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Abstract

This paper presents a statistical face recognition algorithm by expressing face images in terms of orthogonal

two-dimensional Gaussian-Hermite moments (2D-GHMs). Motivation for developing 2D-GHM-based recognition

algorithm includes the ability of these moments to capture higher-order hidden nonlinear 2D structures within

images and the invariance of certain linear combinations of moments to common geometric distortions in images.

The key contribution of this paper is that features of 2D faces are represented in terms of a statistically selected set of

2D discriminative GHMs (DGHMs) as opposed to commonly chosen heuristic set of first few order moments only. In

particular, the intraclass correlation coefficient for the entire set of moments of the training images are used to select

only a desired set of moments that maximize the discrimination among available classes. The naive Bayes classifier

that yields optimal performance in many statistical applications is used for identification due to the simplicity of its

implementation for handling huge size face database. Experiments are conducted to evaluate the performance of the

proposed recognition algorithm on exhaustive databases such as the AT&T, Face Recognition Grand Challenge

(FRGC), Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and YouTube that possess face images

or videos with significant variations in terms of appearance, occlusion, expression, pose, resolution, and illumination

both in the constrained and unconstrained environments. In the constrained condition, comparisons with the

well-established 2D-principal component analysis, 2D-linear discriminant analysis, and 2D-canonical correlation

analysis methods as well as orthogonal 2D-Krawtchouk moment-based method reveal the superior performance of

the proposed method in terms of recognition accuracy for varying numbers of training and probe images. The

proposed DGHM features also show superior recognition or verification performance on the standard protocols of the

unconstrained face databases when comparing with the commonly referred descriptors such as the local binary

pattern or scale-invariant feature transform.

Keywords: Intraclass correlation coefficient, Gaussian-Hermite image moments, Naive-Bayes classifier, Statistical

pattern recognition

1 Introduction
Over the past two decades, biometric security systems

that allow identification of individuals using their physio-

logical or behaviorial traits, have become an integral part

of many security-aware applications due to the increas-

ing demand for “identity verification”. By overcoming

the spoofing vulnerability of the traditional methods of

authenticity verification such as passwords, PIN, or ID

cards, biometric security systems have become indispens-

able tools in financial transactions, access control, and
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surveillance. Among various existing biometric methods,

automated face recognition is often preferred due to its

nonintrusive nature, high level of machine compatibility,

and positive attitude of the public [1]. In most of the exist-

ing face recognition algorithms, the identification of a per-

son is performed using the pixels of two-dimensional (2D)

face images captured by ubiquitous CCD-based visible

light sensors. The video-based face recognition focuses

on the identification of a person in the noncoopera-

tive environment by using the chronological variations in

the appearances of 2D face images over the frames [2].

Instances may also be found in the literature with regard

to the 3D face recognition algorithms, wherein identifi-

cation is performed considering the information of light
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intensities captured by pixels of 2D face images along with

the depth information of each pixel. Notably, the 3D face

recognition techniques have two major difficulties with

regard to the acquisition and processing of images [3]. In

the acquisition process, the depth information of an image

is captured using multiple sensors such as the CCD and

laser sensors in which case the latter provide much lower

resolution than the former, and thus, registration to obtain

3D image becomes complex. A number of CCD sensors

may provide depth information, but the focus adjustment

of camera lenses and maintaining spatial distances among

cameras requires extreme precision. In addition to com-

plexity of the acquisition process, 3D face recognition

involves significant memory requirements, and compu-

tational load while performing a one-to-many searching

task as compared to the 2D counterparts. It is for these

very reasons that commercial face recognition systems,

which deal with large numbers of people in busy places,

still use the popular 2D face recognition techniques and

research centers on ways to improve the identification

performance of suchmethods. In the research studies, sta-

tistical methods are being increasingly used to analyze the

random variations of 2D spatial distribution of pixel inten-

sities among the face images of individuals or subjects and

to develop efficient face recognition algorithms.

Face recognition consists of two major steps that rely on

statistical methods: low-dimensional feature representa-

tion for face images and identification of the class of the

face image in question based on the chosen set of features.

There are two principal reasons why low-dimensional

feature representation needs to be performed for face

recognition. First, in a constrained face recognition algo-

rithm, the face image is a high-dimensional data set that

contains extreme information redundancy. For example,

a 2D image having pixels of size 100 × 100 can be seen

as a point in a 10-K-dimensional feature space. In the

unconstrained face recognition, the deep learning-based

matching methods that use the densely sampled descrip-

tors such as the local binary patterns (LBPs) or manifolds

may even require the dimension of features of size as high

as 100 K. In general, the classification accuracy obtained

from such a high-dimensional feature space is restricted

due to the fact that the number of training samples avail-

able is usually much smaller. Further, the face recognition

task carried out in the high-dimensional feature space

is also constrained due to the storage requirements and

computational power. This problem, known as the “curse

of dimensionality”, is very often tackled by the use of low-

dimensional feature extraction of the entire set of pixels

or sparse regression of high-dimensional local features [4].

Secondly, the pixels of different images of the same per-

son may vary widely due to variations in expression, pose,

viewing angle, illumination, and age, while the pixels of

different persons may not vary significantly [5–7]. In such

a case, the within-person variability very often becomes

larger than the between-person variability making the

recognition task difficult in pixel domain. Thus, the design

of an efficient face recognition algorithm requires judi-

cious construction of a feature vector that maximizes the

between-person variability, while minimizing the within-

person variability across 2D spatial coordinates of an

image as well as changing conditions of image capturing.

In the literature, there are two approaches that have been

used to tackle these problems. One approach is to use a

suitable set of landmarks consisting of noticeable facial

parts such as the eyes, nose, and mouth as well as the rela-

tive locations and the statistics of local neighboring pixels

of these landmarks to construct feature vectors contain-

ing relevant and nonredundant information [8, 9]. The

other approach, termed the holistic/global/appearance-

based approach, treats the entire face image as a point

in high-dimensional space [7]. In this practice, statisti-

cal dimension reduction techniques are used to represent

the entire face images in terms of their projections into

a low-dimensional space so that the constructed features

capture the important characteristics of faces to be rec-

ognized [10, 11]. In general, the holistic approach is pre-

ferred to the landmark approach due to the fact that the

former preserves the interrelations among the entire facial

regions, whereas the latter considers just a few regions for

recognizing the identity of an individual.

Traditional holistic face recognition algorithms are

developed using the classical statistical techniques such as

the principal component analysis (PCA), linear discrim-

inant analysis (LDA), and canonical correlation analysis

(CCA) [12]. For instance, the popular Eigenfaces method

uses the PCA to reduce the dimensionality by identify-

ing a small number of directions that capture the majority

of variations in the images [13]. The Fisherfaces method

[14], which is related to the well-known multivariate anal-

ysis of variance (ANOVA) framework in statistics [12],

reduces the dimensionality by using a linear projection of

the images that maximizes the ratio between the inter-

class image variation to the intraclass variation. Methods

have also been developed using the CCA approach, which

allows two projection spaces—one for the training images

and the other for the test images, commonly referred to

as the probe images. These methods use a suitable set of

canonical variables obtained from the covariance matri-

ces of the training and probe image pairs in the two

spaces to identify the subject [12]. Since the inception of

the Eigenfaces and Fisherfaces methods, numerous vari-

ations and extensions of these methods that include the

Eigenface maximum likelihood [15], adaptively weighted

subpattern PCA [16], kernel PCA [17], null-space LDA

[18], dual-space LDA [19], regularized discriminant anal-

ysis [20], boosting LDA [21], Fourier-LDA [22], Gabor-

LDA [23], and incremental LDA [24] have been suggested
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for face recognition. Most of the existing PCA- and LDA-

based classification methods while applied to the images

consider the transformation of image matrices to image

vectors. Since the linear or nonlinear dependencies within

and between classes of the second- or higher-order local

structures of the face images may only be taken care of by

using the 2D image matrices, processing of image vectors

is undesirable. Further, vectorizing the image matrices

very often shows a singularity problem during the inver-

sion of scatter matrices in case of LDA-based training.

In this context, 2D-PCA [25], symmetrical 2D-PCA [26],

2D-LDA [27], and 2D-CCA [28, 29] have been proposed

and shown to be superior in face recognition compared

to their 1D counterparts. In order to obtain spatially

localized features so that the face recognition methods

may be robust to local distortion or occlusion, statistical

techniques such as the independent component analysis

[30, 31] and factor analysis [32] have also been intro-

duced. Apart from variations in the methods for feature

construction, face recognition algorithms also differ in

the choice of the classifier. Statistical classification tech-

niques used for recognition include those based on the

minimum distance [22], similarity score [33], Kullback

Leibler distance [34], maximum a posteriori (MAP)model

[15, 32], maximum entropy [30], likelihood dependency

test [21], support vector machine [17], and nearest neigh-

bor classifier [10, 35]. A detailed survey on feature extrac-

tion techniques and classification methods for both the

2D and 3D face recognition methods may be found in

[3, 36]. In spite of the plethora of face recognition

algorithms being available in the literature, variations

in illumination, expression, resolution, and geometric

distortions pose challenges even for the most sophisti-

cated algorithms. Hence, face recognition is an ongoing

area of research, wherein better methods for image rep-

resentation, feature extraction, and classification are still

being sought.

In statistics, moments are widely used to describe the

shape of probability distributions. However, moments

have been used for years to characterize functions, which

may or may not be probability density functions (PDFs).

The use of moments to characterize image functions

dates back to Hu [37], who first introduced the 2D geo-

metric moment invariants for pattern recognition. Later,

Teague [38] suggested the notion of moments based on

the theory of orthogonal polynomials to develop efficient

algorithms for shape analysis and recognition of patterns

in images. The recognition efficiency arises due to the

fact that these moments are believed to capture higher-

order nonlinear structures of the image functions that are

obtained from the projection of the higher-order orthogo-

nal polynomials. Surprisingly, the potential of orthogonal

moments for feature extraction in the face recognition

problem has been investigated only by a few research

groups until recently. For instance, the orthogonal 2D

Zernike moments and their variants have been used for

face recognition in [39–42]. Rani and Devaraj [43] pro-

posed a method based on the 2D Krawtchouk moments

(KCMs) and showed that their method performs well

in the presence of noise, tilt, and expression. Among

the existing orthogonal moments, the Gaussian-Hermite

moments (GHMs) are popular in many visual signal pro-

cessing algorithms [44], since the width of the Gaussian

weight function of the Hermite polynomial expansion

provides flexibility in isolating the visual features just as

the human visual system does. In face recognition, 1D

GHMs have been used to develop 3D face recognition

algorithms in which the GHMs of 1D vectors have been

used to represent facial features. For example, zeroth- to

fourth-order 1D GHMs have been used to describe the

shape vector consisting of mesh nodes of face surfaces in

[45]. Features are also obtained by using the 1D GHMs

up to second-order for representing the depth vectors

of selected facial points [46] and the bending invariants

of face surfaces in terms of these moments [47]. In all

these methods, the order of moments used for feature

extraction are chosen heuristically without any statisti-

cal justification. A contribution of the approach adopted

in this paper is that the orthogonal 2D GHMs are used

instead of the 1D GHMs for feature representation in a

2D face recognition algorithm. The development of 2D

GHM-based face recognition is motivated by the fact that,

recently, some attractive mathematical properties of these

moments are obtained. For instance, a linear combina-

tion of 2D GHMs may form geometric moments that are

invariant to scale, shift, and rotation of a pattern [48, 49].

In addition to these properties, the Hermite polynomials

like others may be obtained recursively, and thus, the

computation of the 2D GHMs as well as the reconstruc-

tion of face images from these moments, if necessary,

may be performed very efficiently. These issues motivate

us to develop a fast face recognition algorithm that is

robust to variations in illumination, resolution, appear-

ance, expression, or pose using the 2D GHMs for fea-

ture representation. The major novelty of this paper lies

in the fact that the order of the 2D moments used for

classification are chosen using a suitable statistical mea-

sure instead of adopting a heuristic set of moments to

construct the facial features. In particular, the intraclass

correlation coefficient (ICC), which is widely used in relia-

bility studies [50], is chosen as a statistical measure of class

separability for selecting a subset of the moments called

the 2D discriminative GHMs (DGHMs) to construct the

feature vectors to be classified. Since the features in the

proposed face recognition algorithm are obtained from

the orthogonal moments, it is expected that features are

independent for a given class. In this regard, the classifi-

cation is performed using the naive Bayes classifier, which
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is a special case of the Bayes classifier that yields the

minimum misclassification risk among all statistical clas-

sification rules [51]. Further, the implementation of this

classifier requires lower memory and computational load

and a small amount of training data to estimate the statis-

tical parameters necessary for classification [52]. Hence,

the naive Bayes classifier can deal with a large number of

features and large data sets making it an ideal choice as the

classifier for face recognition problems. To investigate the

performance of the proposed DGHM-based recognition

method, experiments are conducted considering varying

numbers of training and probe images chosen randomly

and comparisons made with well-established methods

using the standard protocols of commonly referred face

databases.

The paper has been organized as follows. In Section 2,

image moments are defined, and then, the process of

obtaining the 2DGHMs and reconstruction of face images

from these moments are described. Section 3 presents

the statistical approach for identification of a person

using the stored orthogonal moments. In Section 4, the

face databases used in the experiments are described,

and results of the proposed and existing face recognition

methods are presented. Finally, conclusions are drawn in

Section 5.

2 Face representation by 2D Gaussian-Hermite
moments

Let I(x, y) ∈ L2(R
2) be a continuous square integrable

2D image signal. The set of 2D geometric image moments

of order ( p, q) ( p, q ∈ Z
1) denoted as M

g
pq may be

obtained as [53]

M
g
pq =

∫ ∫

R2
I(x, y)xpyqdxdy (1)

The analogy of statistical moments to the image

moments may be drawn by considering x and y as ran-

dom variables instead of spatial positions and I(·) as a joint
PDF instead of intensity function of the image. Orthog-

onal image moments are obtained from I(·) in a similar

fashion to the geometric moments by using two indepen-

dent generalized set of polynomial functions �p(·) and

�q(·) having orders p and q ( p, q ∈ Z
1), respectively, and

are given by [53]

M�
pq =

∫ ∫

R2
I(x, y)�p(x)�q( y)dxdy (2)

In this paper, the moments that will be used for face

recognition are obtained from the orthogonal Gaussian-

Hermite polynomials. Hence, a brief review of Hermite

polynomials and their orthogonality relations with the

Gaussian weighting function are given first. Next, the

method of obtaining the orthogonal GHMs of the face

images from these polynomials and the reconstruction of

images from these moments are presented.

2.1 Hermite polynomials: a brief review

The Hermite polynomial of order p ∈ Z
1 on the real line

x ∈ R
1 is given by [54]

Hp(x) = (−1)p exp(x2)
dp

dxp
exp(−x2) (3)

These polynomials may be computed efficiently using

the following recursive relations:

H0(x) = 1

H1(x) = 2x

Hp+1(x) = 2xHp(x) − 2pHp−1(x) p ≥ 1 (4)

The Hermite polynomials satisfy the orthogonality

property with respect to the weight function ν(x) =
exp(−x2) such that

∫ ∞

−∞
exp(−x2)Hp(x)Hq(x)dx = 2pp!

√
πδpq (5)

where δpq is the Kronecker delta function. An orthonor-

mal relation may be obtained by using a normalized

version of the Hermite polynomials given by

H̃p(x) =
√

2pp!
√

π exp(−x2/2)Hp(x) (6)

A generalized version of (6) may be obtained by using a

spread factor s (s > 0) on the real line x ∈ R
1. In such

a case, the so-called generalized Gaussian-Hermite (GH)

polynomials may be written as

H̄p(x; s) =
√

2pp!
√

πs exp(−x2/2s2)Hp(x/s) (7)

for which the orthonormal relation is maintained as
∫ ∞

−∞
H̄p(x; s)H̄q(x; s)dx = δpq (8)

2.2 Gaussian-Hermite moments

The set of 2D GHMs of order ( p, q) ( p, q ∈ Z
1) denoted

as MGH
pq may be obtained from 2D GH basis functions

expressed in terms of p-th and q-th order GH polynomials

using the following relation [53]:

MGH
pq =

∫ ∫

R2
I(x, y)H̄p(x; s)H̄q( y; s)dxdy (9)

In order to improve readability, the superscript of MGH
pq

will be removed from the remainder of this paper and

Mpq will be referred to as the 2D GHM of order ( p, q).

Figure 1 shows a few number of 2D GH basis functions

obtained from the tensor product of two independent 1D

GH polynomials. The GHMs of the 2D image signal may

be considered as the projections of the signal onto these

2D basis functions. Thus, these moments characterize the

image signal at different spatial modes that are defined

by certain combinations of the derivatives of the Gaussian
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Fig. 1 Examples of 2D GH basis functions. The orders are (a) (0,1), (b) (1,0), (c) (0,3), and (d) (3,0)

functions. Ideally, from all possible moments, the image

I(x, y) may be reconstructed without any error as

I(x, y) =
∞
∑

p=0

∞
∑

q=0

MpqH̄p(x; s)H̄q( y; s) (10)

It is to be noted that the GHMs are obtained from two

real lines x ∈ R
1 and y ∈ R

1, and hence, a modifi-

cation is required for obtaining moments from the dis-

crete coordinates of practically available face images. Let

Gℓ(i, j) ((i, j) ∈ Z
2) be a face image of size U × V having a

class label ℓ in a face database of K number of identities.

Using a similar approach considered in [55], to obtain the

2D GHMs using (9), we have normalized the coordinates

such that −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 by choosing only

the following discrete values

x = 2i − U + 1

U − 1
i = 0, 1, 2, · · · ,U − 1 (11)

y = 2j − V + 1

V − 1
j = 0, 1, 2, · · · ,V − 1 (12)
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In terms of discrete implementation, the 2D moments

for the face images of class label ℓ (ℓ = 1, 2, · · · ,K) may

be obtained as

Mℓ
pq = 4

(U − 1)(V − 1)

U−1
∑

i=0

V−1
∑

j=0

Gℓ(i, j)H̄p(i; s)H̄q(j; s)

(13)

A crucial choice for obtaining the GHMs is the value of

the spread factor s (s > 0) in the GH polynomials. Since

the support of the discrete image is defined as (−1, 1), and

at the same time the modes of the highest order GH poly-

nomials are expected to remain within this support during

the implementation, we have chosen the spread as

s = γ√
N

(14)

whereN is the maximum order of polynomials and γ (0 <

γ < 1) is the normalization factor due to support. For a

face image, a value of γ may be chosen close to unity con-

sidering the fact that face boundary remains very often

close to the image boundary. If a face boundary appears

in the central area of the image, then, a smaller value of

γ can be chosen. Figure 2 shows the distribution of the

magnitudes of the 2D GHMs with respect to orders of

GH polynomials for a typical face image wherein γ is cho-

sen as 0.9. It may be seen from this figure that with the

increase of the order of the moments from zero, the mag-

nitude of the moments decreases exponentially. Hence,

only first few order moments are required for a sufficient

good approximation of the face image. In such a case,

the face image may be reconstructed from the moments

obtained up to the N-th order GH polynomials as

Ĝℓ(i, j) =
N

∑

p=0

N
∑

q=0

Mℓ
pqH̄p(i; s)H̄q( j; s) (15)

It may be noted that the maximum order of GH poly-

nomials N may be chosen in such a way that the number

of moments are only a fraction of the face image data. Let

α(0 < α < 1) be the compression factor through which

a face is stored in terms of the GHMs. In such a case, the

maximum order of moments would be

N = ⌊
√

αUV⌋ − 1 (16)

where ⌊z⌋ denotes the largest integer contained in z.

Considering the fact that N ≫ 1, the computational com-

plexity of face image reconstruction from 2D GHMs may

be shown to be at most O(N2/α) (0 < α < 1). The com-

plexity of computation of the GHM can be even reduced

further by considering the symmetric property of the 2D

GH polynomials [56].

3 Face recognition by 2D Gaussian-Hermite

moments
In this section, a face recognition algorithm is developed

with the consideration that a face image is stored in terms

of the moments Mpq( p, q = 0, 1, 2, · · · ,N). The scale,

shift, and rotation invariants of GHMs may be obtained

by using certain linear combinations of these moments

[49]. In the proposed method, however, the entire set

of stored GHMs is considered to construct the feature

vector instead of the moment invariants. This is mainly

Fig. 2 Distribution of the magnitudes of the 2D GHMs with respect to the orders of GH polynomials
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due to the fact that the invariants are considered indi-

rectly even though the orthogonal moments are treated

independently. In addition, no specific type of geometric

distortions or occlusions are ensured to exist in the face

images of a database. To select the GHMs most signifi-

cant for face recognition, a statistical learning approach

is adopted. In this regard, the most relevant GHMs that

give rise to maximum discrimination between the classes

are identified. A simple but effective and reliable statisti-

cal measure of separability among classes is the ICC [50],

which in this scenario is defined as the proportion of total

variance accounted for by the between-subject variations

of the face classes. Shrout and Fleiss [50] described six dif-

ferent forms of the ICCwhich differ according to the study

design and the underlying mathematical models. Next, we

describe the experimental design and associated ANOVA

model of a specific form of ICC for GHMs that is suitable

for the face recognition study.

3.1 The intraclass correlation coefficient for moments

In the proposed method, the K distinct subjects or classes

within the face database constitute a random sample from

a large population of face classes. Let λtr (λtr > 1) be the

equal number of training images belonging to class ℓ (ℓ =
1, 2, · · · ,K) that form a random sample from a popula-

tion of images for that class. LetMℓ
pq(k) (k = 1, 2, · · · , λtr)

denote the moment of order ( p, q) for the k-th image

belonging to class ℓ. Then, a suitable linear model for

Mℓ
pq(k) is the one-way random effects model given by

Mℓ
pq(k) = μpq + bℓ

pq + wℓ
pq(k) (17)

whereμpq is the overall mean of the moments considering

the entire training database, bℓ
pq = μℓ

pq − μpq, the nota-

tion μℓ
pq being the mean of the moments within the class

label ℓ andwℓ
pq(k) is a residual component. It is considered

that bℓ
pq ∼ N

(

0, σ 2
bpq

)

and wℓ
pq(k) ∼ N

(

0, σ 2
wpq

)

as well

as they are independent of all components in the model.

Normality of the GHMs may be assessed by construct-

ing the commonly used quantile-quantile (Q-Q) plot [57].

Figure 3 shows the Q-Q plots obtained for the GHMs of

order (0, 1) and (10, 14) considering seven face images of

a typical subject. From this figure, it may be seen that the

sample quantiles of the GHMs are approximately linearly

related to the quantiles of the normal PDF. It may be men-

tioned that the Q-Q plots of the moments of other orders

for various subjects also follow a similar pattern and are

not shown to avoid repetitive results. Thus, the GHMs of

the face images may be treated as random variables that

follow the Gaussian PDF. It can be shown that under this

Fig. 3 The Q-Q plots obtained for the GHMs of seven face images of a

typical individual. The orders of the GHM are (a) (0, 1) and (b) (10, 14)

setting, the population ICC denoted by ρpq (0 ≤ ρpq ≤ 1)

forMpq is given by [50]

ρpq =
σ 2
bpq

σ 2
bpq

+ σ 2
wpq

p, q = 0, 1, 2, · · · ,N (18)

The population ICC can be estimated from the training

samples using [50]

ρ̂pq = �b − �w

�b + (λtr − 1)�w
p, q = 0, 1, 2, · · · ,N (19)

where �b and �w represent the “between-class mean-

square” and “within-class mean-square”, respectively, and

are given by

�b =
λtr

∑K
ℓ=1

(

μℓ
pq − μpq

)2

K − 1
(20)

�w =
∑K

ℓ=1

∑λtr
k=1

(

Mℓ
pq(k) − μℓ

pq

)2

K(λtr − 1)
(21)



Rahman et al. EURASIP Journal on Image and Video Processing  (2015) 2015:35 Page 8 of 20

The computational complexity of estimating the �b or

�w is O(λtrK(N + 1)2). Noting that N ≫ 1, the compu-

tational cost of calculating the ICC becomes O(λtrKN
2),

which is directly proportional to the size of the face

database. Since the ICC describes how strongly the GHMs

in the same class resemble each other, the moments of

the training face images that have high ICC values are

consistent within the classes and possess small within-

class variability relative to total variability in the training

database. These sets of moments having high values of

ICC are capable of discriminating between the classes

and may therefore be selected for representing the feature

vector of each face image.

3.2 The feature vector for face images

The values of the moments Mpq are computed using

(13) for each of the images in the face database, whereas

the ICCs for each of the moments are estimated using

(19–21) only for the images of the training set. Thus, a

total of (N + 1)2 number of ICCs are computed corre-

sponding to the (N + 1)2 number of GHMs representing

each face image. It is to be noted that not all these

moments are useful for face classification. Further, the

estimated ICCs quantify the discrimination capability of

the moments towards identification of classes. Hence, we

select as features only those GHMs that correspond to

the T(T ≪ N) largest ICCs, T being the number of

moments used for classification. In such a case, the fea-

tures referred to as the DGHMs for the k-th image of class

ℓ may be denoted as Fℓ
k =

[

f ℓ
1k , f

ℓ
2k , f

ℓ
3k , · · · , f

ℓ
Tk

]′
, where

f ℓ
rk

∈
{

Mℓ
pq(k) : p, q = 0, 1, 2, · · · ,N

}

is the moment

corresponding to the r-th element of the vector ρ̂ =
[

ρ̂1, ρ̂2, · · · , ρ̂T , ρ̂T+1, · · · , ρ̂(N+1)2
]′

that comprises the

estimated ICCs arranged in descending order of their

magnitude. Figure 4 shows a 2D scatter plot depicting

the clustering performance or sparse representation of

the first two DGHMs selected from F
ℓ
k for five randomly

chosen classes, each having 10 samples obtained from

the popular AT&T face database [58]. From the scatter

plot, it may be seen that the discrimination capabilities

of the selected moments in order to classify the subjects

are considerable. It is to be noted that similar clustering

performance are observed for any two of the moments

that correspond to an ICC close to unity. In order to

reduce the dimension of the feature vector, we prefer to

use the number of moments for classification as a frac-

tion of stored moments defined as T = β(N + 1)2

where β(0 < β ≤ 1) is a classification parameter. When

there exists significant variations among the images in

each class of a face database, a relatively small number of

moments with high values of ICCs are preferred to con-

struct a discriminative feature set for a subject, in which

case a lower value of β may be chosen. On the other

hand, a higher value of β is preferred for a decreasing

level of within-class variability of the face images while

constructing the feature set, since a larger number of

moments possess discriminative nature in such a case. It is

to be noted that within-class variabilities of the moments

occur due to the variations of faces in terms of appear-

ance, expressions, pose, age, resolution, illumination,

Fig. 4 Graphical representation depicting the sparse representation of two DGHMs used to construct the face features
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and occlusion on which the classification parameter β

depends.

Figure 5 shows a comparison of the reconstructed ver-

sions of a typical face image projected from the d(d ≤
min(U ,V )) number of eigenvectors of the 2D-PCA [25],

2D-LDA [27], and 2D-CCA [29] methods, αUV (0 < α <

1) number of 2D GHMs, and αβUV (α = 0.25, 0 < β < 1)

number of 2D DGHMs. It is seen from this figure that a

face image of very good quality can be reconstructed, if the

number of GHMs that are stored equals only 25 % of the

face data. However, with the exception of 2D-PCA, images

reconstructed from increasing numbers of discriminative

sparse features do not resemble the original face image,

as can be seen in the case of the 2D-LDA, 2D-CCA, and

2D-DGHM-based methods. These results are consistent

with the fact that the discriminative sparse features do

not possess good reconstruction ability of images in many

cases [59].

3.3 The Naive-Bayes classifier to identify subjects

In the classification technique, a given face is assigned to

one of the K subjects or classes, namely, ω1,ω2, · · · ,ωK

on the basis of a feature vector F =
[

f1, f2, f3, · · · , fT
]′

associated with the face image. Statistical pattern recogni-

tion considers that the feature vector F is a T-dimensional

observation drawn randomly from the class conditional

PDF p(F|ωℓ), where ωℓ is the class to which the feature

vector belongs [60]. There are several statistical decision

rules for assigning a given pattern, face in this case, to a

class. Among these rules, the Bayes decision is optimal in

Fig. 5 Visual comparison of the reconstructed versions of the face image with the original version. The reconstructed images are obtained from the

eigenvectors for the 2D PCA-, 2D LDA-, and 2D CCA-based methods, the 2D GHMs, and the proposed sparse features in terms of 2D DGHMs
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the sense that it minimizes the Bayes risk, which is the

expected value of the loss function [51]. The Bayes deci-

sion rule assigns the face in question described by F to the

subject ωℓ for which the conditional risk

R(ωℓ|F) =
K

∑

m=1

L(ωℓ,ωm)p(ωm|F) (22)

is minimum, where L(ωℓ,ωm) is the loss incurred in decid-

ing the subject ωℓ when the true subject is ωm, and

p(ωm|F) is the posterior PDF [61]. In the case of the

0/1 loss function, the Bayes decision rule simplifies to

the MAP decision rule [51], which assigns the input face

represented by F to the subject ωℓ if

p(ωℓ|F) > p(ωm|F) ∀m �= ℓ (23)

Using the Bayes theorem, the posterior PDF may be

written as

p(ωm|F) = p(F|ωm)p(ωm)

p(F)
(24)

Since the moments that constitute F are obtained from

the orthogonal polynomial functions, the features may be

treated as independent given the class. Thus, the PDF of

features given the class may be written as

p(F|ωm) =
T

∏

r=1

p( fr|ωm) (25)

In designing the classifier, p(F) may be ignored since it

does not dependent onm. Hence, an unknown face image

having feature vector F should be assigned to the class m

that maximizes the following decision function [62]:

dm(F) =
T

∏

r=1

p( fr|ωm)p(ωm) (26)

In Section 3.1, it was verified that the class conditional

density of a GHM of any given order may be considered

as approximately normal. Thus, the feature components

given the class are assumed to follow the normal distri-

bution, i.e., fr|ωm ∼ N (μrm, σ
2
rm). Such a choice has the

added advantage of yielding a naive Bayes classifier that

is mathematically tractable. In this study, the number of

subjects per class in the training set λtr is considered to

be the same, and hence, the class prior may be obtained

as p(ωm) = K−1. A common problem in face recogni-

tion is that the number of training images available for

estimating the parameters of p( fr|wm) in each class is

usually small and at the same time the number of classes

are relatively large. Thus, a strategy often employed to

improve the Bayes classifier performance is to assume that

σ 2
rm = σ 2

r for all m and then replace the estimates of σ 2
rm

obtained from the training images in each class by the

pooled estimate [63, 64]. In such a case, the test face image

having feature vector F will be assigned to the classm that

minimizes the decision function

Dm(F) =
T

∑

r=1

(

fmr − μrm

)2
(27)

The class conditional mean of the feature components

are estimated from the training face images as

μ̂rm = 1

λtr

λtr
∑

k=1

fmrk (28)

The computational complexity of finding the feature

vector F using the sorting operation of ICCs isO((N+1)4)

and the complexity of the proposed naive Bayes classifier

is O(N + 1). Since N ≫ 1 in practice, the computational

complexity of the proposed 2D GHM-based face recog-

nition method is O(N4). On the other hand, the com-

putational complexity of the PCA-, LDA-, or CCA-based

methods may be shown to be O(N6/α3) (0 < α < 1).

Hence, the proposed DGHM-based face recognition

method is computationally efficient as compared to the

traditional PCA-, LDA-, and CCA-based methods.

4 Simulation results
Extensive experimentations have been carried out in order

to evaluate the performance of the proposed 2D DGHM-

based face recognition method as compared to the exist-

ing methods. This section describes the databases, the

experimental conditions, and results of the comparisons.

4.1 Face databases

The proposed method was evaluated on a number of face

databases; however, the results presented in this paper

are those obtained using the popular AT&T face database

[58], a generic face database obtained from the com-

prehensive Face Recognition Grand Challenge (FRGC)

v2.0 database [65], and the standard protocols of the

Face Recognition Technology (FERET) database [66], the

Labeled Faces in the Wild (LFW) database [67], and the

YouTube Faces (YTF) database [68]. The details of the

databases considered in the experiments are discussed

under separate subheadings as a convenience.

4.1.1 AT&T database

The AT&T face database contains a total of 400 images

from 40 individuals, each individual having 10 different

images. Images are captured at different times for some of

the subjects. The facial images have variability in terms of

expression such as smiling or nonsmiling, open or closed

eye, and in terms of appearance such as with or with-

out glasses. The tolerance of geometric distortions of the

AT&T database include rotation up to 20° and scaling up

to 10 %. All the images of this face database have a size of

112 × 92 pixels with a bit depth of 8. In order to obtain
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only the face part of the images, suitable free-hand elliptic

masks are used. Further, the masked images are normal-

ized to a mean level of 128 and standard deviation of 85,

so that variations due to illuminations are reduced.

4.1.2 FRGC v2.0 database

The FRGC v2.0 database contains 4007 number of 8-bit

face images having pixel resolution 480 × 640 captured

from shoulder level up for 466 subjects in both controlled

and uncontrolled environments [69]. The demographies

of this database include partition by race (White-68 %,

Asian-22 %, others-10 %), age (18 to 22 years-65 %, 23

to 27 years-18 %, 28+ years-17 %), and sex (male-57 %,

female-43 %). The number of replica of face images cap-

tured from individual subjects varies from 1 to 22. The

images captured have in-plane and out-of-plane rotations

of the head up to about 15◦. In this database, the faces dis-

play various facial expressions including neutral, happy,

surprise, sad, and disgust. There are major illumination

variations in the images of each subject. A few of the sub-

jects have facial hair, but none of them wears glass. A

generic face database is obtained from the FRGC v2.0 in

such a way that each subject has at least 10 sample face

images. In such a case, the generic face database used

in the experiments includes 2774 face images obtained

from 186 subjects. The nose coordinates of these images

are identified first, and then, 161 × 161 pixel-size images

are cropped using the nose coordinate as center. The

processes of extracting facial parts and reducing illumina-

tion variation among the faces of the FRGC database are

similar to that of the AT&T database.

Figure 6 shows a few examples of the pairs of face

images of the AT&T and generic FRGC databases con-

sidered in the experiments. The variations of expression,

appearance, pose, scaling, rotation, and illumination of

face images in these databases are evident from this figure.

For example, the second and fourth subjects from the left

in the first database have face images with and without

glasses, and the second subject in the second database has

face images with and without mustache. The illumination

variations are observed between the left and right cheeks

in the face images of the second database, and even a hor-

izontal texture pattern is seen in one of the images of the

third subject.

4.1.3 FERET database

In the color FERET database, the standard testing subsets

include the fa, fb, dup-I, and dup-II that consist of 994,

992, 736, and 228 frontal facial images, respectively. These

frontal face images each of size 512 × 768 are consid-

ered in the experiments. The images of fa and fb are used

to investigate the effect on recognition due to changes in

expressions. The sets of images of dup-I and dup-II are

used for considering the variations arising from aging as

well as appearances due to hairstyles or glasses. In our

experiments, the color images are converted to grayscale

representation and the face images of size 200 × 180 are

cropped using the nose coordinates provided as the cen-

ters. The GHMs for face recognition are obtained from

these cropped images without any further processing such

as the scaling, rotation, intensity normalization, or any

masking.

4.1.4 LFW database

The LFW-a database consists of 13,233 images of 5749

subjects collected from the web. The facial parts of the

images are detected using the Viola-Jones detector [70],

and the images are aligned by the organizer using a com-

mercial software. The face images have significant vari-

ations in terms of pose, occlusion, expression, and even

resolution. Organizers of this database recommend to

report the performance of unconstrained face verification

on this database as 10-fold cross validation using the splits

of facial image pairs that are randomly generated and pro-

vided. In the experiments, we use the cropped images of

size 150 × 130 with the center coordinate of the orig-

inal images as the face center and without any further

processing.

4.1.5 YTF database

The data set of YTF contains 3425 videos of 1595 sub-

jects collected from the website of YouTube. There are

huge variations of pose, expressions, appearances, occlu-

sions, colors, illumination, and resolutions of the frames of

these videos. The average length of each video clip is 181.3

frames. The standard protocol for evaluation of the per-

formance of the unconstrained face verification includes

5000 video pairs of this database. These pairs are equally

divided into 10-folds, and each fold has almost equal num-

bers of intra-personal pairs and inter-personal pairs. The

facial parts of the frames are detected using the Viola-

Jones detector, and the aligned frames are provided by the

authors of [68]. In the experiments, we use the grayscale

version of the cropped frames of size 150 × 120 by con-

sidering the center coordinate of the aligned frames as the

face center.

4.2 Experimental setup

The proposed 2DDGHM-basedmethod is first compared

with the classical 2D-PCA [25], 2D-LDA [27], 2D-CCA

[29], and 2D KCM [43] methods as these methods repre-

sent competitive algorithms in the area of constrained face

recognition using the PCA, LDA, CCA, and orthogonal

moments, respectively. In the case of proposed method, it

is assumed that face images are stored in terms of GHMs

in a compressed form using a value of α less than unity.

Each face image of the AT&T and generic FRGC databases

is stored in terms of 2601 and 6480 GHMs, respectively,
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Fig. 6 Variations of the expressions, appearances, poses, and illuminations in the face images of the two databases, namely, (a) AT&T and

(b) generic FRGC v2.0

by choosing α = 0.25. In the case of 2D-PCA and 2D-

LDA methods, the number of eigenvectors for generating

feature matrices is chosen as d = λtr − 1, since such a

choice gives an optimum performance for the recognition

accuracy [25]. In the case of 2D-CCA method, the value

of d is chosen to be 10 and 25 for the AT&T and FRGC

databases, respectively, due to the fact that such choices

provide the highest level of identification accuracy. The

2D KCM-based method stores each face image in terms

of five sets of KCMs that are obtained from the full, left,

right, upper, and lower parts of the face. Default values of

the parameters of the binomial distribution are chosen to

generate the 2DKCMs of each of the five parts, whilemax-

imum order of the moment is chosen as 19 due to the fact

that such an order shows the highest performance [43].

In order for the results to be statistically robust in terms

of accuracy, 25 subjects are chosen randomly from the

generic FRGC database and then λtr number of training

images per subject are selected randomly while the rest

of the images of the selected subjects are treated as probe

images. Since AT&T has only a few number of subjects,

we consider the entire database while generating a random

set for testing the face recognition accuracy. Performance

of a testing set is measured in terms of the recognition rate

defined as

RR = Number of probe images correctly classified

Total number of probe images
×100

(29)

The results presented in this paper are obtained by aver-

aging the accuracies obtained from such type of 1000

random testing sets. In order to investigate the per-

formance of classification for the five methods consid-

ered in the experiments, the number of training images

per subject λtr is also varied. The RR of the proposed

2D DGHM-based method depends on the classification

parameter β which is chosen from the ICCs. Here, β

defines the length of the moment-based feature vector

used in the naive Bayes classification, and hence, the
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accuracy of the proposed DGHM-based face recogni-

tion method is estimated for increasing values of this

parameter.

We also compare the proposed DGHM-based features

with some of the state-of-the-art descriptors that are used

in the unconstrained face recognition problems. In this

scenario, the standard protocols of the color FERET, the

LFW-a, and the YTF databases are used for the evaluation

of the performance of face recognition or verification. The

fa dataset in FERET is used as the gallery images, while

the fb, dup-I, and dup-II are used as the probe sets. The

rank 1 recognition accuracies of the known classes are

estimated from the minimum of proposed decision func-

tion and by using the features of the gallery and probe sets.

In the experiments, “View-2” set of the LFW that consists

of 10 folds of randomly chosen 300 positive and 300 nega-

tive image pairs is used for evaluation of face verification.

The images of the FERET and LFW databases are repre-

sented in terms of the GHMs by choosing the values of

α to be 0.25 and 0.15, respectively. In order to train the

GHM-based features of the FERET datasets, the entire set

of frontal images are considered. On the other hand, the

features of the LFW-a are trained using the subjects that

have sample sizes in between 10 and 50 by avoiding the

subjects having too small or large sample sizes. The GHM

features of the videos of YTF are obtained by taking the

mean of each moment obtained from the frames of the

clips and by choosing α to be 0.15. In order to train the

GHM features of the YTF database for the experiment of

verifications, the intra-personal and inter-personal pairs

are chosen as two different classes while estimating the

ICCs.

4.3 Recognition and verification results

In this subsection, first, we present the results of variation

of recognition accuracy with respect to the classification

parameter β . Next, the recognition or verification results

of the five databases are presented separately.

4.3.1 Effect of β on recognition rates

Figure 7 shows the variations in face recognition accuracy

of the proposed 2D DGHM-based method with respect

to changes in the values of β and λtr when the databases

AT&T and generic FRGC are used. Similar variations

of recognition rates are also obtained from the FERET,

LFW, and YTF databases but are not included to avoid

presentation of repetitive results. From Fig. 7, it can be

seen that in general, the recognition accuracy increases

with the number of training images per subject for the

databases considered. It is also seen from this figure that

for a given λtr, the recognition accuracy increases initially

with the value of β that defines the length of the fea-

ture vector. However, for β greater than a certain value,

the recognition accuracy remains almost unchanged. In

the experiments, it is found that the recognition accu-

racy does not change significantly for the AT&T, generic

FRGC, FERET, LFW, and YTF databases with variations of

β within the range (0.20−0.40), (0.30−0.50), (0.05−0.10),

(0.03−0.06), and (0.02−0.05), respectively. These results

are consistent with the explanations given in Section 3.2

and by noting that in general, the variations of the faces for

a given class are increasing in the order of five experimen-

tal databases, viz., generic FRGC, AT&T, FERET, LFW,

and YTF.

4.3.2 Recognition rate on AT&T

Table 1 shows the comparisons of the face recognition

accuracies of the proposed 2D DGHM-based method

with that of the 2D-PCA [25], 2D-LDA [27], 2D-CCA

[29], and 2D-KCM [43] methods for training samples of

sizes 3 to 7. The average number of probe images for the

databases decrease with the number of training images

per subject. The recognition accuracies of the proposed

method shown in Table 1 are obtained by using β = 0.30.

From the accuracies in percentage given in this table,

it may be found that the proposed 2D DGHM-based

face recognition method outperforms the PCA, LDA, and

CCA-based methods or even KCM-based method for any

set of training images per subject.

4.3.3 Recognition rate on FRGC

Table 2 shows the comparisons of the face recognition

accuracies of the proposed 2D DGHM-based method

with that of the 2D-PCA, 2D-LDA, 2D-CCA, and 2D-

KCM methods, when the training sample size varies

in between 3 and 7. Average number of probe images

for the databases are given in the table with a con-

sideration that each of the randomly chosen 1000 test

sets may contain variable number of face images per

subject. The classification parameter β was chosen as

0.40 to evaluate the recognition accuracies of the pro-

posed method. The superiority of the proposed DGHM-

based features in terms of the recognition rates given in

Table 2 are very consistent with that of the AT&T face

database.

4.3.4 Recognition rate on FERET

Table 3 shows the rank 1 recognition accuracies that

compare the performance of the proposed DGHM-based

method with that of the contemporary methods including

the LBP [71, 72], local visual primitive (LVP), local Gabor

textons (LGT) [73], and hierarchical ensemble global clas-

sifier (HEGC) [74] employed on the FERET database.

From this table, it can be seen that the proposed DGHM-

based features show the best performance in the case of

fb and dup-II datasets and a competitive performance

on the dup-I dataset when compared to the Gabor-based

features.
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Fig. 7 Variations on identification accuracies of the proposed 2D DGHM-based face recognition method with respect to the training sample size λtr
and classification parameter β . The databases are (a) AT&T and (b) generic FRGC

Table 1 Comparisons of recognition rates on AT&T face database

λtr Average number
Recognition rate in %

of probe images 2D-PCA [25] 2D-LDA [27] 2D-CCA [29] 2D-KCM [43] 2D-DGHM

3 280 89.95 91.17 90.37 86.19 91.57

4 240 92.75 93.81 93.75 90.36 94.42

5 200 94.67 95.47 95.67 93.02 96.13

6 160 95.58 95.54 96.59 94.93 96.67

7 120 96.78 96.83 97.24 96.19 97.50
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Table 2 Comparisons of recognition rates on generic FRGC face database

λtr Average number
Recognition rate in %

of probe images 2D-PCA [25] 2D-LDA [27] 2D-CCA [29] 2D-KCM [43] 2D-DGHM

3 298 73.06 81.42 89.47 88.49 92.65

4 273 82.96 88.73 90.63 91.39 93.94

5 248 87.43 92.33 92.43 93.01 94.66

6 223 91.15 93.77 93.02 94.37 95.24

7 198 93.05 95.00 94.63 94.99 95.46

4.3.5 Verification rate on LFW

To compare the DGHM features with other descriptors

previously reported on the LFW database, the verifica-

tion results acquired from the restricted image set are

provided. Figure 8 shows the receiver operating character-

istic (ROC) curves that compare verification performance

of the features obtained from the Eigenfaces [13], scale-

invariant feature transform (SIFT) [75], LBP [76], mul-

tiple kernel learning (MKL) [77], and the DGHMs. It is

seen from this figure that the proposed DGHM features

provide a true positive rate better than the SIFT or PCA-

based features and a competitive true rate when compar-

ing with the LBP or MKL-based features. Figure 9 shows

the face verification results obtained from the proposed

DGHM method using 16 pairs of face images considered

in the View 2 experiments of the LFW database. In this

figure, the results are presented using four types of verifi-

cations, namely, the correct or incorrect verification when

the subjects are identical and the same when the identi-

ties are different. The results of the positive pairs show

that the proposed method is capable of verifying the sub-

ject when there remains scaling, rotation of faces both in-

and out-of-planes, or even illumination variation. How-

ever, if pose variation, occlusion, or makeup is significant,

then the positive pairs may not be verified accurately. It is

also found from this figure that if the appearances of faces

are very similar, then the negative pairs can be wrongly

identified.

Table 3 Comparisons of recognition rates on standard partitions

of color FERET database

Methods fb dup-I dup-II

FERET Baseline [66]a 96.00 59.00 52.00

LBP [71, 72]a 97.00 66.00 64.00

LVP [80]a 97.00 66.00 50.00

LGT [73]a 97.00 71.00 67.00

HEGC [74]a 96.00 53.00 23.00

DGHM 97.15 70.61 67.04

aNote that the results are cited from original papers

4.3.6 Verification rate on YTF

The proposed DGHM features are compared with the

existing features using the restricted video pairs; the

results of which are reported in the website maintained

by the organizers of this database. Figure 10 shows the

ROC curves obtained from the minimum distance-based

similarity and thematched background similarity (MBGS)

of LBP features [68], the adaptive probabilistic elastic

matching (APEM) [78], and the large margin multimetric

learning (LM3L) [79] methods both of which use a fusion

of SIFT and LBP features. It can be seen from this figure

that the proposed DGHM feature performs better than

the LBP feature independent of the similarity measures

chosen. At the same time, the proposed feature shows

a competitive rate of verifying true-positives for a given

false-positive as compared to the fused features obtained

from the SIFT and LBP such as those in the APEM and

LM3Lmethods. Figure 11 shows selected frames of videos

of typical 16 pairs of identities that are used in the ver-

ification experiments of the YTF database. Among these

pairs, half represent the intra-personal pairs and the rest

the inter-personal pairs. The correct and incorrect verifi-

cations of these identities are shown in separate groups.

The sample images of correct verification reveal that the

proposed DGHM features are capable of identifying sub-

jects; the videos of which have significant variations in

terms of resolutions, pose, and color. However, the pro-

posed method fails when the frames of the video suffer

from severe motion blurs or occlusions due to embedded

texts and shadows. A few examples of close appearance

of inter-personal facial frames that are verified correctly

by the proposed DGHM features are shown in Fig. 11.

In the experiments, it is observed that the correctness

of inter-personal verification increases with the level of

dissimilarity of the frames of the video.

5 Conclusions
Representation of images and formation of feature sets

from such a representation play key roles in the success

of a face recognition algorithm. Compact representation

of images is desirable to reduce the storage requirement,

a critical issue for face databases. The feature sets should
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Fig. 8 Comparisons of the ROC curves obtained from five face recognition algorithms considered in the View 2 experiments of the LFW database.

The results of Eigenfaces, SIFT, LBP, and MKL are cited from the website of database

Fig. 9 Examples of correct and incorrect verifications of the positive and negative pairs considering the View 2 experiments of the LFW database
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Fig. 10 Comparisons of the ROC curves obtained from five face recognition algorithms considered in the restricted experiments of the YTF

database. The results of mindist-LBP, MBGS-LBP, APEM, and LM3L are cited from the website of database

Fig. 11 Examples of correct and incorrect verifications of the positive and negative pairs considering the experiments of the YTF database
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be capable of capturing the higher-order nonlinear struc-

tures hidden in a face image, and at the same time, the

features must be sparse enough to discriminate the iden-

tities. In this paper, the 2D GHMs have been used to

represent face images so that a face database may be com-

pactly represented. Use of these orthogonal moments for

face recognition has also been motivated from the fact

that certain linear combinations of these moments form

geometric moments that are invariants to shift, scale, and

rotation of a pattern. The key contribution of the paper

is that features of facial images have been obtained by

selecting only those moments having greater discrimina-

tory power, as measured by their large values for the ICC,

instead of choosing a heuristic set of GHMs. This is an

effective means of filtering out those moments that con-

tribute little to distinguishing among different classes of

the face images. Classification of test images has been

performed using the naive Bayes classifier, which is sim-

ple, but fast and known to perform remarkably well in

many practical applications with huge size database. In

order to compare the recognition performance of the pro-

posed method, extensive experiments have been carried

out on a number of commonly used image and video-

based face databases, such as the AT&T, FRGC, color

FERET, LFW, and YTF that have facial images or frames

with variations in terms of appearance, occlusion, expres-

sion, pose, color, resolution, and illumination both in the

constrained and unconstrained environments. The results

have shown that the proposed 2D-DGHM-based method

provides higher accuracy in face recognition than those

provided by the popular 2D-PCA, 2D-LDA, and 2D-CCA

methods, as well as the 2D KCM method even when

the training data set has small number of samples per

subject in the constrained environments. The face recog-

nition and verification results on the standard protocols of

the databases of unconstrained environments also reveal

that the proposed DGHM features can perform better

than the commonly used descriptors such as the LBP

or SIFT.
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