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ABSTRACT

Constraints on cosmological parameters are often distilled from sky surveys by fitting templates to summary statistics

of the data that are motivated by a fiducial cosmological model. However, recent work has shown how to estimate

the distance scale using templates that are more generic: the basis functions used are not explicitly tied to any one

cosmological model. We describe a Bayesian framework for (i) determining how many basis functions to use and (ii)

comparing one basis set with another. Our formulation provides intuition into how (a) one’s degree of belief in different

basis sets, (b) the fact that the choice of priors depends on basis set, and (c) the data set itself, together determine

the derived constraints. We illustrate our framework using measurements in simulated datasets before applying it to

real data.

Key words: cosmology: theory - methods: analytical, numerical

1 INTRODUCTION

Using the baryon acoustic oscillation feature in the distribu-
tion of galaxies to determine how the cosmological distance
scale varies with redshift is one of the primary science drivers
of a number of recent or planned galaxy surveys. There are
two approaches: the first fits a cosmological model-motivated
template to measurements of two-point (Fourier or configu-
ration space) correlations. Cuesta et al. (2016) describe such
an analysis of the pair correlation function ξ measured in
the Baryon Oscillation Spectroscopic Survey (BOSS, Alam
et al. 2015). However, precise distance scale estimates can
also be made without first assuming a fiducial cosmological
model (Anselmi et al. 2016). In Anselmi et al. (2018b), a fifth
order polynomial was fit to the same BOSS pair correlation
function; this yielded comparable constraints on the distance
scale.

In the second, fiducial cosmology-free approach, there is
no compelling reason to have used simple polynomials. For
example, the orthogonal polynomials defined by the eigenvec-
tors of the covariance matrix of ξ are a natural choice. Recent
work has shown that generalised Laguerre functions are also
well-motivated in the context of ‘reconstructing’ the shape of ξ
(Nikakhtar et al. 2021). This raises the question of how many
basis functions are necessary to provide unbiased cosmological
constraints. It is natural to expect the answer to depend on
the data – as data sets improve, higher order polynomials or
Laguerre functions will likely be needed (e.g. Anselmi et al.
2018a). The main goal of our study is to provide a Bayesian
evidence-based argument for determining the complexity of
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the model (e.g., order of polynomial, number of Laguerre
functions) which must be fit, as this greatly simplifies such
fiducial cosmology-free analyses.

Section 2 sets up notation and shows how to cast our
problem in the Bayesian framework; details for deriving the
key expression for the Bayesian evidence are provided in an
Appendix. Section 3 validates our approach using correlation
functions measured in cosmological simulations. It shows that
when Bayesian evidence is used to determine the order of
the polynomial which should be fit, the subsequent analysis
returns unbiased constraints on the (in this case, known)
distance scale. Section 4 shows an application to measurements
from the BOSS dataset in which the distance scale is, in
principle, unknown. A final section summarizes our results.

2 BAYESIAN EVIDENCE USING THE LINEAR
GAUSSIAN APPROXIMATION

In this section, we recapitulate some well-known features of
Bayesian analysis using the so-called linear Gaussian approxi-
mation. We refer the reader to the review by Trotta (2008)
for a more general discussion.

Consider an N -dimensional data vector y with known co-
variance matrix C. Assume that y is a realisation of a multi-
variate Gaussian with unknown mean y∗ and covariance C:

y ∼ N (y∗, C) (1)

We are given a set of M template functions {Tm(x)}Mm=1

of a control variable x, to model the mean using y∗i →∑M
m=1 amTm(xi), with the vector a of linear coefficients to be

determined. In other words, under this hypothesis (which we
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2 Paranjape & Sheth

denote H), we assume a Gaussian likelihood for the data:

y|a,H ∼ N (Ma, C) (2)

where M is the N ×M ‘design matrix’ with elements

Mim = Tm(xi) . (3)

The model is thus linear in the parameter vector a, while the
templates Tm(x) can be arbitrarily nonlinear functions of x.

The Bayesian evidence for the hypothesis H, given the
observed data set y, is

p(H|y) =
p(y|H) p(H)

p(y)
(4)

where p(y|H) is the probability density of the data under the
hypothesis H marginalised over all parameter values a, while
p(H) is the a priori probability attached to the hypothesis, or
our degree of belief in the hypothesis in the absence of data.
In the following, we will only compare two or more models (or
hypotheses) given the same data set. This makes the constant
p(y) irrelevant for what follows, so we will ignore it.

The main problem, then, is to compute p(y|H). If p(a|H)
is the prior probability density of the parameters a, and we
assume this to also to be an M -variate Gaussian with mean
a(p) and inverse covariance F(p),

p(a|H)→ N
(
a(p), F

−1
(p)

)
, (5)

then p(y|H) is an N -variate Gaussian, and Appendix A1
shows that

−2 ln p(y|H) = ln detC + yTC−1y +N ln(2π)

+ ln det
(
FF−1

(p)

)
− âTF â + aT

(p)F(p)a(p) .

(6)

Notice that the first line is independent of the model while
the second line involves a competition between the a priori
and a posteriori parameter probability densities, where â and
F are, respectively, the mean and inverse covariance of the
latter (see equation A10). Equation (6) is sometimes written
as

−2 ln p(y|H) = ln detC +N ln(2π) + eT
yC
−1ey

+ ln det
(
FF−1

(p)

)
+ eT

p F(p)ep , (7)

where ey ≡ y −Mâ and ep ≡ â − a(p). The first line of
equation (7) now represents the ‘accuracy’ of the model in
explaining the data, while the second line, being related to
the Kullback-Liebler divergence between the a priori and
a posteriori densities, represents its ‘complexity’. A ‘good’
model is one in which both these terms are small. Below,
however, we will find it more convenient to use and interpret
equation (6).

In particular, consider two competing hypotheses H1 and
H2 for describing the same data y. Using equation (6) in
equation (4) gives

ln

(
p(H1|y)

p(H2|y)

)
=

1

2

[
ln

(
detF(p)1

detF(p)2

)
− aT

(p)1F(p)1a(p)1 + aT
(p)2F(p)2a(p)2

]
+

1

2

[
− ln

(
detF1

detF2

)
+ âT

1 F1â1 − âT
2 F2â2

]
+ ln

(
p(H1)

p(H2)

)
. (8)

The above expression lends itself to the following intuitive
interpretation.

• Degree of belief: The last term involving p(H) represents a
simple relative a priori degree of belief for the two hypotheses.
To avoid clutter, we will always assume that the models
we compare are equally likely (in the absence of data) and
therefore set this term to zero.
• Prior comparison: The terms in square brackets on the

first line represent a comparison of prior assumptions and
model construction.

– Since each F(p) is the inverse covariance matrix of the
corresponding model, it is clear from the determinant ratio
term that small values of detF(p) are disfavoured. Since
these could arise due to, both, broad ranges on individual
parameters as well as a large number of parameters, this
term embodies the concept of Occam’s razor by favouring
‘simpler’ models.

– The terms involving the quadratic form aT
(p)F(p)a(p)

disfavour models containing a significant a priori departure
of the mean parameter values from zero. Thus, these terms
represent a penalty for ‘data-free inference’.

• Influence of data: Finally, the terms in square brackets
on the second line (which are identically structured to the first
line, but involving the a posteriori distribution and containing
a crucial relative minus sign) favour significant ‘detections’ of
parameter values (i.e., large values of âTF â) accompanied by
larger widths of the corresponding covariance matrices (i.e.,
smaller values of detF ). The latter aspect, in particular, is
a manifestation of a ‘goodness-of-fit’ criterion, since highly
significant detections with low parameter-space volume gen-
erally indicate bad fits (e.g., consider fitting a constant to
high-quality data drawn from a parabola; the value of the
constant will be constrained with small error but will lead to
a terrible fit, indicating that more variation in the data must
be modelled).

Motivated by the above, we define the ‘reduced log-evidence’
`(H|y) of a hypothesis H given data y, as

`(H|y) ≡ 1

2

[
ln

(
detF(p)

detF

)
− aT

(p)F(p)a(p) + âTF â

]
, (9)

so that

ln

(
p(H1|y)

p(H2|y)

)
= `(H1|y)− `(H2|y) (10)

for models with equal a priori degrees of belief p(H1) = p(H2).
Notice that `(H|y) does not require explicit calculations of
the determinant of the data covariance matrix, making its
evaluation numerically more stable than that of equation (7).

2.1 Other estimates

It is worth mentioning that many analyses in the literature,
particularly those that deal with non-Gaussian likelihoods
and/or non-linear models, often rely on more approximate
statistics such as the (corrected) Akaike Information Criterion
(AICc, below) for model selection. In our language, the AICc

(Akaike 1974; Sugiura 1978; see Liddle 2007 or Trotta 2008
for reviews) is given by

AICc = eT
yC
−1ey + 2MN/(N −M − 1) (11)
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Bayesian BAO 3

(c.f. equation 7). Similarly to the Bayesian evidence, the AICc

penalises models with large numbers of parameters, thereby
implementing Occam’s razor. Although our setup allows us
to use the rigorous Bayesian evidence for model comparison,
below we will also mention the results of using the AICc for
comparing the same models.

Finally, in the context of selecting the ‘simplest, best’ model,
a useful quantity is the so-called Bayesian complexity Cb, given
in our setup by (e.g., section 4 of Trotta 2008)

Cb ≡
∫

da p(a|y,H)χ2(a;y,H)− eT
yC
−1ey

= M − Tr
(
F−1F(p)

)
, (12)

where χ2(a;y,H) ≡ −2 ln[p(y|a,H)] − ln detC − N ln(2π).
The term Tr

(
F−1F(p)

)
essentially counts the number of ‘un-

constrained’ parameters (for which the width of the a posteri-
ori distribution approaches the width of the corresponding a
priori distribution), so that Cb measures the effective number
of parameters in the model. A combination of Cb and `(H|y)
can be useful in breaking degeneracies between models with
unequal M that have similar values for `(H|y), since the inclu-
sion of Cb can help decide whether or not all the parameters
in the more complex model are, in fact, required for a good
description of the data.

3 BAO RECONSTRUCTION: VALIDATION
USING SIMULATED DATASETS

We noted in the Introduction that, although both simple poly-
nomials and generalized Laguerre functions have been used in
the past to furnish unbiased distance scale estimates, as data
sets improve, higher order polynomials or Laguerre functions
will likely be needed. We show below that our Bayesian analy-
sis provides a simple way to see why, and, further, that when
the Bayesian evidence is used, then the resulting constraints
on the distance scale are unbiased.

3.1 Data from simulations

We use the same correlation functions that were presented
in Nikakhtar et al. (2022a). These were obtained by identify-
ing halos with masses greater than 1.3× 1013h−1M� using a
friends of friends algorithm with link-length parameter 0.2,
in Nreal,max = 20 independent realisations of the HADES
simulation suite (Villaescusa-Navarro et al. 2018). The cosmo-
logical parameters of the simulation were Ωm = 0.3175,Ωb =
0.04586,ΩΛ = 0.6825, ns = 0.9624, h = 0.6711, σ8 = 0.833. In
each realization, ξ of the halos was measured in bins of width
1h−1Mpc over the range 60 ≤ s/(h−1Mpc) ≤ 120. The linear
bias parameter, b =

√
ξhalos/ξdm,Lin on these large scales is

approximately 1.3.
Our primary statistic is the arithmetic mean of ξ(s) in each

s bin, over Nreal ≤ Nreal,max of these realisations. The grey
symbols with error bars in the right hand panel of Fig. 1
show this mean for the full set (Nreal = 20) which gives an
equivalent volume of 20 (h−1Gpc)3. The symbols with larger
error bars in Fig. 3 show ξ averaged over Nreal = 2 randomly
chosen realizations whose equivalent volume of 2 (h−1Gpc)3 is
similar to (but somewhat larger than) the effective volume of
the CMASS sample of the BOSS survey (Cuesta et al. 2016).

In each case, our data set y comprises the N = 60 values of
this averaged 2pcf.

To proceed, we need the covariance matrix C. In princi-
ple, one could estimate it from the different realizations. In
practice, 20 realizations is too few to provide a reliable esti-
mate. Previous work has shown that C(lin), a linearly biased
linear theory + Poisson shot noise model is appropriate for
estimating the covariance matrix on scales larger than about
60h−1Mpc (Parimbelli et al. 2021). If we compute C(lin) for
a single realization, then C for Nreal independent realisations,
an effective volume that is Nreal times larger, is given by
C = C(lin)/Nreal.

3.2 Laguerre reconstruction setup

Nikakhtar et al. (2021) show that if the linear theory 2pcf
ξL(r) around the BAO feature is described by a polynomial of
degree M − 1 (i.e., an M -dimensional model) with coefficients
a = {am}M−1

m=0 ,

ξL(r) =

M−1∑
m=0

am
m!

(
r − rfid

σfid

)m

, (13)

then the non-linear 2pcf ξ(s) should be very well approximated
by the Laguerre expansion

ξ(s) =

M−1∑
m=0

am
m!

(
Σ

σfid

)m

νm
( s

Σ
;
rfid

Σ

)
, (14)

where the functions νm(x;xfid) are the ‘centered’ generalized
Laguerre functions defined in Appendix B of Nikakhtar et al.
(2021).

Our goal is to determine the best choice of M , and the M
coefficients a = {am}M−1

m=0 associated with fitting equation (14)
to the measurements. However, before performing the fitting
exercise, we must make some choices regarding three length
scales: rfid (a centering separation), σfid (a fiducial normalisa-
tion) and Σ (a ‘smearing scale’ that is related to the physics
of gravitational evolution).

The values of rfid and σfid do not affect the quality of the fit,
but can improve the numerical stability of the fitting exercise
and change the correlation structure of the a posteriori pa-
rameter distribution. As such, they should generally be chosen
using the typical length scales seen in the data. Throughout,
we will set rfid = 90h−1Mpc (approximately the mid-point
of the BAO dip-and-peak feature) and σfid = 10h−1Mpc (ap-
proximately half the width of the feature), having checked
that reasonable variations around these values have no impact
on our results. As regards the third scale Σ, although its
value could be left as a free parameter to be determined from
the same data set used for the Laguerre BAO reconstruction
(Nikakhtar et al. 2022b), for the analysis of simulations in this
work we simply fix Σ to the value expected from linear theory
8.45h−1Mpc = 12.6Mpc (see the discussion in Nikakhtar et al.
2021).

Finally, our choice of including factorials explicitly in the
model definitions (13) leads to better numerical stability when
exploring high-dimensional models (M & 10). However, to
retain the usual intuition of polynomial behaviour, we must
be careful in setting priors on the parameter values, as we
discuss next.

MNRAS 000, 1–10 (0000)



4 Paranjape & Sheth

Figure 1. Bayesian model selection using halo 2pcf measurements combining Nreal = 20 realisations of the HADES simulation. (Left

panel:) Reduced log-evidence `(H|y) (equation 9) as a function of Laguerre function degree (solid black curve marked by the left vertical
axis). We select degree 7 (vertical dotted line) as the ‘best, least complex’ model describing the data, with the maximum `(H|y) indicated
by the horizontal dotted line. The dashed purple line, marked by the right vertical axis, shows the more frequentist AICc statistic, which

also selects degree 7 in this case. (Right panel:) Comparison of model and data. Grey points with errors show the measured non-linear real
space 2pcf ξ(s) of haloes having mean linear bias b = 1.3. We display 103ξ(s) for the reasons discussed in the text. Red dashed curve shows
the degree 7 Laguerre function fit (14) using the a posteriori mean â and smearing scale Σ = 8.45h−1Mpc = 12.6 Mpc. Red band shows

the result of sampling the full a posteriori distribution p(a|y,H) and constructing the 16th and 84th percentiles of the predicted 2pcf at
each scale s, i.e., the predicted central 68% confidence region in data space. Yellow solid curve shows the reconstructed linear 2pcf ξL(r)
obtained by inserting â into equation (13). Inner and outer yellow bands respectively show the corresponding predicted central 68% and
95% confidence regions obtained by sampling p(a|y,H). Thick blue solid curve shows the theoretical prediction for b2ξLin(r). See text for a

discussion.

3.2.1 Choice of prior mean and covariance

Standard least-squares fitting of data using polynomial mod-
els
∑

m cm xm typically assumes uninformative priors on the
coefficients cm. In our case, since am ∼ cm (m!), this effect
can be mimicked by assuming a prior on am which broad-
ens proportionally to m!. Moreover, as we saw in section 2,
the Gaussianology formalism is analytically tractable (and
particularly simple) when using Gaussian priors.

To this end, we first assume F(p) to be a diagonal matrix,
with diagonal entries 1/(m!)2. Next, visual inspection of the
data suggests an approximately sinusoidal behaviour of the
BAO feature with amplitude A ∼ 2 × 10−3, so we assume
a(p)m = (−1)m/2A for even m and zero for odd m (which
defines a Taylor series for A sin(x) truncated at order M − 1)
and correspondingly multiply F(p) by A−2. To approach the
‘uninformative’ limit, we further multiply F(p) by a factor
10−2, so that the non-zero values of a(p) represent only ±0.1σ
deviations from zero. We have also checked that varying this
last factor so as to make these mean values ±0.03σ or ±0.3σ
deviations from zero, makes no qualitative difference to our
final results. At this stage, then, our a priori distribution is
characterised by

a(p) = A× (1, 0,−1, 0, . . .) ,

F−1
(p) = 102 ×A2 × diag

{
(m!)2}M−1

m=0
, (15)

with A = 2× 10−3.
Additionally, since the ξ(s) values in the range we probe

are numerically all � 1, the numerical stability of the fitting

exercise improves if we scale the data vector y → S × y by
a constant factor S ' 102-103. Since S has no physical or
statistical relevance, the final choice of the shape of the fitted
function should be explicitly independent of S. Inspection
of equations (A6) and (A7) shows that, since â is linear in
the data y, we must then also scale a(p) → S × a(p) and
F−1

(p) → S2 × F−1
(p) . We will display results for S = 103 below,

after performing this rescaling.

Finally, all of the above assumes that the ‘uninformative’
behaviour of F(p) is valid at a specified fiducial normalisation
σfid (we motivated the value σfid = 10h−1Mpc above). Having
made this choice defining the structure of F(p), if we now
decide to work at a different fiducial scale σ′fid, then the
corresponding change in the definition of the parameters a
requires a further scaling a(p)m → (σ′fid/σfid)m × a(p)m and
(F−1

(p) )mm → (σ′fid/σfid)2m × (F−1
(p) )mm. While we implement

this in our code, we note that there is no particular reason to
demand the (m!)2 behaviour of F−1

(p) at σfid = 10h−1Mpc. We
therefore consider this as the main ad hoc assumption of our
model, and show all results for σfid = 10h−1Mpc. We have
checked that small variations in this default scale at which
the (m!)2 scaling is defined do not change any of our results.
We have also verified that setting all elements of a(p) to zero,
while keeping the other choices intact, makes no difference to
our results.

MNRAS 000, 1–10 (0000)
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Figure 2. Predicted distributions for the BAO linear point rLP

after Laguerre recontruction (red histogram) and after fitting a
polynomial to the nonlinear measurements (cyan histogram), ob-
tained by sampling the a posteriori distribution p(a|y,H) from the

fitting exercise described in Fig. 1 and then applying the procedure
described in the text. For each distribution, the vertical solid line
shows the median, while the inner and outer bands respectively

show the central 68% and 95% confidence regions, and the vertical
dotted red line shows the linear theory prediction. See text for a
discussion.

3.3 Results

Fig. 1 shows the results of the Bayesian selection exercise for
Nreal = 20. The left panel shows the reduced log-evidence
`(H|y) for Laguerre function fits of varying degree. We see
that degrees 7 and 8 are clearly preferred over all others, with
degrees 5, 6 and 9 being rejected with ‘substantial’ strength
of evidence as per the Jeffreys scale, with all others rejected
‘strongly’ or ‘decisively’. The sharp decline at small degrees is
almost entirely due to ‘bad fits’, while the decline at high de-
grees reflects the increasing penalty for more ‘complex’ models
(see the discussion below equation 8). The Bayesian complex-
ity Cb = 7.94 for the best-fit degree 7 function is close to the
dimension M = 8 of the model, while Cb = 8.35 for the best-
fit degree 8 function is somewhat smaller than the dimension
M = 9 of the model. The degree 7 Laguerre function therefore
provides a statistically well-motivated description of the data.

The right panel of Fig. 1 compares the data (grey points
with error bars) with the model prediction derived from the
a posteriori distribution p(a|y,H) for the degree 8 Laguerre
function (red dashed line with red error band; this is the pro-
jection of p(a|y,H) into data space using a→Ma). Clearly,
the model provides an excellent description of the data. We
can now exploit the fact that the same distribution p(a|y,H),
when applied to equation (13) instead of equation (14), should
provide a description of the linear theory 2pcf. The yellow
solid line with yellow bands shows this prediction of the ‘re-
constructed’ linear 2pcf, while the thick solid blue curve shows
the actual linear theory result b2ξLin(r). We see reasonably
good agreement in the vicinity of the peak, although the re-
construction deviates from the true function at separations

& 20 Mpc away from the peak. This departure is likely due to
the various approximations inherent in deriving equation (14)
from equation (13): (i) the use of the linear theory estimate
for Σ, (ii) ignoring mode coupling and (iii) ignoring scale-
dependent bias (see the discussion in Nikakhtar et al. 2021).
Additionally, the presence of cosmic variance makes the shape
of the linear 2pcf in individual simulation realisations differ
from its mean value b2ξLin which we have used.

We have also explicitly checked that using the a posteriori
distributions for the higher degree Laguerre functions does
not affect the right panel of Fig. 1, apart from broadening the
yellow bands at separations & 150 Mpc, confirming that the
Bayesian selection of degree 7 indeed produces the ‘best, least
complex fit’ to the data.1

The polynomial approximation to the linear 2pcf in equa-
tion (13) can be used, for any given parameter vector a, to
numerically estimate the scales rpeak and rdip corresponding
to the maximum and minimum, respectively, of the recon-
structed BAO feature (i.e., the roots of dξL/dr). In terms of
these roots, the linear point (Anselmi et al. 2016) is given by
rLP = (rpeak + rdip)/2. The histograms in Fig. 2 show the dis-
tribution of the scales rLP inferred by applying this procedure
to a sample from the a posteriori distribution p(a|y,H). The
red histogram shows the result for the Laguerre reconstruc-
tion, while the cyan shows the result of directly fitting ξ(s)
with a degree 5 polynomial. The vertical dotted red line indi-
cates the theoretical value rLP = 138.2 Mpc for the HADES
cosmology. The vertical solid lines and inner bands indicate
the median and central 68% confidence region of the inferred
values, respectively rLP = 137.2+0.7

−0.7h
−1Mpc (Laguerre re-

construction) and rLP = 136.6+0.6
−0.6h

−1Mpc (polynomial fit).
The outer (fainter) vertical bands correspondingly show the
central 95% confidence region. We see that the theoretical
value of rLP lies within the central 95% confidence region
and is ∼ 0.7% away from the median of the recovered val-
ues using Laguerre reconstruction, while the polynomial fit
prefers slightly lower values, as expected from the discussion
in Anselmi et al. (2016).2

It is also very interesting to note that, had we forced a
reconstruction with a higher or lower degree Laguerre function
than the degree 7 selected by our Bayesian analysis, the
recovery of rLP would be substantially degraded. For example,
using the ‘less complex’ degree 5 function leads to a very
similar width of the rLP distribution, but centered on rLP =
136.2 Mpc, thus excluding the true value at > 95% confidence.
On the other hand, using the ‘more complex’ degree 9 Laguerre
function gives exactly the same median rLP value, but with a
width that is nearly twice as large. Similar behaviour is seen
with smaller volume samples, with the Bayesian selection now
favouring lower degree Laguerre functions. Thus, the Bayesian
selection approach has the very practical benefit of optimising

1 We have also checked that replacing the Laguerre functions with

simple polynomials gives nearly identical results for the reduced
log-evidence, with only numerical differences between the best-

fit parameter values. The use of Laguerre functions can then be
ascribed to a theoretical prior p(HLaguerre) > p(Hpolynomial) for

describing ξ(s).
2 In principle, one could also envisage estimating an averaged

linear point, calculated by combining the linear point a posteriori
distributions for each M , weighted by the Bayesian evidence. We

have chosen not to do this in this work.
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6 Paranjape & Sheth

Figure 3. Same as Fig. 1, using Nreal = 2 realisations, corresponding to an effective simulation volume similar to the BOSS CMASS

sample. In this case, the Bayesian selection favours a degree 5 Laguerre function, as does the AICc statistic.

Figure 4. Same as Fig. 2, using a posteriori parameter distribution

selected using Nreal = 2 realisations (see Fig. 3), corresponding

to an effective simulation volume similar to the BOSS CMASS
sample.

the estimate on rLP, in terms of minimising its bias as well
as error.

Figs. 3 and 4 are formatted identically to Figs. 1 and 2,
respectively, and show the results when repeating the exercise
with Nreal = 2 realisations, so as to approximately mimic the
volume probed by the BOSS CMASS sample. This time, the
degree 5 Laguerre function is preferred by the log-evidence
comparison, which is sensible, given the noisier data. The
selection of degree 5 is also relatively clean already with `(H|y)
(unlike the case in Fig. 1), so that the Bayesian complexity is
not additionally required. Nevertheless, we have checked that

Cb = 5.995 for the best-fit model in this case, consistent with
the dimension M = 6. The prediction using the corresponding
best fit parameters describes the data very well, while the
quality of the linear reconstruction is now relatively degraded,
with larger deviations of the median prediction from the true
linear theory behaviour (which is nevertheless within the, now
broader, 95% confidence interval predicted by the a posteriori
distribution).

We also see that rLP is recovered very well, with a median
and central 68% confidence interval of rLP = 138.0+1.2

−1.2 Mpc
using Laguerre reconstruction, with the median being very
close to the true value, while the same using the polynomial fit
to ξ(s) is rLP = 137.8+1.4

−1.4 Mpc, i.e. favouring slightly smaller
values as expected, but only marginally in this case.

4 BAYESIAN BAO RECONSTRUCTION IN
BOSS

We have repeated this analysis using the redshift-space ‘pre-
reconstruction’ monopole ξ0(s) measured by Cuesta et al.
(2016) in the CMASS sample (median redshift z = 0.57) of
the BOSS DR12 data (Alam et al. 2015).3 Our goal here is to
provide a proof-of-concept of our technique on actual data. We
therefore fix all the theoretical cosmology-dependent factors
in our setup (such as the smearing scale Σ and the expected
linear theory value of rLP) to the values expected in the flat
ΛCDM cosmology used as the fiducial model in the BOSS
DR12 final cosmological analysis (Alam et al. 2017): Ωm =
0.31,Ωb = 0.04814,ΩΛ = 0.69, ns = 0.97, h = 0.676, σ8 = 0.8.

3 Strictly speaking, the publicly available measurements are re-

ported in bins of width 4h−1Mpc, whereas the analysis below uses
measurements in narrower bins (of width 2h−1Mpc) that were

kindly provided by A. Cuesta. We will, nevertheless, refer to them

as the measurements of Cuesta et al. (2016). Also, while we do not
pursue this, the formalism can just as easily be applied to fitting

simple polynomials to ‘post-reconstruction’ estimates of the 2pcf.
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Figure 5. Same as Fig. 1, showing results for the BOSS CMASS sample. The Bayesian selection now favours a degree 3 Laguerre function,

as does the AICc statistic.

We will refer to this as the BOSS cosmology below. The values
of Ωm and h in the fiducial cosmology are nearly identical
to the corresponding best-fit values derived from the final
constraints using BOSS DR12 by Alam et al. (2017).

This cosmology is slightly different from the fiducial cos-
mology assumed by Cuesta et al. (2016) to convert observed
angles and redshifts into distances. This flat ΛCDM cosmology,
having Ωm = 0.29,Ωb = 0.04586,ΩΛ = 0.71, ns = 0.97, h =
0.7, σ8 = 0.8, was the same as in the QPM mock halo catalogs
(White et al. 2014) used by Cuesta et al. (2016) for calculating
the covariance matrix of the ξ0 measurements. We will refer to
this as the QPM cosmology below. In order to be consistent, we
will report all derived numbers after converting length scales
from Cuesta et al. (2016) into equivalent ones in the BOSS cos-
mology using the rescaling `BOSS = `QPM×DV,BOSS/DV,QPM

for any length scale `, where DV is the volume averaged dis-
tance scale given by equation (6) of Cuesta et al. (2016), and
also self-consistently use Mpc units throughout.

The monopole measurements are provided in 2/0.7 Mpc
wide bins. The range of data chosen for the fitting exercise is
known to have small effects on the final result (e.g. Anselmi
et al. 2018a). One can then imagine a Bayesian evidence ex-
ercise in which one marginalises over a prior on the choice
of this range. In the present work, since our focus is on pre-
senting a proof-of-concept analysis, we simply restrict to the
range 60/0.7 ≤ s/(Mpc) ≤ 120/0.7 (using the measurements
provided by Cuesta et al. 2016), giving us N = 30 data points,
and comment on the sensitivity of our results to this choice
in Appendix A2. We will report the results of a full Bayesian
analysis marginalised over the range of scales in a separate
work.

For the covariance matrix, we use mock measurements
averaged over 1000 realisations of the QPM mock halo catalogs
mentioned above. In principle, the covariance matrix could
be slightly different in the BOSS cosmology that we have
adopted as our theory reference. For simplicity, we ignore this
difference.

The haloes selected for the QPM mocks had a real space

linear bias of b = 2.1. Since the value of σ8, which is the
main cosmological parameter degenerate with the value of b,
is the same in the BOSS and QPM cosmologies, we can simply
adopt b = 2.1 as the value of real space halo bias. Since we are
working in redshift space, the calculation of halo bias b and
the smearing scale Σ(z) must also account for redshift space
distortions at large scales. We follow Nikakhtar et al. (2022b)
and replace b→ beff and Σ→ Σeff , by first defining β = f/b
(where f = d lnD/d ln a = 0.784 and D(z)/D(0) = 0.744 at
z = 0.57 for the BOSS cosmology) and then writing

b2eff = b2
(

1 +
2β

3
+
β2

5

)
' (2.4)2 , (16)

Σ2
eff = Σ2

[
1 +

f

3
(2 + f)

(
1 + 6β/5 + 3β2/7

)
(1 + 2β/3 + β2/5)

]
' (11.9 Mpc)2 . (17)

We use this setup and proceed in the same way as in section 3.
Fig. 5 is formatted identically to Fig. 1 and shows the results
for the CMASS measurements. We see a clear preference for a
degree 3 Laguerre function, which gives an excellent descrip-
tion of the ξ0(s) data. As with the small-volume simulation
results of Fig. 3, the value of Cb = 3.998 for the best-fit is
consistent with the dimension M = 4, but is not needed since
`(H|y) has a well-defined peak at degree 3. The BAO peak is
not very pronounced, however, and the corresponding linear
reconstruction overestimates the expected peak location in
the BOSS cosmology. In this case, in addition to the caveats
mentioned above in the context of the real-space fits, the value
of halo bias b in the data is much more uncertain (e.g., due
to stochasticity of the galaxy-halo connection). Our intention
in showing the blue curve is therefore simply to guide the eye.
We could alternatively have chosen beff such that b2effξLin has
the same amplitude as ξL either around the linear point, or
at ∼ 100Mpc/h, which would improve the visual agreement
but not affect any of our conclusions.

Fig. 6 (which is formatted identically to Fig. 2) shows that,
as noted in earlier works, the recovery of the linear point rLP

MNRAS 000, 1–10 (0000)
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Figure 6. Same as Fig. 2, using the a posteriori parameter distri-

bution selected using the BOSS CMASS sample (see Fig. 5).

is relatively much more stable. We find a median and central
68% confidence interval of rLP = 140.2+1.4

−1.3 Mpc using the
Laguerre reconstruction (the corresponding value from the
polynomial fit to ξ is rLP = 139.0+1.5

−1.4 Mpc). The expected
theoretical value of rLP = 138.6 Mpc in the BOSS cosmology
and is well within the central 95% confidence interval of the
Laguerre reconstruction.4

5 DISCUSSION

We have presented a Bayesian approach to performing La-
guerre reconstruction (Nikakhtar et al. 2021) and inferring the
cosmological distance scale rLP (Anselmi et al. 2016) from mea-
surements of the 2pcf. Our framework exploits the linearity of
model parameters in the Laguerre reconstruction technique,
leading to a fully analytical calculation of the Bayesian evi-
dence. Standard ideas from Bayesian statistics then allow for
a principled selection of the degree of the Laguerre function,
as well as the a posteriori probability distribution of its pa-
rameters, that provides the ‘best, least complex’ description
of 2pcf data.

We applied these ideas to, both, simulated dark matter
haloes as well as the redshift-space galaxy 2pcf monopole
ξ0(s) derived from BOSS DR12 data in rectangular bins of
separation s. Given the number of approximations made in
our analysis (such as neglecting mode coupling and scale
dependent bias when calculating the smearing scale Σ used
in equation 14), the fact that the Laguerre-reconstructed
value of rLP from the BOSS CMASS sample agrees with

4 The median value recovered from fitting a polynomial to ξ is
slightly different from the value reported by Anselmi et al. (2018b)

using the same measurements and covariance matrix. Appendix A2

shows that this small (statistically insignificant) discrepancy arises
from the small difference in the range of scales used by those

authors.

the theoretical expectation in the BOSS final cosmology to
∼ 1% is very encouraging, and motivates an extension of
our technique to include the full anisotropy of the redshift
space 2pcf. This will be particularly interesting for upcoming
larger volume samples such as DESI (DESI Collaboration
et al. 2016). For such samples, it will also be important to
extend our framework to include a fully Bayesian treatment
of the range of s values that should be used in the fitting
analysis; this is work in progress.

Finally, although our analysis fit (non-central) generalised
Laguerre functions to ξ(s) data provided in rectangular bins
of s, it applies equally to the case in which ξ is directly
measured in bins shaped according to the Laguerre poly-
nomials (Al Rahman et al, in preparation). In addition, al-
though we have focused on modelling ξ on large BAO-relevant
scales, recent work has highlighted the usefulness of a poly-
nomial parametrization on small nonlinear scales (Krolewski
& Slepian 2021). Our Bayesian analysis is relevant to this
program also. Moreover, it is not limited to problems involving
the pair correlation function. For example, it can be applied
to recent work proposing a polynomial parametrization of the
star formation history of galaxies (Jiménez-López et al. 2022).
We will explore some of these ideas in forthcoming work.
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APPENDIX A:

A1 Derivation of equation (6)

Straightforward Gaussianology shows that p(y|H) is the N -
variate Gaussian given by

p(y|H) =

∫
da p(y|a,H)p(a|H)

→ N
(
Ma(p), C +MF−1

(p) M
T
)
, (A1)

so that we have

− 2 ln p(y|H) = ln det
(
C +MF−1

(p) M
T
)

+N ln(2π)

+
(
y −Ma(p)

)T (
C +MF−1

(p) M
T
)−1 (

y −Ma(p)

)
.

(A2)

To simplify this, it is useful to consider the a posteriori prob-
ability density p(a|y,H) for the parameters under hypothesis
H, given the observed data y,

p(a|y,H) =
p(y|a,H) p(a|H)

p(y|H)
, (A3)

so that, using equation (A2),

− 2 ln p(a|y,H)

= (y −Ma)T C−1 (y −Ma) + ln detC

+
(
a− a(p)

)T
F(p)

(
a− a(p)

)
− ln detF(p)

−
(
y −Ma(p)

)T (
C +MF−1

(p) M
T
)−1 (

y −Ma(p)

)
− ln det

(
C +MF−1

(p) M
T
)

+M ln(2π) . (A4)

The Woodbury identity gives us(
C +MF−1

(p) M
T
)−1

= C−1 − C−1M
(
F(p) +MTC−1M

)−1

MTC−1 , (A5)

which makes it convenient to define the M ×M matrix F and
the M -vector â using

F ≡MTC−1M+ F(p) , (A6)

â ≡ F−1
(
MTC−1y + F(p) a(p)

)
. (A7)

Combining this with the determinant identity

ln det
(
C +MF−1

(p) M
T
)

= ln detC − ln detF(p) + ln detF ,

(A8)

Figure A1. Same as Fig. 6, but using 2pcf measurements in the

range 60/0.7 ≤ s/(Mpc) ≤ 130/0.7 so as to match the analysis in
Anselmi et al. (2018b). In this case, the Bayesian evidence analysis
selected a degree 5 Laguerre function/polynomial, which was used

to infer rLP from the corresponding reconstructed ξL.

which can be proved using the Woodbury identity along with
Sylvester’s theorem, straightforward algebra leads to

−2 ln p(a|y,H) = (a− â)T F (a− â)− ln detF +M ln(2π) ,
(A9)

i.e., the a posteriori probability density of the parameters
defines a Gaussian with mean â and inverse covariance F :

p(a|y,H)→ N
(
â, F−1) . (A10)

The determinant identity (A8) and Woodbury’s identity (A5)
can similarly be used to derive equation (6) from equa-
tion (A2).

A2 Sensitivity to range of length scales

In this work, we have followed the literature and chosen a
‘reasonable’ range of values of s for fitting ξ(s) measurements
(Anselmi et al. 2018a; Parimbelli et al. 2021; Nikakhtar et al.
2021). To assess how sensitive our results are to this choice,
we have varied the end-points of this range and repeated the
entire Bayesian selection analysis of the BOSS CMASS data.

In general, we find that increasing the range results in higher
degree Laguerre functions and polynomials being favoured by
the Bayesian selection. This is sensible, since the larger range
implies a larger variation of ξ that must be modelled. For
example, to match the analysis of Anselmi et al. (2018b), we
considered the range 60/0.7 ≤ s/(Mpc) ≤ 130/0.7 (using the
QPM cosmology values of s reported by Cuesta et al. 2016),
leading to 35 data points. The Bayesian selection now favours
degree 5 for both Laguerre as well as polynomial fitting of ξ
(compared to degree 3 functions selected with the narrower
range used in the main text). A degree 5 polynomial was also
used by Anselmi et al. (2018b) in their estimate of rLP.

Fig. A1 shows the result of recovering rLP from the La-
guerre reconstruction (median and 68% interval rLP =
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138.6+1.5
−1.6 Mpc) and polynomial fit (rLP = 138.3+1.5

−1.6 Mpc).
These median values, which are slightly different from the
ones reported in the main text, nearly coincide with the
theoretical expectation of rLP = 138.6 Mpc in the BOSS
cosmology. Moreover, the polynomial fit median value and
68% interval, when scaled by DV of the BOSS cosmol-
ogy to get yLP = rLP/DV = 0.06716+0.00073

−0.00078, agree ex-
tremely well with the corresponding numbers reported by
Anselmi et al. (2018b) before applying their 0.5% correction:

y
(Anselmi+)
LP = 0.06690 ± 0.00073. We have also explored the

sensitivity of the Laguerre reconstruction to the choice of
range of s in larger volume samples, using the 20 HADES
realisations discussed in section 3. In this case, the differences
in selected degree and resulting recovery of rLP are somewhat
larger. This motivates the fully Bayesian analysis alluded to
in the main text, which we will report in a future publication.
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