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Abstract—We present a novel method for the identification 

of abnormal episodes in gas-turbine vibration data, in which 

we show 1) how a model of normal engine behaviour is 

constructed using signatures of “normal” engine vibration 
response; 2) how extreme value theory (EVT), a branch of 

statistics used to determine the expected value of extreme 

values drawn from a distribution, can be used to set novelty 

thresholds in the model, which, if exceeded, indicate an 

“abnormal” episode; 3) application to large data sets of 

modern gas-turbine flight data, which shows successful 

novelty detection results with low false-positive alarm rates.  

The advantages of this approach over previous work are 1) a 

very low false-positive alarm rate, while maintaining 

sufficient sensitivity to detect known abnormal events; 2) 

the use of a Bayesian framework such that uncertainty in the 

distribution of “normal” data is modelled, giving a 
principled, probabilistic interpretation of results; 3) an 

implementation that is sufficiently “lightweight” in 

processing and memory resources that real-time, on-line 

novelty detection is possible in an “on-wing” engine health-

monitoring system.12 
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1. INTRODUCTION 

Novelty Detection 

Modern aero engines are designed to be extremely reliable 

and robust, typically operating for many thousands of hours 
before requiring major overhaul. High product reliability 

and the ability to minimise unplanned equipment downtime 

are therefore significant factors in service support required 

to guarantee availability throughout operational life. A 

major component of this capability is the provision of 

diagnostic and prognostic tools through advanced health 

monitoring. Condition monitoring, employing novelty 

methods, is therefore a key aspect of this process. 

 

In novelty detection (or one-class classification), a model of 

normality is constructed from “normal” data with significant 

deviations from that model classified as “abnormal” [1].  In 
the field of condition monitoring this technique is 

particularly well-suited to the identification of event 

precursors in data sets where the number of abnormal 

examples is too small to adopt a conventional fault-

detection (multi-class classification) approach.  This is a 

typical scenario in high-integrity systems such as gas-

turbine engines, in which faults are very rare in comparison 

with long periods of normal operation [2]. 

 

Existing Work 

Current methods of novelty detection in aerospace gas-
turbine engine data suffer from a number of disadvantages:  

1) A novelty threshold is set on the model output such that 

data exceeding this threshold are deemed “abnormal” – this 

is the decision boundary.  The setting of this novelty 

threshold often relies on a heuristic approach [1].  Such 

heuristics are typically derived from engineering experience, 

and have no principled, quantifiable measure of the 
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likelihood of false detections (which is required for making 

business decisions regarding the operation of condition 

monitoring).  This reliance on heuristic expertise also makes 

transferral of knowledge between engineering projects 

difficult – typically, the setting of novelty thresholds is 

performed in a heuristic, time-consuming manner for each 
new engine design.  This also precludes the use of the 

system in an automated on-line setting, as the model’s 

novelty thresholds cannot be set without human intervention 

[3]. 

2) Many high-integrity systems are susceptible to the 

presence of noisy data, which can result in undesirable 

false-positive novelty detections.  In the analysis of gas-

turbine engines, for example, the cost associated with a 

false-positive alarm is particularly high, and must be 

reduced as much as possible while still being sufficiently 

sensitive to detect episodes of abnormality [2].  

3) Existing approaches require an explicit training period, 
sometimes over 50 flights in duration for aircraft engines 

[4,5], during which the model cannot perform novelty 

detection.  It is desirable that novelty detection is performed 

as early as possible, ideally from the entry of the system into 

service. 

This paper presents the results of an investigation into a new 

method of novelty detection that overcomes these 

disadvantages.   

Paper Overview 

In Section 2, we describe the vibration data domain used in 

the investigation described by this paper, introducing 
challenges for the novelty detection process that arise due to 

the nature of aerospace gas-turbine vibration.  Section 3 

describes a proposed Bayesian extension to extreme value 

statistics that allows the setting of novelty thresholds to be 

performed in a principled, probabilistic manner, and which 

allows novelty detection to take place during model training. 

 The application of the technique to several large data sets of 

vibration data recorded from a modern gas-turbine is 

described in Section 4, and results of novelty detection are 

presented.  Finally, Section 5 discusses the advantages and 

limitations of the proposed technique, and introduces topics 
for further research. 

2. GAS-TURBINE VIBRATION DATA 

Modern aerospace gas-turbine engines divide the task of air 

compression from atmospheric pressure to that ultimately 

required within the combustion chamber into several stages. 

 Many gas-turbine engines within the civil aerospace market 

involve three consecutive compression stages: the low 

pressure (LP), intermediate pressure (IP), and high pressure 

(HP) stages [6].  Air passes through each stage as it travels 

from the front of the engine to the rear, being further 

compressed by each, until it reaches the combustion 

chamber. 

Each of the compressor stages is driven by its own turbine 

assembly, resulting in three corresponding turbine units 

situated within the exhaust stream at the rear of the engine.  

Each compressor is linked to its corresponding turbine by a 
separate shaft, which are mounted concentrically.  In three-

compressor engines, these are named the LP shaft, the IP 

shaft, and the HP shaft.  The operating point of the engine is 

often defined in terms of the rotational speed of these shafts 

[7]. 

Transducers are mounted on various points of the engine 

assembly for the measurement of engine vibration.  

Vibration data used for investigations described in this 

paper were acquired using the QUICK acquisition system 

[8] that computes spectral representation of engine vibration 

via high-resolution FFTs at rate 5 Hz, for each sensor 

output.  Engine vibration is assumed to be pseudo-stationary 
over this measurement period such that the generated FFTs 

may be assumed to be close approximations of actual engine 

vibration power spectra. 

Tracked Orders 

A tracked order is the fundamental data type used in the 

investigation described by this paper, and is defined to be 

the amplitude of engine vibration measured within a narrow 

frequency band centred on the fundamental or a harmonic of 

the rotational frequency of a shaft [4].  During normal 

engine operation, most vibration energy is present within 

tracked orders centred on the fundamental frequency of each 
rotating shaft; we term these the fundamental tracked orders. 

 Using the terms LP, IP, and HP to refer to engine shafts, we 

define fundamental tracked orders associated with those 

shafts to be 1LP, 1IP, and 1HP, respectively. 

Vibration Signatures 

We define a vibration signature to be the vibration 

amplitude or phase of a tracked order measured over a range 

of speeds of the corresponding shaft.  For example, a 

signature may be constructed from 1HP vibration data 

measured as a function of the speed ω of the HP shaft.   

Tracked order vibration is measured across the speed range 
ω = [0 100] % maximum speed of the corresponding shaft.  

This speed range is subdivided into B equal bins, defining B 

sub-ranges of ω.  Within each bin b = 1…B, vibration 

amplitude or phase values observed within the 

corresponding sub-range of shaft speeds are collected.   

Figure 1 shows an example vibration signature, in which 

amplitude of vibration |x| is shown against shaft speed ω, for 

B = 400 bins on the horizontal axis.  Mean vibration 

amplitude µ can be seen to be generally increasing with 

shaft speed, while maximum variance of |x| occurs at 

approximately ω = 50%. 
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In this paper, we consider only vibration amplitude; the use 

of phase is considered as future work in Section 5.   

Figure 1 - A vibration signature showing vibration 

amplitude |x| against shaft speed ω.  Mean vibration 

amplitude µ is shown as a yellow line plotted through the 

centre of each distribution.  Example novelty thresholds 

are shown as red lines above and below µ. 

Existing Use of Vibration Signatures 

Previous approaches construct a speed-based vibration 

signature from vibration values observed during a single 

engine run, which could be either a single flight or a single 

ground-based test cycle [4,5,7,9].  The vibration values in 

each of the B bins are averaged, resulting in a vector of B 

average vibration amplitudes for each engine run.  A model 

of normality is then constructed from these B-dimensional 

vectors, using clustering methods [10] or a Support Vector 
Machine [4].  This has been shown to allow the separation 

of vibration signatures from “normal” and “abnormal” 

flights. 

However, these methods suffer from the three disadvantages 

noted in Section 1 (reliance on heuristic expertise, potential 

for over-sensitivity resulting in false alarms, and the 

requirement for a training period during which novelty 

detection does not take place).  Furthermore, by only using 

the mean vibration value in each speed bin, useful 

information regarding the full distribution of vibration data 

is discarded. 

For the purposes of the investigation described by this 

paper, we wish to consider the full distribution of vibration 

values within each of the B speed bins.  For each bin b, we 

will find lower and upper novelty thresholds (hmin and hmax, 

respectively) such that if a flight contains vibration 

amplitudes falling outside the range [hmin  hmax], it will be 

classified “abnormal”.  Example novelty thresholds are 

shown in Figure 1 as red lines.   

3. THEORY 

This section describes the proposed method of setting 

novelty thresholds in each speed bin b such that the 

previously-identified disadvantages are overcome.   

First, conventional approaches to setting novelty thresholds 

are described, which are seen to result in oversensitivity to 

noisy in the “normal” data.   

Secondly, the field of extreme value theory (EVT) is 

presented as a statistical method for setting novelty 

thresholds that can overcome this sensitivity to noise, but 

which has further disadvantages of its own when less than 

50 engine runs of data are available. 

Finally, a novel Bayesian extension to extreme value 

statistics is presented that overcomes this requirement for 

large amounts of data by modelling uncertainty in our 

estimate of the data distribution.  This allows novelty 

thresholds to be set using as few as 2 engine runs of data, 

and which adapt to new data as more engine runs are 

completed. 

Conventional Methods for Setting Novelty Thresholds 

Given the distribution of vibration amplitudes within a 

speed bin b, conventional methods of setting novelty 

thresholds could be used in which a statistical model is fit to 

the data, giving an estimate of the underlying data 

distribution p(x).  Approaches to this vary from parametric 

approaches, in which the data are assumed to be generated 

from a known distribution (such as the Gaussian 

distribution), to semi-parametric approaches, such as using a 

Gaussian Mixture Model [11].  The novelty threshold is 
then set in the tail of this distribution p(x), often using the 

cumulative distribution such that P(x) ≤ 1-H, where H is the 

probability of observing an abnormal event (e.g., H = 10-6). 

An example is shown in Figure 2, in which a Gaussian 

distribution has been fitted to “normal” vibration data in a 

speed bin b, and an upper novelty threshold hmax set in its 

tail, here using the cumulative probability distribution  

P(x) ≤ 1-10-6. 

However, because the novelty threshold is set far into the 

tail of the distribution, it occurs where p(x) takes very small 

values, and where the gradient of p(x) and P(x) is almost 

zero.  Thus, small changes in the “normal” data can result in 
significant changes in the location of the novelty threshold, 

making it oversensitive to noise. 
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Figure 2 – Vibration amplitudes within an example 

speed bin, used to fit a Gaussian distribution (curved 

line).  A novelty threshold has been set in its tail (dotted 

line). 

Extreme Value Statistics for Setting Novelty Thresholds 

Extreme value statistics is a branch of statistics that 

effectively models the tails of distributions, describing 

where extreme values drawn from the distribution of 

“normal” data are expected to lie.   

One of the fundamental theories in “classical” extreme 

value statistics, the Fisher-Tippett theorem [12], states that 

if we draw X = {x1…xm} samples from a Gaussian 

distribution p(x) = N(µ, σ2), the probability distribution pE(x) 
describing where we expect the most extreme of those m 

samples to lie tends towards the Gumbel distribution: 

 ( ) ( )( )exp exp
E m m
p y y= ! !  (1) 

which we term the Extreme Value Distribution (EVD), 

where ym is termed the reduced variate, 
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In the same way that conventional methods can use the 
cumulative distribution P(x) to set a novelty threshold at 

P(x) ≤ H (for some threshold probability H), so the 

cumulative distribution PE(x) associated with (1) can be 

used to set a novelty threshold [14]: 

 

 ( ) ( ){ }exp exp
E m
P x y= ! !  (4) 

Figure 3 – The distribution pE(x), shown as the right-

most curve, describes where the most extreme of m = 

100 samples drawn from the data distribution should lie. 

 A novelty threshold is set in the tail of pE(x) which is 

tolerant to noise in the “normal” data. 

An example is shown in Figure 3, in which pE(x) describes 

our belief in where the most extreme of m = 100 points 

drawn from the distribution of the “normal” data will lie.  A 

novelty threshold has been set at PE(x) ≤ 1-10-6.   

This novelty threshold set using extreme value statistics is 

tolerant to noise, because it depends only on the number of 

samples drawn m (which is independent of the “normal” 

data), and the parameters µ and σ, which are insensitive to 

small changes in “normal” data.  Thus, extreme value 
statistics can overcome the disadvantage encountered by the 

use of conventional methods in setting novelty thresholds. 

Disadvantages with Classical Extreme Value Statistics 

In practice, the distribution of vibration amplitudes within a 

speed bin b is often not Gaussian.  In both flight data and 

ground-based data, the distribution can be multimodal [15].  

However, following [16], rather than using the entire data 

set, if we instead only consider the N = 3 maximum and N = 

3 minimum vibration amplitudes in a speed bin for each 

engine run, the resultant maxima and minima distributions 

are approximately Gaussian, and tend towards the Gumbel 
distribution (1), as shown in Figure 4. 

Figure 4 – The data distribution for all vibration 

amplitudes within an example speed bin, across all 

engine runs, are bimodal (left).  The distribution formed 

from taking the N = 3 maxima from each engine run is 

approximately Gaussian (right). 
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Thus, we find speed bin b’s upper novelty threshold hmax 

using the distribution of maxima (formed by taking the 

N = 3 maxima from bin b in each engine run), and likewise 

find the lower novelty threshold hmin using the distribution 

of minima (formed by taking the N = 3 minima from bin b 

in each engine run). 

A second disadvantage of classical extreme value statistics 

is that the resultant novelty threshold is correct only if we 

have a reliable estimate of parameters µ and σ.  This is 

because the novelty threshold is dependent on PE(x), which 

is ultimately dependent on µ and σ (via ym and x’).  In 
previous work [17,18], the maximum likelihood (ML) 

measures µML and σML are used to estimate µ and σ; i.e., the 

mean and standard deviation of the “normal” data observed 

so far.  In an on-line context, these ML measures are good 

estimates of the true µ and σ when large numbers of data are 

observed, but can be very poor estimates when only smaller 

numbers of data are available.  This is particularly true for 

application to distributions of maxima (or minima): if each 

engine run results in N = 3 new observed values, the ML 

measures may only be accurate estimates of the true µ and σ 

after a large number of engine runs, and thus the novelty 

threshold may be unreliable for small numbers of runs. 

Bayesian Extreme Value Statistics 

In order to overcome this problem associated with 

unreliable estimates of the parameters µ and σ, we set the 

problem within a Bayesian framework, explicitly modelling 

the uncertainty in our estimates of µ and σ.   

We form probability distributions p(µ) and p(λ) that model 

our belief in the value of the parameters of the data 

distribution, µ and λ (where we used precision λ = 1/σ2 for 

later notational convenience).  That is, instead of a single 

pair of ML estimates µML and σML, which may be inaccurate, 

we now consider a range of possible values for µ and λ. 

These distributions p(µ) and p(λ) can be updated online as 

we observe more data X, using Bayesian updating [19].  

That is, after observing data X, our current belief in the 

values of µ and λ is given by the distributions p(µ|X) and 

p(λ|X).  An example is shown in Figure 5, in which an initial 

prior estimate for p(µ) and p(λ) is shown in the left subplot, 

noting that this joint distribution is p(µ,λ|x).  As more data X 

are observed, p(µ,λ|X) becomes more peaked around the true 

values of µ and λ.  Thus, for large numbers of observed data, 

p(µ,λ|X) tends towards the ML estimate – but for smaller 

numbers of data, when the ML estimate may be poor, a 

wider range of possible µ and λ values is considered. 

Our goal is to find a final EVD pF(x), after observing data 

X, that takes into account the current range of possible µ and 

λ values.  This can be achieved by integrating (1) over all 

values of µ and λ: 
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which has no solution in closed form.  However, we can 

write the integration as a weighted sum individual EVDs 

pE(x) 
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where each of the S weights is determined by sampling the 

joint distribution p(µ,λ|X).  This method is computationally 

lightweight and accurately provides the final EVD pF(x). 

In order to set the novelty threshold as before, we require 
the cumulative distribution PF(x), which from (6) will be a 

linear sum of individual cumulative distributions PE(x), 

given by  (4): 

 

( ) ( )

( )

( )

( )

1

1

1

 

 

F m f m m

S

i E m

i

S

i E m

i

S

i E m

i

P y p y dy

w p y

w p y

w P y

!

"!

!

="!

!

= "!

=

=

# $
= % &

' (

# $
= % &

' (

=

)

*)

* )

*

 (7) 

Figure 5 – Distributions p(µ|X), shown on the horizontal axis, and p(λ|X), shown on the vertical axis, give the joint 

probability distribution p(µ,λ|X).  From left to right, the joint distribution is plotted for 0, 10, and 25 observed data 

x.  As more data x are observed, the joint distribution becomes more peaked around the true values of µ and λ. 
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Figure 6 – Novelty thresholds hmax (vertical axis) for an 

example data set of increasing number of engine runs 

(horizontal axis), comparing the threshold for the 

proposed Bayesian method (thick line) with the 

threshold set using only the ML parameter estimates 

(thin line).  Units have been anonymised. 

 

Finally, we set the novelty threshold using (7) such that 

PF(x) ≤ 1 - H.   

A comparison of setting novelty thresholds using the 

proposed Bayesian-EVT method and the existing ML-based 

method is shown in Figure 6, using an example data set.  It 

can be seen that the proposed method sets novelty 

thresholds high when only small numbers of engine runs are 

available.  At this point, there is maximum uncertainty in 

our estimates of the true parameters of the data distribution 
µ and λ, and so the thresholds are set at their most 

conservative.  As more engine runs are completed, and we 

observe more data, the uncertainty in our estimate 

decreases, and the novelty threshold similarly becomes less 

conservative, reflecting our increased confidence in our 

estimates.   

In contrast, the ML-based method does not take into account 

this uncertainty for smaller numbers of engine runs, and so 

sets novelty thresholds much lower – this increases the 

probability of the ML-based method generating false-

positive alarms, because the estimates may be poor for 

smaller numbers of engine runs. 

Note that, for large numbers of engine runs, the proposed 

method and the ML-based method converge, as desired. 

We note that previous approaches to using Bayesian 

methods with EVT have been restricted to direct estimation 

of the location and scale parameters cm and dm [20], without 

accounting for the uncertainty in the underlying data 

distribution µ and λ, which is necessary for the purposes of 

on-line novelty detection, and does not result in the 

behaviour of the novelty threshold shown in Figure 6. 

4. APPLICATION TO FLIGHT DATA 

This section describes the application of the proposed 

Bayesian extension to EVT for novelty detection in several 
large data sets derived from flights of modern civil gas-

turbine engines.  Results from this retrospective analysis are 

presented comparing the performance of the proposed 

method to the existing ML-based method, and to a heuristic 

method currently used by domain experts for engine 

vibration analysis. 

Data Description 

The data sets considered within the investigation described 
by this paper fall into two groups: 

A) Abnormal data, which contain known engine events, and 

precursors to those engine events. 

B) Normal data, which contain no known engine events. 

Thus, data from the first group are used to test the sensitivity 

of the various novelty detection methods (ensuring that they 

can correctly identify engine events, and precursors to those 

engine events), while data from the second group are used to 

test the specificity (ensuring that the false-positive alarm 

rate is sufficiently low). 

Table 1 describes the data sets used in this investigation 
(divided into groups A and B, described above), each of 

which was recorded during flights of different engines.  The 

average length of each flight is greater than 1 hour, resulting 

in a total data set size of greater than 449 hours. 

The data were obtained as described in Section 2.  Thus, 

each flight resulted in three speed-based signatures of 

vibration amplitude, corresponding to the amplitude of the 

three fundamental tracked orders, 1LP, 1IP, and 1HP.  Each 

signature was constructed by dividing the speed range into  

B = 20 sub-ranges.   

 

 
 

Table 1 – Description of data sets used. 

Data Set 
Length 

(in flights) 
Comments 

A1 72 

Engine event occurs in flights 71-

72 

Precursors occur in flights 65-70  

A2 27 
Engine event occurs in flight 23 

No precursors 

B1 87 No events 

B2 96 No events 

B3 126 No events 

B4 41 No events 

 449 (Total number of flights) 
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Experimental Methodology 

Given that each data set contains data from a separate 

engine, an engine-specific approach was simulated by 

considering each data set separately. 

To simulate the on-line novelty detection process, we step 

through each data set flight-by-flight - each flight resulting 
in a 20-bin signature for each of the three fundamental 

tracked orders.   

Stepping through flights from [2 n], at flight n, we will 

compare data from the current flight against a model of 

normality constructed from the previous [1  n-1] flights.  

Thus, at flight n, for each of the B speed bins, we form a 

data set from the N = 3 maxima from the [1 n-1] flight 

signatures observed so far, treating each tracked order 

separately.  I.e., at flight n, we have a distribution of 3(n-1) 

maxima for each of the B speed bins, for each of the three 

tracked orders.  This is repeated separately for minima.  As 
described in Section 3, we can now set lower and upper 

novelty thresholds (hmin and hmax) in each speed bin.  We set 

thresholds using three methods for comparison: 

Method 1: conventional ML-based EVT, as described in 

Section3. 

Method 2: the proposed Bayesian-EVT method 

Method 3: a heuristic method, currently used by domain 

experts. 

This latter method sets novelty thresholds hmin and hmax for 

observed data X as follows: 

 
( )

( )

max

min

max

min

h K

h K

µ µ

µ µ

= + ! " #$ %

= " ! " #$ %

X X

X X

X

X

 (8) 

where µX is the mean of X, and K is some constant, chosen 

heuristically on a model-by-model basis to best separate 

“normal” data from “abnormal” data, typically taking values 

in the range K = [1.2  1.5].   

Classification 

Thus, for each of the three methods, at flight n, we have set 

novelty thresholds hmin and hmax in each of the B = 20 speed 

bins, for each of the three fundamental tracked orders.  A 

method classifies a flight tracked order signature 
“abnormal” if it contains vibration data that exceed novelty 

thresholds in two or more speed bins.  This latter restriction 

removes the potential for single-point noise spikes to cause 

a tracked order signature to be classified “abnormal”. 

We define true-positive (TP), false-positive (FP), true-

negative (TN) and false-negative (FN) classifications 

according to the agreement between the classification of a 

tracked order signature output by the novelty detection 

method (“normal” or “abnormal”) and presence or absence 

of an engine event (or precursor event), as described in 

Table 1.  

The sensitivity is the proportion of tracked order signatures 
containing actual engine events that were correctly 

classified as “abnormal”: 

 
TP

Sensitivity
TP FN

=
+

 (9) 

The specificity is the proportion of tracked order signatures 

containing no actual engine events that were correctly 

classified as “normal”: 

 
TN

Specificity
TN FP

=
+

 (10) 

These two metrics are often used for comparing the 

performance of classification schemes [1], with the ideal 

novelty detection method having sensitivity and specificity 

of 1.0. 

Results 

Results of setting novelty thresholds using the three 

methods are shown in Table 2, given as sensitivity and 

specificity.  Note that, because data sets {B1…B4} contain 

no abnormal events, the sensitivity will always be zero, 

because TP = 0.  These “normal” data sets are used only to 
evaluate the specificity of each method. 

Discussion 

When applied to the “abnormal” data sets A1 and A2, all 

three methods detected both of the engine events and the 

same set of precursor events.  Several of the precursor 

events from data set A1 were not detected by any of the 

methods, due to the low magnitude of vibration amplitude 

observed during those flights.  However, all three methods 

provided the same amount of advance warning of the main 

engine event (which took place in flight 71), detecting the 

first precursor event during flight 65.  Thus, the sensitivity 
can be seen in Table 1 to be identical for all three methods. 

The specificity of the three methods is significantly 

different, with the heuristic method attaining specificity 

0.73, the ML-based EVT method attaining 0.83, and the 

proposed Bayesian-EVT method attaining 0.99.   

This significant improvement in specificity is the key 

advantage of the proposed method over the original ML-

EVT method and the heuristic method, which were 

suspected a priori to suffer from large numbers of false- 
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positive alarms.  The ML-EVT method, as shown in Figure 

6, keeps novelty thresholds low even when uncertainty in 

the model is at its maximum (when there are small numbers 

of flights).  This results in many “normal” flights being 

incorrectly classified “abnormal”, particularly within the 

first 20-30 flights of each data set.  The heuristic method, 

which uses max(X) to set the novelty threshold hmax and 

min(X) to set the novelty threshold hmin, is entirely 

dependent on the single largest and smallest values in the 

data set, respectively.  This results in particularly poor 
performance, because the novelty thresholds are maximally 

sensitive to changes in those single points – no density 

estimation is takes place in the heuristic scheme, and 

information concerning the distribution of points around the 

data mean is disregarded. 

5. CONCLUSIONS 

This paper has presented a method of novelty detection that 

correctly identifies engine events and provides advance 

warning of those events by detecting precursor events.  In 

comparison to existing methods, it has been shown to 

provide similar levels of sensitivity to event detection, but 

does not suffer from the particularly high false-positive 
alarm rates that are problematic in the use of conventional 

systems.   

Performance of the method in comparison to existing 

techniques has been verified using large quantities of in-

flight vibration data from a number of modern aerospace 

gas-turbine engines. 

The proposed method is suitable both for off-line engine 

monitoring, in which vibration signatures are constructed at 

the end of each flight (such as may be performed in a 

ground-based tracking station), and on-line monitoring, 

taking place within an engine-mounted health monitoring 

system.  The method is lightweight in memory and 
processing requirements, such that it may be implemented 

“on-wing”. 

 

An engine-specific approach to novelty detection has been 

shown to be possible, in which the characteristics of data 

from individual engines is learned – this often provides 

better performance than generic “fleet-wide” models of 

normality [21,22], in correctly identifying behaviour that is 

abnormal for that engine, while minimising the number of 

false-positive alarms generated. 

The proposed method is also “adaptive”, with constant on-

going updating of its model of normality as engine runs are 

completed.  This allows novelty detection to occur 
throughout the service life of the engine, without the need 

for a special training period. 

Limitations and Future Work 

This paper has described the application of the proposed 

method to tracked order amplitudes collected within speed-

based vibration signatures.  However, the proposed 

Bayesian extension to EVT is applicable to general 

estimation tasks.  Note, however, that this system has been 

devised specifically for the application to systems in which 

the cost of false-positive alarms is particularly high (as in 

the monitoring of aerospace gas-turbine engines).  The 
proposed method sets novelty thresholds to be high when 

uncertainty in the model is high (for smaller amounts of 

observed data), and may thus be insensitive during this 

initial period – the novelty thresholds are initially set 

conservatively.  This may be unsuitable for different 

application domains in which the cost of false-positive 

alarms is low in comparison to the cost of missing an 

abnormal episode – for example, in the detection of cancers 

in medical images, the specificity is much less critical than 

the sensitivity.  However, within the domain of high-

integrity system condition monitoring, the proposed method 
has been shown to be advantageous in comparison to 

existing methods. 

Future research will include the application of the technique 

to vibration phase, and to non-vibration data sets, such as 

“performance parameters” (engine temperatures, pressures, 

etc.), which have previously been used with off-line density-

estimation approaches [23].  

 Method 1: Bayesian EVT Method 2: ML-Based EVT Method 3: Heuristic 

Data Set Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

A1 0.75 1.00 0.75 0.97 0.75 0.93 

A2 1.00 1.00 1.00 0.90 1.00 1.00 

B1 - 1.00 - 0.99 - 0.99 

B2 - 1.00 - 0.85 - 0.45 

B3 - 0.99 - 0.70 - 0.68 

B4 - 1.00 - 0.70 - 0.65 

Overall 0.78 0.99 0.78 0.83 0.78 0.73 

Table 2 - Results 
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