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Abstract 
 
   This paper seeks to focus on the study and Bayesian and non-Bayesian estimators for the shape parameter, reliability and 
failure rate functions of the Kumaraswamy distribution in the cases of progressively type II censored samples. Maximum 
likelihood estimation and Bayes estimation,  reliability and failure rate functions are obtained using symmetric and asymmetric 
loss functions. Comparisons are made between these estimators using Monte Carlo simulation study. With prior information on 
the parameter of  the Kumaraswamy distribution, Bayes approach under squared error loss function in the reliability function has 
been suggested based on the pervious observations, this approach can be used for both progressively type II censorings. The 
study is useful for researchers and practitioners in reliability theory and quality also for scientists in physics and chemistry 
special hydrological literatare, where Kumaraswamy distribution is widely used. 
 
Keywords: Kumaraswamy distribution; Bayesian estimation; progressively Type II right censoring data; Reliability; Failure rate; 
simulation study. 
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1. Introduction 
 
   The Kumaraswamy distributions was constructed by Kumaraswamy (1980). Jones (2009) said about it' properties. The 
probability density function of a Kumaraswamy distributed random variable is given by 
 

,0,,10)1()( 11 ><<−= −− θλλθ θλλ ttttf T                                                     (1) 
 

where θ  and λ  are shape parameters, respectively. Here we assume that λ  parameter is known. The distribution function 
)..( fdc  is; 

 
01011 ><<−−= θλθ θλ ,,t)t();t(FT  (2) 

                                                       
   The reliability and failure rate functions of Kumaraswamy distribution are given respectively, by 
 

0,,10;)1()( ><<−= θλθλ tttR ,                                                                                (3) 
 
and  
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Figure 1 shows the shape of ),;( λθtf  for different values ofθ   and λ . 

 
Figure 1:  p.d.f. of Kumaraswamy for different values ofθ  and λ . 

 
   In Bayesian estimation, three types of loss functions are considered. The first is the squared error loss function (quadratic loss) 
which is classified as a symmetric function .The second is the Precautionary loss function which is asymmetric. The Bayes 
estimator under this asymmetric loss function is denoted by Pθ̂  and may be obtained by solving the following equation, (see 
Norstrom, 1996), 
 

                      
)(

)(ˆ
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tE
tE

P −
=

θ
θ

θ                                                                                                                    (5)                   

   In tertiary case, the LINEX (linear-exponential) loss function which is asymmetric. It was introduced by Varian (1975).  
                                  
Bayes estimator of θ  denoted by Lθ̂  under the LINEX loss is given by 
 

                                              }])(exp[{ln1ˆ θθ θ cE
cL −−=  

(6) 

                            
provided that the expectation ])(exp[ θθ cE − exists and is finite, see Calabria and Pulcini (1996). 
   In many life test studies, it is common that the lifetimes of some test units may not be able to be recorded exactly. For example, 
in type II censoring, the test ceases after a predetermined number of failures in order to save time or cost. Furthermore, some test 
units may have to be removed at different stages in the study for various reasons. This would lead to progressive censoring. 
Progressively type II censored sampling is an important method of obtaining data in lifetime studies. Live units removed early can 
be readily used in other tests, thereby saving costs to the experimenter, and a compromise can be achieved between time 
consumption and the observation of some extreme values. Some early works can be found in Cohen (1963), Mann (1971), Thomas 
and Wilson (1972), Viveros and Balakrishnan (1994), Balakrishnan and Sandhu (1996), Balakrishnan and Aggarwala (2000), and 
Fernández (2004). 
   Let us consider the following progressively type II censoring scheme which was generalized by Balakrishnan and Sandhu 
(1996). Suppose n  randomly selected units were placed on a life test; the first r  failure times, rYY ,,1 K are not observed; at time 

11 , ++ rr RY units are removed randomly from the test; at time 22 , ++ rr RY units are removed randomly from the test and so on. 
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Finally, at the time of m th failure, mY , the experiment is terminated and the remaining mR units are removed from the test. 

Therefore, mr YY ≤≤+ L1 are the lifetimes of the completely observed units to fail and mr RR ,,1 K+ are the numbers of units 

withdrawn from the test at these failure times. At )1( +i th failure, there are in units on test where 

.1,,1     ,
1

−+=−−= ∑
+=

mriRinn
i

rj
ji K  

   The sRi ' , m  and r are prespecified integers which must satisfy the conditions: 10 ,0 1 −≤≤≤<≤ −ii nRnmr for 

1,,1 −+= mri K with rnnr −= and 11 −= −mm nR . The resulting )( rm − ordered values mrr YYY ,,, 21 K++ are referred 
to as general progressively type II censored order statistics. 
   Note that if 0=r , then the general progressive type II censoring scheme reduced to the progressively type II censoring; if 

0=r and 0=iR , for 1,,1 −+= mri K and mnRm −= this scheme reduces to conventional type II right censoring; if 

0=iR , 1,,1 −+= mri K and mnRm −=  the general progressive type II censoring scheme reduces to the case of the type 
II double censoring. 
   Progressively type II right censoring is a useful scheme in which a specific fraction of individuals at risk may be removed from 
the experiment at each of several ordered failure times (see Fernández (2004)). The experimenter can remove units from a life test 
at various stages during the experiments, possibly resulting in a saving of costs and time (see Sen (1986)). A schematic illustration 
is depicted in Fig. 2, where nmnn xxx ,,2,1 ,,, K denote the failure times and mRRR ,,, 21 K  denote the corresponding numbers of 
units removed (withdrawn) from the test. Let m be the number of failures observed before termination and 

nmnn xxx ,,2,1 ≤≤≤ L  be the observed ordered lifetimes. Let iR  denote the number of units removed at the time of the ith 

failure, ∑ −=−−≤≤ 1,,3,2,0 miiRnR ji K , with 10 1 −≤≤ nR and ∑ −

=
−−=

1

1

m

j jm mRnR , where sRi '  and 

m  are pre-specified integers (see (Viveros and Balakrishnan, 1994; Balakrishnan and Aggarwala, 2000; Alimousa and Jaheen, 
2002; Marohn, 2002; Soliman, 2005; Li et al., 2007). Note that if 0121 ==== −mRRR K , so that mnRm −= , this scheme 
reduces to the conventional type II right censoring scheme. 

 Also note that if 021 ==== mRRR K , so that nm = , the progressively type II right censoring scheme reduces to the 
case of no censoring scheme (complete sample case). 

 
 

 
  

Figure 2: Schematic representation of a progressively type II right censored sample 
 

   In this paper, our main object is to study the maximum likelihood estimation and Bayes estimation procedures for the shape 
parameter, reliability and failure rate functions of the Kumaraswamy distribution based on a progressively type II censored sample. 
The results obtained in this paper can be specialized to the estimation of the Kumaraswamy distribution based on a complete 
sample. This paper is organized into five parts. In section 2 the MLE of the parameter θ  based on a progressively type II censored 
sample will be presented. In section3, Bayesian estimators under loss functions different will be introduced. In section 4, 
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Reliability estimators are considered. In section 5, Hazard estimators are obtained. Finally, numerical illustration and comparisons 
are presented in section 6. 
 
2. Maximum Likelihood Estimation 
      
2.1 Estimation under general progressively type II censoring 
   Suppose that n randomly selected units from a Kumaraswamy population with θ  unknown are put on test under a general 
progressive type II censoring scheme. Let ),,,( 21 mrr TTTT K++= denote a general progressively type II censored sample from 

the population with ),,,( 21 mrr RRR K++  being the progressive censoring scheme. 

   The likelihood function for the parameter θ  is then 
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where t is the observed value of T . 
   In accordance with (1) and (7), the likelihood becomes proportional to 

 
1)1()|( Wrrm eVt θθθθ −− −∝l                                                                                                             (8)  

where 

             λλ
1

1
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The logarithm of the LF  is given by 

 
                                                       .)1(lnln)();(ln 1

θθθθ VrWrmtL −+−−== l      

The MLE ofθ , denoted by MG
^
θ , is given by 
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)1(
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−
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−
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(9) 

 

The MLE MG
^
θ  of θ  is the solution to the Eq. (9) which cannot be explicitly solved. A numerical method can be used to solve for 

the MG
^
θ . 
Using that 1)1)(exp(0 <−< zz  for 0>z  and 1)1)(exp(210 <−<−< zzz , 20 << z , it turns out that 
 

θθ θ

1
)1(

ln)
2

ln1,0(max ln <
−

−
<+ − Ve

VrV
. 

From the above inequality, the following lemma provides the bounds on the value of MG
^
θ . 

 
 Lemma 1. The MLE of Mθθ ˆ, satisfies UML θθθ ˆˆˆ ≤≤ , where 
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According to Lemma 1, since )ˆ,ˆ(ˆ
ULM θθθ ∈ , it is convenient to employ the bisection method to determine the MLE. For a 

given, t  the MLE’s of )(tR may be obtained by replacing θ  by MG
^
θ  in Equation (3), then MLE’s of )(ln)( tRtH −= can be 

obtained. 
 
2.2 Estimation under progressively type II  right censoring 
 

Let X  denote the lifetime of such a product and X  has the Kumaraswamy distribution with the p.d.f. is as (1). With 
progressively type II right censoring, n units are placed on test. Consider that nmnn XXX ,,2,1 ≤≤≤ L  is the corresponding 

progressively type II right censored sample, with censoring scheme ),,,( 21 mRRRR K= . Since the joint p.d.f. of  

nmnn XXX ,,2,1 ,,, K   is given by 
 

∏
=

−
m

i

R
niXniX

ixFxfA
1

,, ,)],,(1[),,( θλθλ  
(10) 

 
where ),,(),1()1( 1211 θλxfmRRRnRnnA Xm +−−−−−−= −LK is the p.d.f of X  and ),,( θλxFX is the 

cumulative distribution function of X . 
   So, the likelihood function is given by  

 
2)|( Wmet θθθ −∝l  (11) 

 
where 

                 )1(ln)1()(
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−+−==
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The logarithm of the LF  is given by 
                                                                                       2ln);(ln WmtL θθθ −== l  

The MLE ofθ , denoted by MR
^
θ , is given by 

2

^

W
m

MR =θ  
(12) 

 
This equation is in implicit form, so it may be solved by using numerical iteration by using MATLAB. For a given, t  the MLE’s 

of )( tR may be obtained by replacing θ  by MR
^
θ  in Equation (3), then MLE’s of )(ln)( tRtH −= can be obtained   

 
3.  Bayesian Estimation 
 
   The natural family of conjugate prior for θ  is a gamma distribution with p.d.f.  

.0,0,0     ,
)(

)( 1 >>>
Γ

= −− δθθ
ν

δθ θδν
ν

veg  
(13) 

 
From which the prior mean and variance of θ  are given, respectively, by δv  and 2δv .  
 
3.1 Estimation under general progressively type II censoring 

 
   Applying Bayes theorem, we obtain from Equations (8) and (13), the posterior density of θ  as  
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Estimation of θ : 
  
The Bayes estimate SGθ̂  of θ  relative to squared error loss function is given by 
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Under Precautionary loss function, the Bayes estimate PGθ̂  of  θ  using Equation (5) can be obtained as 
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Under LINEX loss function, the Bayes estimate LGθ̂  of θ  using Equation (6) can be obtained as 

)ln(1ˆ
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1ξθ −−= K
cLG  

(17) 

where 

                    ∑
=

−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
r

j

rmv

W
cjpj

0

)(

1
3 .1)(

δ
ωξ  

 
3.2 Estimation under progressively type II  right censoring 
Applying Bayes theorem, we obtain from Equations (11) and (13), the posterior density of θ  as 
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Estimation of θ : 
    
The Bayes estimate SRθ̂  of θ  relative to squared error loss function is given by 

2

ˆ
W
mv

SR +
+

=
δ

θ  
(19) 

 
Under Precautionary loss function, the Bayes estimate PRθ̂  of  θ  using Equation (5) can be obtained as 
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Under LINEX loss function, the Bayes estimate LRθ̂  of θ  using Equation (6) can be obtained as 
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4. Estimation of )(tR : 
      
4.1 Estimation under general progressively type II censoring 
 
   Consider the reliability )(tRR =  is a parameter itself. Replacing θ  in terms of R  by that of Equation (14), we obtain 
posterior density function of R  as 
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where 
Assuming the quadratic loss is appropriate, the Bayes estimate of the reliability function R  is 
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Under Precautionary loss function, the Bayes estimate of R  using Equation (5) is 
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Under LINEX loss function, the Bayes estimate LGR̂  of R  using Equation (6) can be obtained as 

)ln(1ˆ
4

1ξ−−= K
c

RLG  
(25) 

 
 where 
 

                ∑∑
∞

= =

−+−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

0 0

)(

4 1
!

)1(
s

r

j

rms
sj

Q
jZPs

s
c

j
r ν

ξ  

 
4.2 Estimation under progressively type II  right censoring 

 
   Consider the reliability )(tRR =  is a parameter itself. Replacing θ  in terms of R  by that of Equation (18), we obtain 
posterior density function of R  as 
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Assuming the quadratic loss is appropriate, the Bayes estimate of the reliability function R  is 
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Under Precautionary loss function, the Bayes estimate of R  using Equation (5) is 
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Under LINEX loss function, the Bayes estimate GERR̂  of R  using Equation (6) can be obtained as 
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5. Estimation of )(tH : 
      
5.1 Estimation under general progressively type II censoring 

 
   To derive the Bayes estimate of the cumulative failure rate function )(ln)( tRtH −= , we first obtain the posterior density 
function of )(tHH = , which can be given by 
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The Bayes estimate of H  relative to quadratic loss is 
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When the Precautionary loss function is appropriate, the Bayes estimate of H  is    
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When the LINEX loss function is appropriate, the Bayes estimate of H  is 
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5.2 Estimation under progressively type II  right censoring 
 
   To derive the Bayes estimate of the cumulative failure rate function )(ln)( tRtH −= , we first obtain the posterior density 
function of )(tHH = , which can be given by 
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The Bayes estimate of H  relative to quadratic loss is 
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when the Precautionary loss function is appropriate, the Bayes estimate of H  is    
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when the LINEX loss function is appropriate, the Bayes estimate of H  is 
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6. Simulation Study 
        
   We obtained, in the above Sections, Bayesian and non-Bayesian estimates for the shape parameter θ , reliability, )(tR , and 
failure rate, )(tH , functions of the Kumaraswamy distribution. We adopted the squared error loss, Precautionary and LINEX loss 
functions. The MLE’s are also obtained.  
   In order to assess the statistical performances of these estimates, We conduct a simulation study. The mean square errors 
(MSE’s) using generated random samples of different sizes are computed for each estimator. The random samples are generated as 
follows: 
      
6.1 Simulation algorithm for general progressively type II censoring 
 
1. Applying the algorithms of Aggarwala and Balakrishnan (1998), the following steps are used to generate a general 

progressively type II censored sample from the Kumaraswamy distribution. 
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(A) Generate mV from the Beta distribution with parameters rn −  and 1+r . 

(B) Independently generate irZ + from )1,0(U for 1,,1 −−= rmi K . 

(C) Set 1,,1,,
1

1 −−=+== ∑ +−=+++
+ rmiRiaZV m

imj jir
a
irir

ir K . 

(D) Set rmiVVVU mimimir −=−= +−+−+ ,,1,1 21 KL . 

(E) Set mriUFY ii ,,1),(1 K+== − . 
This is the desired general progressively type II censored sample from the Kumaraswamy distribution.  

2.  For given values of the prior parameters ),( δν , generate a random value for θ  from the gamma distribution whose density 
function given by Equation (13). 

3. Usingθ , obtained in step (2), generate a general progressive Type II censored sample of size m with given values of 
mriRi ,,1, K+= , from the Kumaraswamy distribution whose PDF is given by (1) according to the above simulation 

algorithm. and generate random samples of different sizes: n=20 and 30. 
4. The MLE of the parameter θ , MGθ̂  is obtained by iteratively solving the Equation (9). The estimators )(ˆ

0tRMG  

and )(ˆ
0tH MG  of the functions )(tR  and )(tH  are then computed at some values 0t . 

5. The Bayes estimates relative to squared error loss, SGSG R̂,θ̂  and SGĤ  given, respectively, by Equations (15), (23) and (32), 

relative to Precautionary loss PGθ̂ , PGR̂  and PGĤ  given, respectively, by Equations (16), (24) and (33), and relative to 

LINEX loss LGθ̂ , LGR̂  and LGĤ  given, respectively, by Equations (17), (25) and (34),  are all computed. 
6. The above steps are repeated 1000 times and the biases and the mean square errors are computed for different sample sizes n 

and 3=r , where the hat-symbol ^ stands for an estimate SM )ˆ(,)ˆ( ⋅⋅ and P)ˆ(⋅ . 
 
The computational (our) results were computed by using MATLAB. In all above cases the prior parameters chosen as 2=ν  and 

1=δ , which yield the generated value of 2=θ  as the true value. The true values of )(tR  and )(tH , when 5.00 == tt  are 

computed to be 5625.0)5.0( =R  and 2499.0)5.0( =H . The simulation were carried out for sample sizes 100,50,20=n . 
Different choices of the effective sample size m , and different progressive censoring schemes in each case are considered, for 
simplicity in notation, we will denote the scheme: ,5,20( == mn  ))15,0,0,0,0(=iR by )15,4( 0 . The biases (first entries) 
and MSE’s (second entries) are displayed in Tables 1-3. 
 
6.2 Simulation algorithm for  progressively type II  right censoring 
 
1. Applying the algorithms of Balakrishnan and Sandhu (1995) and Aggarwala and Balakrishnan (1998), the following steps 

are used to generate a progressively type II right censored sample from the Kumaraswamy distribution. 
(A) Generate m independent )1,0(U random variables .,,, 21 mWWW K . 

(B) For given values of the progressive Censoring scheme mRRR ,,, 21 K .  

(C) Set miWV immm RRRi
ii ,,1,)(1 11 KK == +−− ++++ . 

(D) Set ;,,1,1 11 miVVVU immmi KL =−= +−− then mUUU ,,, 21 K is a progressive Type II 

censored sample of size m from ).1,0(U  

(E) Set miUFY ii ,,1),(1 K== − , is the required progressive Type II censored sample of size m from Kumaraswamy 
distribution. 

2.  For given values of the prior parameters ),( δν , generate a random value for θ  from the gamma distribution whose density 
function given by Equation (13). 

3. Usingθ , obtained in step (2), generate a progressive Type II right censored sample of size m with given values of 
mriRi ,,1, K+= , from the Burr Type XII distribution whose PDF is given by (1) according to the above simulation 

algorithm. 
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4.  The MLE of the parameter θ , MRθ̂  is obtained by iteratively solving the Equation (12). The estimators )(ˆ
0tRMR  

and )(ˆ
0tH MR  of the functions )(tR  and )(tH  are then computed at some values 0t . 

5. The Bayes estimates relative to squared error loss, SRSR R̂,θ̂  and SRĤ  given, respectively, by Equations (19), (28) and (36), 

relative to Precautionary loss PRθ̂ , PRR̂  and PRĤ  given, respectively, by Equations (20), (29) and (37), and relative to 

LINEX loss LRθ̂ , LRR̂  and LRĤ  given, respectively, by Equations (21), (30) and (38),  are all computed. 
The computational (our) results were computed by using MATLAB. In all above cases the prior parameters chosen as 2=ν  and 

1=δ , which yield the generated value of 2=θ  as the true value. The true values of )(tR  and )(tH , when 5.00 == tt  are 
computed to be 5625.0)5.0( =R  and 2499.0)5.0( =H . The biases (first entries) and MSE’s (second entries) are displayed in 
Tables 4-6. 
 
7. Conclusion 
 
   In this paper, the Bayesian and non-Bayesian estimates of parameter θ , reliability, )(tR , and failure rate, )(tH , functions of 
the lifetimes following Kumaraswamy distribution have been presented. The estimations are conducted on the basis of 
progressively type II censored samples. Bayes estimators, under squared error, Precautionary and LINEX loss functions are 
derived. The MLE’s are also obtained. Our observations about the results are stated in the following points:  
 

i. Table 1 shows that the Bayes estimate under LINEX loss function )5( −=c has the smallest estimated MSE's compared 
with the Bayes estimates under Precautionary and squared error loss functions and MLE's. On the other hand, Bayes 
estimates under LINEX loss function are underestimation but the Bayes estimates under Precautionary and squared error 
loss functions and MLE's are overestimation. 

ii. Table 2 shows that the MLE estimates have the smallest estimated MSE's as compared with the Bayes estimates. Too, 
Bayes estimate under squared error loss function is better than the Bayes estimates under Precautionary and LINEX loss 
functions. Bayes estimates under LINEX loss function )5( −=c are overestimation but the Bayes estimates under 
Precautionary and squared error loss functions and MLE's are underestimation. 

iii. Table 3 shows that the Bayes estimates under the Precautionary loss function have the smallest estimated MSE's as 
compared with the estimates under LINEX and squared error loss functions or MLE's. all Bayes estimates and MLE's are 
underestimation. 

iv. Table 4 shows that the Bayes estimates under the Precautionary loss function have the smallest estimated MSE's as 
compared with the estimates under LINEX and squared error loss functions or MLE's. Bayes estimates under LINEX loss 
function )5( =c are underestimation but others estimates are overestimation. 

v. Table 5 shows that the Bayes estimate under squared error loss function is better than the Bayes estimates under 
Precautionary and LINEX loss functions or MLE's. all Bayes estimates and MLE's are underestimation. 

vi. Table 6 shows that the Bayes estimate under LINEX loss function )5( =c have the smallest estimated MSE's as 
compared with the Bayes estimates under Precautionary and squared error loss functions and MLE's. On the other hand, 
the Bayes estimates under the LINEX loss function and MLE's are overestimation and, Bayes estimates under 
Precautionary and squared error loss functions are underestimation. 

Bayes approach under squared error loss function  for parameter θ   estimation of Kumaraswamy distribution in the reliability 
function has been suggested based on the pervious observations, this approach can be used for both progressively type II 
censorings. 
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Table 1. Bias and MSE of different estimators of θ , for different sample size under general progressively type II censoring when 
2=λ   (MSE in parenthesis). 

Lθ̂  Pθ̂  Sθ̂  MLEθ̂  Scheme  ),( mn  

5 -5      
       

-0.8494 -0.5321 0.3192 0.1916 0.3814 )15,4( 0  )5,20(  
(1.2435) (0.3059) (0.6649) (0.5152) (0.8988)   
-0.8052 -0.5262 0.3259 0.1805 0.3747 )0,15,3( 0   
(1.2843) (0.3015) (0.6617) (0.5188) (0.8294)   
-0.8155 -0.4172 0.2819 0.1386 0.4331 )7,0,8,2( 0   
(1.3188) (0.4298) (0.5314) 0.4361)( (0.9411)   
-0.8275 -0.5821 0.2964 0.1454 0.2877 )10,9( 0  )10,20(  
1.4101)( (0.3988) 0.5432)( (0. 4185) (0.7818)   
-0.8762 -0.5854 0.2955 0.1446 0.2437 )5,5,8( 0   
(1.7882) (0.3707) (0.4881) 0.3968)( (0.6881)   
-0.8485 -0.5790 0.2776 0.1278 0.2632 )3,2,5,7( 0   
(1.6386) 0.3654)( (0.4740) (0.4029) (0.7102)   
-0.8293 -0.0691 0.1432 0.0811 0.1024 )30,19( 0  )20,50(  
(1.4688) (0.0867) (0.2089) (0.1842) (0.2579)   
-0.8202 -0.0688 0.1425 0.0804 0.1050 )3,7,8,15( 50   
(1.3698) (0.0868) (0.2021) (0.1778) (0.2304)   
-0.8256 -0.0816 0.1899 0.1264 0.0874 )6,14( 50   
(1.4096) (0.0865) (0.2502) 0.2179)( (0.2469)   
-0.8122 -0.0869 0.0973 0.0586 0.066 )20,29( 0  )30,50(  
1.3124)( (0.0891) 0.1387)( (0. 1279) (0.1457)   
-0.8413 -0.0789 0.3752 0.3313 0.0820 )4,26( 50   
(1.6133) (0.0919) (0.3709) 0.2708)( (0.1696)   
-0.7333 -0.1052 0.0439 0.0062 0.0753 )2,5,23( 520   
(1.2374) 0.0911)( (0.1284) (0.1219) (0.1491)   
-0.8339 -0.0524 0.1421 0.0447 0.0440 )50,49( 0  )50,100(  
(1.5203) (0.0855) (0.2023) (0.0898) 0.0888   
-0.8293 -0.0751 0.1402 0.0418 0.0397 )10,40( 50   
(1.4470) (0.0821) (0.1908) (0.0861) 0.0873   
-0.8353 -0.0595 0.1378 0.0476 0.0459 )2,10,38( 1030   
(1.5258) (0.0744) (0.1815) (0.777) 0.0927   
-0.8407 -0.0824 0.1392 0.0313 0.0376 )30,69( 0  )70,100(  
(1.5759) (0.0562) (0.1881) (0.0582) 0.671   
-0.8180 -0.0611 0.1428 0.0327 0.0334 )6,64( 50   
(1.3561) (0.0571) (0.1963) (0.0589) 0.0591   
-0.8453 -0.0815 0.1486 0.0318 0.0215 )2,10,58( 520   
(1.4782) (0.0569) (0.1781) (0.0586) 0.0570   
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Table 2. Bias and MSE of different estimators of )(tR , for different sample size under general progressively type II censoring 
when 2=λ   (MSE in parenthesis). 

 

LR̂  PR̂  SR̂  MLER̂  Scheme  ),( mn  

5 -5      
       

-0.6026 0.5985 -0.5558 -0.4385 0.0571 - )15,4( 0  )5,20(  
(1.1823) 0.3585)( (0.3090) (0.1677) (0.0260)   
-0.6266 0.6179 -0.5533 -0.4172 0.0536 - )0,15,4( 0   
(1.1997) 0.4169)( 0.3062)( 0.1452)( (0.0252)   
-0.6411 0.6742 0.5125 - -0.4972 -0.1976 )7,0,8,2( 0   
(1.2044) 0.4856)( 0.3133)( 0.2234)( (0.0643)   
-0.6655 0.5385 -0.5492 -0.5190 -0.0313 )10,9( 0  )10,20(  
(1.3124) 0.3339)( 0.3048)( 0.2719)( (0.0130)   
-0.6590 0.5343 -0.5388 -0.5204 0.0260 - )5,5,8( 0   
(1.2145) 0.3278)( 0.3237)( 0.2731)( (0.0116)   
-0.6650 0.5320 -0.5441 -0.5195 -0.0285 )3,2,5,7( 0   
(1.2348) 0.3234)( 0.3097)( 0.2721)( (0.0122)   
-0.5648 0.6517 -0.5718 -0.5625 -0.0110 )30,19( 0  )20,50(  
(0.9113) (0.4523) (0.3517) (0.3164) (0.0056)   
-0.5711 0.6286 -0.5852 -0.5317 -0.0119 )3,7,8,15( 50   
(0.8343) (0.4265) (0.3613) (0.2893) 0.0052)(   
-0.5887 0.6772 -0.5991 -0.5220 -0.0087 )6,14( 50   
(0.8911) (0.4827) (0.3929) (0.2862) (0.0054)   
-0.5221 -0.7211 -0.5801 -0.5421 -0.0075 )20,29( 0  )30,50(  
(0.7875) (0.5370) (0.3745) (0.3252) (0.0035)   
-0.5122 0.7148 -0.6281 -0.5934 -0.0095 )4,26( 50   
(0.7714) (0.5163) (0.4071) (0.3633) (0.0038)   
-0.5611 0.7726 -0.6816 -0.5785 -0.0088 )2,5,23( 520   
(0.8524) (0.6058) (0.4729) (0.3585) (0.0036)   

       
-0.5850 0.4630 -0.5721 -0.5547 0.0051 - )50,49( 0  )50,100(  
(0.7927) 0.5353)( (0.3522) (0.3164) (0.0022)   
-0.5840 0.4590 -0.5435 -0.4816 0.0044 - )10,40( 50   
(0.7708) 0.5225)( 0.3267)( 0.2253)( (0.0021)   
-0.5809 0.4559 0.6215 - -0.5844 -0.0053 )2,10,38( 1030   
(0.7450) 0.5203)( 0.4801)( 0.6215)( (0.0023)   
-0.5933 0.4183 -0.6838 -0.6032 -0.0045 )30,69( 0  )70,100(  
(0.8185) 0.4491)( 0.5537)( 0.4312)( (0.0017)   
-0.6099 0.4124 -0.5685 -0.5513 0.0041 - )6,64( 50   
(0.8486) 0.4095)( 0.3584)( 0.3566)( (0.0015)   
-0.6394 0.3944 -0.5835 -0.5117 -0.0022 )2,10,58( 520   
(0.8647) 0.3917)( 0.4134)( 0.3046)( (0.0014)   
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Table 3.Bias and MSE of different estimators of )(tH , for different sample size under general progressively type II censoring 
when 2=λ   (MSE in parenthesis). 

LĤ  PĤ  SĤ  MLEĤ  Scheme  ),( mn  

5 -5      
       

-0.4333 -0.8873 -0.0467 -0.7001 -0.2218 )15,4( 0  )5,20(  
(0.7774) (0.9180) (0.0497) 0.7381)( (0.6616)   
-0.4280 -0.8915 -0.0503 -0.7279 -0.2499 )0,15,4( 0   
(0.6747) (0.9838) 0.0504)( 0.7888)( (0.6660)   
-0.4795 -0.8941 -0.0307 -0.8183 -0.1431 )7,0,8,2( 0   
(0.7923) (0.9381) (0.0817) 0.8346)( (0.1646)   
-0.8299 -0.9899 -0.1672 -0.8491 -0.2266 )10,9( 0  )10,20(  
(1.9111) (1.3809) 0.0526)( 0.4403)( (0.6672)   
-0.7111 -0.4943 -0.1695 -0.4609 -0.0787 )5,5,8( 0   
(0.4741) (0.6778) 0.0510)( 0.3891)( (0.6595)   
-0.7148 -0.3272 -0.1688 -0.4488 -0.0547 )3,2,5,7( 0   
(0.5163) (0.5256) 0.0503)( (0.3526) (0.6583)   
-0.1166 -0.4832 -0.2204 -0.4297 -0.0752 )30,19( 0  )20,50(  
(0.2193) (0.2335) (0.0574) (0.2202) (0.6195)   
-0.1116 -0.4732 -0.2246 -0.4284 -0.0615 )3,7,8,15( 50   
(0.2103) (0.2336) (0.0579) (0.2150) (0.5943)   
-0.1145 -0.4833 -0.2263 -0.4211 -0.0837 )6,14( 50   
(0.2182) (0.2340) (0.0580) 0.1887)( (0.5928)   
-0.1157 -0.4841 -0.1678 -0.4395 -0.1140 )20,29( 0  )30,50(  
0.2113)( (0.2344) 0.0581)( (0. 2217) (0.4719)   
-0.1261 -0.7837 -0.1791 0.4311 - -0.0886 )4,26( 50   
(0.2203) (0.2340) (0.0576) 0.2070)( (0.5091)   
-0.1189 -0.4819 -0.1709 -0.4323 -0.1009 )2,5,23( 520   
(0.2193) 0.2333)( (0.0582) (0.2028) (0.4962)   
-0.2227 -0.4771 -0.2178 -0.4403 -0.1423 )50,49( 0  )50,100(  
(0.1815) (0.2276) (0.0613) (0.2165) (0.3495)   
-0.2263 -0.4653 -0.2034 -0.4466 -0.1447 )10,40( 50   
(0.1872) (0.2178) (0.0604) (0.2430) (0.3525)   
-0.2713 -0.4081 -0.2201 -0.4294 -0.1424 )2,10,38( 1030   
(0.2019) (0.2304) (0.0623) (0.1857) (0.3705)   
-0.1762 -0.4921 -0.1462 -0.4523 -0.1498 )30,69( 0  )70,100(  
(0.2085) (0.2381) (0.0644) (0.2463) (0.2595)   
-0.1276 -0.4733 -0.1404 -0.4403 -0.1616 )6,64( 50   
(0.1916) (0.2218) (0.0643) (0.2070) (0.2087)   
-0.1154 -0.4771 -0.1401 -0.4379 -0.1727 )2,10,58( 520   
(0.1216) (0.2277) (0.0638) (0.2149) (0.2669)   
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Table 4. Bias and MSE of different estimators of θ , for different sample size under progressively type II right censoring when 
2=λ   (MSE in parenthesis). 

 

Lθ̂  Pθ̂  Sθ̂  MLEθ̂  Scheme  m  

5 -5      
       

-0.6915 0.6389 0.0624 0.2277 0.5169 )15,4( 0  5  
(0.5459) (0.4587) (0.4136) (0.5298) (1.9565)   
-0.7085 0.6475 0.0259 0.1882 0.4595 )0,15,3( 0   
(0.5743) (0.4722) (0.4275) (0.5334) (1.9162)   
-0.7066 0.7348 0.0302 0.1928 0.5008 )7,0,8,2( 0   
(0.5699) (0.5306) (0.4458) 0.5562)( (2.6665)   
-0.4922 0.9241 0.0426 0.1334 0.1689 )10,9( 0  10  
0.3291)( (0.7539) 0.3143)( (0. 3587) (0.5488)   
-0.5044 0.8921 0.0170 0.1067 0.2089 )5,5,8( 0   
(0.3323) (0.6346) (0.2727) 0.3086)( (0.6749)   
-0.4900 0.9511 0.0456 0.1365 0.2078 )3,2,5,7( 0   
(0.3251) 0.7968)( (0.2983) (0.3418) (0.6000)   
-0.3113 0.8772 0.0234 0.0710 0.0966 )30,19( 0  20  
(0.1716) (0.5249) (0.1589) (0.1710) (0.2667)   
-0.3112 0.8962 0.0.251 0.0728 0.1025 )3,7,8,15( 50   
(0.1807) (0.7484) (0.1804) (0.1937) (0.2336)   
-0.3053 0.9311 0.0327 0.0805 0.0816 )6,14( 50   
(0.1711) (0.6584) (0.1688) (0.1822) (0.2485)   
-0.2177 0.5124 0.0300 0.0625 0.0707 )20,29( 0  30  
(0.1237) (0.5639) (0.1179) (0.1306) (0.1540)   
-0.2100 0.5281 0.0403 0.0729 0.0696 )4,26( 50   
(0.1268) (0.5834) (0.1164) (0.1346) (0.1628)   
-0.2115 0.5271 0.0388 0.0714 0.0817 )2,5,23( 520   
(0.1339) (0.5967) (0.1213) (0.1417) (0.1686)   
-0.1422 0.2728 0.0174 0.0371 0.0469 )50,49( 0  50  
(0.0732) (0.1923) (0.0729) (0.0764) (0.0988)   
-0.1505 0.2607 0.0077 0.0273 0.0405 )10,40( 50   
(0.0757) (0.1890) (0.0753) (0.0774) (0.0835)   
-0.1376 0.2808 0.0232 0.0429 0.0502 )2,10,38( 1030   
(0.0831) (0.2126) (0.0770) 0.0861)( (0.0888)   
-0.0989 0.1953 0.0198 0.0339 0.0325 )30,69( 0  70  
0.0539)( (0.1125) 0.0512)( (0. 0554) (0.0635)   
-0.1024 0.1905 0.0157 0.0299 0.0246 )6,64( 50   
(0.0530) (0.1095) (0.0514) 0.0544)( (0.0582)   
-0.0989 -0.1959 0.0200 0.0341 0.0324 )2,10,58( 520   
(0.0611) 0.1229)( (0.0566) (0.0627) (0.0623)   
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Table 5.Bias and MSE of different estimators of )(tR , for different sample size under progressively type II right censoring when 
2=λ   (MSE in parenthesis). 

LR̂  PR̂  SR̂  MLER̂  Scheme  m  

5 -5      
       

-0.5564 -0.5562 -0.0272 -0.0115 -0.0489 )15,4( 0  5  
(0.7522) 1.3574)( (0.0110) (0.0092) (0.0251)   
-0.5552 -0.5549 -0.0206 -0.0053 0.0401 - )0,15,4( 0   
(0.7329) 1.3058)( 0.0114)( 0.0097)( (0.0254)   
-0.5550 0.5547 - 0.0212 - -0.0059 -0.0403 )7,0,8,2( 0   
(0.7323) 1.2850)( 0.0111)( 0.0094)( (0.0253)   
-0.5613 -0.5612 -0.0148 -0.0063 -0.0161 )10,9( 0  10  
(0.7744) (1.0358) (0.0075) (0.0068) (0.0102)   
-0.5619 -0.5626 -0.0115 -0.0030 0.0205 - )5,5,8( 0   
(0.7793) (1.0415) (0.0067) (0.0061) (0.0114)   
-0.5613 -0.5547 -0.0156 -0.0070 -0.0215 )3,2,5,7( 0   
(07630) (1.0199) (0.0074) (0.0067) (0.0113)   

       
-0.5623 -0.5629 -0.0135 -0.0090 -0.0100 )30,19( 0  20  
(0.8107) 0.9453)( (0.0047) (0.0043) (0.0054)   
-0.5620 -0.5625 -0.0083 -0.0038 0.0115 - )3,7,8,15( 50   
(0.8417) 0.9813)( 0.0044)( 0.0039)( (0.0052)   
-0.5628 0.5622 - 0.0096 - -0.0051 -0.0078 )6,14( 50   
(0.8344) 0.9721)( 0.0048)( 0.0040)( (0.0055)   
-0.5625 -0.5623 -0.0083 -0.0053 -0.0080 )20,29( 0  30  
(0.8464) (0.9394) (0.0034) (0.0032) (0.0036)   
-0.5658 -0.5620 -0.0079 -0.0048 0.0077 - )4,26( 50   
(0.8485) (0.9409) (0.0035) (0.0029) (0.0037)   
-0.5623 -0.5627 -0.0069 -0.0037 -0.0095 )2,5,23( 520   
(0.8348) (0.9255) (0.0037) (0.0033) (0.0039)   
-0.5627 -0.5621 -0.0056 -0.0038 -0.0054 )50,49( 0  50  
(0.9035) (0.9632) (0.0022) (0.0020) (0.0024)   
-0.5624 -0.5623 -0.0051 0.0033 - -0.0046 )10,40( 50   
(0.9100) (0.9701) (0.0021) (0.0019) (0.0023)   
-0.5626 -0.5629 -0.0040 -0.0021 -0.0061 )2,10,38( 1030   
(0.9085) (0.9681) (0.0020) (0.0018) (0.0022)   
-0.5651 -0.5623 -0.0032 -0.0019 -0.0038 )30,69( 0  70  
(0.9410) (0.9853) (0.0014) (0.0013) (0.0016)   
-0.5629 -0.5621 -0.0052 -0.0039 -0.0027 )6,64( 50   
(0.9546) (1.000) (0.0013) (0.0012) (0.0015)   
-0.5625 -0.5622 -0.0049 -0.0036 -0.0037 )2,10,58( 520   
(0.9349) (0.9791) (0.0015) (0.0014) (0.0017)   
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Table 6. Bias and MSE of different estimators of )(tH , for different sample size under progressively type II right censoring when 
2=λ   (MSE in parenthesis). 

 

LĤ  PĤ  SĤ  MLEĤ  Scheme  m  

5 -5      
       

0.2720 0.6743 0.8442 - -0.8918 0.4754 )15,4( 0  5  
(0.0919) (0.6788) (0.7467) (0.8350) (1.1524)   
0.2468 0.6674 -0.8351 0.8819 - 0.5309 )0,15,3( 0   

(0.0890) (0.6720) (0.7343) (0.8209) (1.2209)   
0.2693 0.6720 -0.8412 -0.8886 0.5447 )7,0,8,2( 0   

(0.0917) (0.6689) (0.7445) 0.8327)( (1.2675)   
0.2943 0.4742 -0.8394 -0.8656 0.5596 )10,9( 0  10  

0.1049)( (0.2886) 0.7324)( (0. 7796) (1.3786)   
0.2957 0.4774 -0.8412 0.8675 - 0.5461 )5,5,8( 0   

(0.1063) (0.2957) (0.7365) 0.7841)( (1.3462)   
0.2893 0.4634 -0.8329 -0.8589 0.5132 )3,2,5,7( 0   

(0.1005) 0.2690)( (0.7189) (0.8650) (1.2872)   
0.3129 0.3997 -0.8379 -0.8517 0.5163 )30,19( 0  20  

(0.1095) (0.1808) (0.7167) (0.7407) (1.3703)   
0.3052 0.3894 -0.8293 -0.8430 0.5280 )3,7,8,15( 50   

(0.1043) (0.1718) (0.7018) (0.7252) (1.4047)   
0.3140 0.4013 -0.8392 -0.8531 0.5709 )6,14( 50   

(0.1105) (0.1823) (0.7191) (0.7433) (1.4490)   
0.3185 0.3759 -0.8357 -0.8451 0.5032 )20,29( 0  30  

(0.1104) (0.1547) (0.7090) (0.7251) (1.3859)   
0.3169 0.3739 -0.8340 -0.8434 0.5042 )4,26( 50   

(0.1093) (0.1529) (0.7059) (0.7219) (1.3889)   
0.3198 0.3774 -0.8371 -0.8465 0.5010 )2,5,23( 520   

(0.1112) (0.1558) (0.7112) (0.7274) (1.3787)   
       

0.3221 0.3561 0.8326 - -0.8382 0.4600 )50,49( 0  50  
(0.1101) (0.1349) (0.7002) (0.7098) (1.3364)   
0.3228 0.3569 -0.8333 0.8390 - 0.4711 )10,40( 50   

(0.1100) (0.1348) (0.7008) (0.7105) (1.3747)   
0.3194 0.3530 -0.8297 -0.8353 0.4379 )2,10,38( 1030   

(0.1074) (0.1314) (0.6942) 0.7037)( (1.3079)   
0.3229 0.3469 -0.8303 -0.8344 0.4212 )30,69( 0  70  

0.1082)( (0.1250) 0.6936)( (0.7005) (1.2955)   
0.3228 0.3468 -0.8302 -0.8343 0.3830 )6,64( 50   

(0.1085) (0.1254) (0.6939) 0.7007)( (1.2231)   
0.3243 0.3485 -0.8317 -0.8358 0.3714 )2,10,58( 520   

(0.1096) 0.1267)( (0.6966) (0.7034) (1.2025)   
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