

al. (2009) yields a BF of 1.82 in favor of the null hypothesis

regarding the difference of means. The SD/MCMC method of

Wetzels et al. (2009) yields a BF of 2.20 in favor of the null

hypothesis. These BFs are not substantial evidence in favor of the

null, but notice they lean the opposite way of the conclusion from

the parameter estimation in Figure 3. The reason for the opposite-

leaning conclusion is that the outliers in the data can be accom-

modated in the models only by large values of the standard

deviation and, hence, small values of effect size. But notice that the

BF by itself reveals no information about the magnitude of the

difference between means, nor about the standard deviation(s), nor

whether the data respect the assumptions of the model.

A problem with the Bayes-factor approach to null hypothesis

assessment is that the null hypothesis can be strongly preferred

even with very few data and very large uncertainty in the estimate

of the difference of means. For example, consider two groups with

N1 � N2 � 9, with data randomly sampled from normal distribu-

tions and scaled so that the sample means are 0 and the standard

deviations are 1. The results of Bayesian parameter estimation in

Figure D1 show that the most credible difference of means is

essentially 0 and the most credible difference of standard devia-

tions is essentially 0, but the explicit posterior distribution also

reveals huge uncertainty in the estimates of the differences because

the sample size is small. The 95% HDI on the difference of means

goes from �1.27 to 1.23 (with only 14% of the posterior falling in

the ROPE extending from �0.1 to 0.1), the 95% HDI on the

difference of standard deviations extends from �1.15 to 1.17 (with

only 18% of the posterior falling in the ROPE extending from

�0.1 to 0.1), and the 95% HDI on the effect size extends from

�0.943 to 0.952. Thus, Bayesian estimation shows that the most

credible difference is essentially zero, but there is huge uncertainty

in the estimate (and only a small proportion of the posterior

distribution within a ROPE). The analytical BF method of Rouder

et al. (2009) yields a BF of 3.11 in favor of the null hypothesis

regarding the difference of means. The SD/MCMC method of

Wetzels et al. (2009) yields an even larger BF of 4.11 in favor of

the null hypothesis that the effect size is zero. Thus, the model-

comparison method concludes that there is substantial evidence

(BF 
 3) in favor of the null hypothesis. But this conclusion seems

unwarranted when there is so much uncertainty in the parameter

values as revealed by parameter estimation. The Bayes factor hides

crucial information about parameter uncertainty.

Summary: Model Comparison Versus Parameter

Estimation

In summary, the BF from model comparison by itself provides

no information about the magnitudes of the parameters, such as the

effect size. Only explicit posterior distributions from parameter

estimation yield that information. The BF by itself can be mis-

leading, for example in cases when the null hypothesis is favored

despite huge uncertainty in the magnitude of the effect size.

Both the analytical and MCMC approaches to model compari-

son provide a BF only for the difference of means and no BF for

the difference of standard deviations. In principle, the analytical or

MCMC approach could be extended to produce a BF for the

difference of standard deviations, but this awaits future develop-

ment. By contrast, the parameter-estimation approach as imple-

mented in BEST includes the posterior difference of standard

deviations as a natural aspect of its output.

Neither the analytical nor the MCMC approach to model com-

parison provides any power analysis. In principle, the MCMC

chain from the approach of Wetzels et al. (2009) could be used to

compute power in the manner described in Figure 6. But power

computations are already implemented in the BEST software.

The two model-comparison approaches summarized here used

mathematically motivated “automatic” prior distributions that

were meant to be relatively neutral and generically applicable.

Wetzels et al. (2011) showed that the decisions from the automatic

BF correlate with decisions from the NHST t test. Nevertheless,

the BF can be highly sensitive to the choice of alternative-

hypothesis prior distribution (e.g., Dienes, 2008, 2011; Kruschke,

2011a; Liu & Aitkin, 2008; Vanpaemel, 2010), even to such an

extent that the BF can change from substantially favoring the null

hypothesis to substantially favoring the alternative hypothesis or

vice versa. For the model-comparison approach to be meaningful,

therefore, the prior in the alternative hypothesis must be a mean-

ingful representation of a viable alternative hypothesis, and this is

not automatically true.

(Appendices continue)
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When the conclusion from model comparison, using the Bayes

factor, differs from the conclusion from parameter estimation,

using the relation of the HDI and ROPE, which should be used?

The two approaches ask different questions, and there may be

times when the model comparison is the specific answer being

sought. But in general, parameter estimation yields richer infor-

mation about the magnitudes of the meaningful parameters and

their uncertainties, along with a natural method for computing

power.
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Figure D1. For small data sets, parameter estimation reveals huge uncertainty in the estimated difference of

means, difference of standard deviations, and effect size. Model comparison, on the other hand, concludes that

there is substantial evidence in favor of the null hypothesis despite this uncertainty, with BF � 3.11 when using

the method of Rouder et al. (2009) and BF � 4.11 when using the method of Wetzels et al. (2009). BF � Bayes

factor; HDI � highest density interval; w. � with; Post. Pred. � posterior predictive; Std. Dev. � standard

deviation; ROPE � region of practical equivalence.
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