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Abstract. In this paper, we revisit the classical Bayesian face recog-
nition method by Baback Moghaddam et al. and propose a new joint
formulation. The classical Bayesian method models the appearance dif-
ference between two faces. We observe that this “difference” formulation
may reduce the separability between classes. Instead, we model two faces
jointly with an appropriate prior on the face representation. Our joint
formulation leads to an EM-like model learning at the training time and
an efficient, closed-formed computation at the test time. On extensive ex-
perimental evaluations, our method is superior to the classical Bayesian
face and many other supervised approaches. Our method achieved 92.4%
test accuracy on the challenging Labeled Face in Wild (LFW) dataset.
Comparing with current best commercial system, we reduced the error
rate by 10%.

1 Introduction

Face verification and face identification are two sub-problems in face recognition.
The former is to verify whether two given faces belong to the same person, while
the latter answers “who is who” question in a probe face set given a gallery face
set. In this paper, we focus on the verification problem, which is more widely
applicable and lay the foundation of the identification problem.

Bayesian face recognition [1] by Baback Moghaddam et al. is one of repre-
sentative and successful face verification methods. It formulates the verification
task as a binary Bayesian decision problem. Let HI represents the intra-personal
(same) hypothesis that two faces x1 and x2 belong to the same subject, and HE

is the extra-personal (not same) hypothesis that two faces are from different
subjects. Then, the face verification problem amounts to classifying the differ-
ence ∆ = x1 − x2 as intra-personal variation or extra-personal variation. Based
on the MAP (Maximum a Posterior) rule, the decision is made by testing a log
likelihood ratio r(x1, x2):

r(x1, x2) = log
P (∆ |HI )

P (∆ |HE )
. (1)



The above ratio can be also considered as a probabilistic measure of similarity
between x1 and x2 for the face verification problem. In [1], two conditional
probabilities in Eqn. (1) are modeled as Gaussians and eigen analysis is used for
model learning and efficient computation.

Because of the simplicity and competitive performance [2] of Bayesian face,
further progresses have been made along this research lines. For example, Wang
and Tang [3] propose a unified framework for subspace face recognition which
decomposes the face difference into three subspaces: intrinsic difference, trans-
formation difference and noise. By excluding the transform difference and noise
and retaining the intrinsic difference, better performance is obtained. In [4], a
random subspace is introduced to handle the multi-model and high dimension
problem. The appearance difference can be also computed in any feature space
such as Gabor feature [5]. Instead of using a native Bayesian classifier, a SVM is
trained in [6] to classify the the difference face which is projected and whitened
in an intra-person subspace.

However, all above Bayesian face methods are generally based on the differ-
ence of a given face pair. As illustrated by a 2D example in Fig. 1, modeling
the difference is equivalent to first projecting all 2D points on a 1D line (X-Y)
and then performing classification in 1D. While such projection can capture the
major discriminative information, it may reduce the separability. Therefore, the
power of Bayesian face framework may be limited by discarding the discrimina-
tive information when we view two classes jointly in the original feature space.
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Fig. 1. The 2-D data is projected to 1-D by x−y. The two classes which are separable in
joint representation are inseparable after the projecting. “Class1” and “Class2” could
be considered as an intra-personal and an extra-personal hypothesis in face recognition.

In this paper, we propose to directly model the joint distribution of {x1, x2}
for the face verification problem in the same Bayesian framework. We introduce
an appropriate prior on face representation: each face is the summation of two
independent Gaussian latent variables, i.e., intrinsic variable for identity, and
intra-personal variable for within-person variation. Based on this prior, we can
effectively learn the parametric models of two latent variables by an EM-like
algorithm. Given the learned models, we can obtain joint distributions of {x1, x2}



and derive a closed-form expression of the log likelihood ratio, which makes the
computation efficient in the test phase.

We also find interesting connections between our joint Bayesian formulation
and other two types of face verification methods: metric learning [7–10] and
reference-based methods [11–14]. On one hand, the similarity metric derive from
our joint formulation is beyond the standard form of the Mahalanobis distance.
The new similarity metric preserves the separability in the original feature space
and leads to better performance. On the other hand, the joint Bayesian method
could be viewed as a kind of reference model with parametric form.

Many supervised approaches including ours need a good training data which
contains sufficient intra-person and extra-person variations. A good training data
should be both “wide” and “deep”: having large number of different subjects and
having enough images of each subject. However, the current large face datasets
in the wild condition suffer from either small width (Pubfig [11]) or small depth
(Labeled Faces in Wild (LFW) [15]). To address this issue, we introduce a new
dataset, Wide and Deep Reference dataset (WDRef), which is both wide (around
3,000 subjects) and deep (2,000+ subjects with over 15 images, 1,000+ subjects
with more than 40 images). To facilitate further research and evaluation on
supervised methods on the same test bed, we also share two kinds of extracted
low-level features of this dataset. The whole dataset can be downloaded from
our project website http://home.ustc.edu.cn/~chendong/JointBayesian/.

Our main contributions can be summarize as followings:

– A joint formulation of Bayesian face with an appropriate prior on the face
representation. The joint model can be effectively learned from large scale,
high-dimension training data, and the verification can be efficiently per-
formed by the derived closed-form solution.

– We demonstrate our joint Bayesian face outperforms the state of arts super-
vised methods, through comprehensive comparisons on LFW and WDRef.
Our simple system achieved better average accuracy than the current best
commercial system (face.com) [16]4.

– A large dataset (with annotations and extracted low-level features) which is
both wide and deep is released.

2 Our Approach: A Joint Formulation

In this section, we first present a naive joint formulation and then introduce our
core joint formulation and model learning algorithm.

2.1 A naive formulation

A straightforward joint formulation is to directly model the joint distribution of
{x1, x2} as a Gaussian. Thus, we have P (x1, x2|HI) = N(0, ΣI) and P (x1, x2|HE) =

4 Leveraging an accurate 3D reconstruct and billions training images. But the details
have not been published.



N(0, ΣE), where covariance matrixes ΣI and ΣE can be estimated from the
intra-personal pairs and extra-personal pairs respectively. The mean of all faces
is subtracted in the preprocessing step. At the test time, the log likelihood ratio
between two probabilities is used as the similarity metric. As will be seen in later
experiments, such naive formulation is moderately better than the conventional
Bayesian face.

In above formulation, two covariance matrixes are directly estimated from
the data statistics. There are two factors which may limit its performance. First,
suppose the face is represented as a d-dimensional feature, in the naive formula-
tion, we need to estimate the covariance matrix in higher dimension (2d) feature
space of [x1 x2]. We have higher chance to get a less reliable statistic since we
do not have sufficient independent training samples. Second, since our collected
training samples may not be complectly independent, the estimated ΣE may
not be a blockwise diagonal. But in theory, it should be because x1 and x2 are
statistically independent.

To deal with these issues, we next introduce a simple prior on the face rep-
resentation to form a new joint Bayesian formulation. The resulting model can
be more reliably and accurately learned.

Fig. 2. Prior on face representation: both of the identities distribution (left) and the
within-person variation (right) are modeled by Gaussians. Each face instance is repre-
sented by the sum of identity and the its variant.

2.2 A joint formulation

As already observed and used in previous works [17–20], the appearance of a face
is influenced by two factors: identity, and intra-personal variation, as shown in
Fig. 2. A face is represented by the sum of two independent Gaussian variables:

x = µ+ ε, (2)

where x is the observed face with the mean of all faces subtracted, µ represents its
identity, ε is the face variation (e.g., lightings, poses, and expressions) within the



same identity. Here, the latent variable µ and ε follow two Gaussian distributions
N (0, Sµ) and N (0, Sǫ), where Sµ and Sǫ are two unknown covariance matrixes.
For brevity, we call the above representation and associated assumptions as a
face prior.

Joint formulation with prior. Given the above prior, no matter under which
hypothesis, the joint distribution of {x1, x2} is also Gaussian with zero mean.
Based on the linear form of Eqn. (2) and the independent assumption between
µ and ε, the covariance of two faces is:

cov(xi, xj) = cov(µi, µj) + cov(εi, εj), i, j ∈ {1, 2}. (3)

Under HI hypothesis, the identity µ1, µ2 of the pair are the same and their
intra-person variations ε1, ε2 are independent. Considering Eqn.(3), The covari-
ance matrix of the distribution P (x1, x2|HI) can be derived as:

ΣI =

[

Sµ + Sε Sµ

Sµ Sµ + Sε

]

.

Under HE , both the identities and intra-person variations are independent.
Hence, the covariance matrix of the distribution P (x1, x2|HE) is

ΣE =

[

Sµ + Sε 0
0 Sµ + Sε

]

.

With the above two conditional joint probabilities, the log likelihood ratio
r(x1, x2) can be obtained in a closed form after simple algebra operations:

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)
= xT

1 Ax1 + xT
2 Ax2 − 2xT

1 Gx2, (4)

where

A = (Sµ + Sε)
−1 − (F +G), (5)

(

F +G G

G F +G

)

=

(

Sµ + Sε Sµ

Sµ Sµ + Sε

)

−1

. (6)

Note that in Eqn. (4) the constant term is omitted for simplicity.
There are three interesting properties of this log likelihood ratio metric. Read-

ers can refer to the supplementary materials for the proof.

– Both matrix A and G are negative semi-definite matrixes.
– The negative log likelihood ratio will degrade to Mahalanobis distance if

A = G.
– The log likelihood ratio metric is invariant to any full rank linear transform

of the feature.

We will have more discussions on the new metric obtained by log likelihood ratio
over the Mahalanobis distance in the Section 3.



2.3 Model learning

Sµ and Sε are two unknown covariance matrixes which need to be learned from
the data. We may approximate them by between-class covariance matrix and
within-class covariance matrix used in classic Linear Discriminative Analysis
(LDA) [17]. Actually, this approximation could provide a fair good estimation.
But to get more accurate estimation in a principled way, we develop an EM-like
algorithm to jointly estimate two matrixes in our model.
E-step: for each subject with m images, the relationship between the latent
variables h = [µ; ε1; · · · ; εm] and the observations x = [x1; · · · ;xm] is:

x = Ph, where P =











I I 0 · · · 0

I 0 I · · · 0
...

...
...

. . .
...

I 0 0 · · · I











. (7)

And the distribution of the hidden variable h is

h ∼ N(0, Σh),

where Σh = diag(Sµ, Sε, · · · , Sε). Therefore, based on Eqn. (7), we have the
distribution of x:

x ∼ N(0, Σx),

where

Σx =











Sµ + Sε Sµ · · · Sµ

Sµ Sµ + Sε · · · Sµ

...
...

. . .
...

Sµ Sµ · · · Sµ + Sε











.

Given the observation x, the expectation of the hidden variable h is:

E(h|x) = ΣhP
TΣ−1

x x. (8)

Directly computing Eqn. (8) is expensive because the complexity in both
memory and computation is O(m2d2) and O(d3m3) respectively, where d is the
dimension of the feature. Fortunately, by taking the advantage of the structure
of Σh, P

T and Σx, the complexity in memory and computation can be reduced
to O(d2) and O(d3 + md2) respectively. Readers can refer to supplementary
materials for the details.
M-step: in this step, we aim to update the values of parameters Θ = {Sµ, Sε}:

Sµ = cov(µ)

Sε = cov(ε)

where µ and ε are the expectations of the latent variables estimated in the
E-step.
Initialization: In the implementation, Sµ and Sε are initialized by random
positive definite matrix, such as the covariance matrix of random data. We will
have more discussions on the robustness of the EM algorithm in the next section.



2.4 Discussion

In this section, we discuss three aspects of our joint formulation.
Robustness of EM. Generally speaking, the EM algorithm only guarantees
convergence. The quality of the solution depends on the objective function (the
likelihood function of the observations) and the initialization. Here we empirical-
ly study the robustness of the EM algorithm by the following five experiments:

1. Sµ and Sε are set to between-class and within-class matrixes (no EM).
2. Sµ and Sε are initialized by between-class and within-class matrixes.
3. Sµ is initialized by between-class matrix and Sε is initialized randomly.
4. Sµ is initialized randomly and Sε is initialized by within-class matrix.
5. Both Sµ and Sε are initialized randomly.

The above experiments are performed by using the training dataset (WDRef)
and testing dataset (LFW, under unrestrict protocol). We use PCA to reduce
the dimension of feature to 2,000. The rest of the experimental settings are the
same with those in Section 4.2.

The experiment results in Table 1 show that: 1) EM optimization improves
the performance (87.8% to 89.44%); 2) EM optimization is robust to various
initializations. The estimated parameters converge to the similar solutions from
quite different starting points. This indicates that our objective function may
have very good “convex” properties.

Experiments 1(no EM) 2 3 4 5

Accuracy 87.80% 89.4% 89.34%±0.15% 89.38%±0.20% 89.39%±0.08%

Table 1. Evaluation of the robustness of EM algorithm. Results of 3-5 are averages
over 10 trials.

Adaptive subspace representation. In our model, the space structures of
µ and ε are fully encoded into the covariance matrixes Sµ and Sε. Even if µ
and ε are in lower dimensional intrinsic spaces, we do not need to pre-define
intrinsic dimensions for them. The covariance matrixes will automatically adapt
to the intrinsics structures of the data. Therefore our model is free from param-
eter tuning for the number of intrinsic dimension and able to fully exploit the
discriminative information in the whole space.
Efficient computation.As the matrixG is negative definite, we can decompose
it as G = −UTU after the training. In the test time, we can represent each face
by a transformed vector y = Ux and a scalar c = xTAx. Then, the log likelihood
ratio can be very efficiently computed by: c1 + c2 + yT

1
y2.

3 Relationships with Other Works

In this section, we discuss the connections between our joint Bayesian formula-
tion and three other types of leading supervised methods which are widely used
in face recognition.



3.1 Connection with metric learning

Metric learning [7–10, 21] has recently attracted a lot of attentions in face recog-
nition. The goal of metric learning is to find a new metric to make two classes
more separable. One of the main branches is to learn a Mahalanobis distance:

(x1 − x2)
TM (x1 − x2) , (9)

where M is a positive definite matrix which parameterizes the Mahalanobis
distance.

As we can see from above Equation, this method shares the same drawback
of the conventional Bayesian face. Both of them firstly project the joint repre-
sentation to a lower dimension by a transform [I,−I]. As we have discussed, this
transformation may reduce the separability and degrade the accuracy.

In our method, using the joint formulation, the metric in Eqn. (4) is free from
the above disadvantage. To make the connection more clear, we reformulate Eqn.
(4) as,

(x1 − x2)
TA (x1 − x2) + 2x1

T (A−G)x2. (10)

Comparing Eqn. (9) and Eqn. (10), we see that the joint formulation provides
an additional freedom for the discriminant surface. The new metric could be
viewed as more general distance which better preserves the separability.

To further understand our new metric in Eqn. (4), we rewrite it here:

xT
1
Ax1 + xT

2
Ax2 − 2xT

1
Gx2.

There are two components in the metric: the cross inner product term x1
TGx2

and two norm terms x1
TAx1 and x2

TAx2. To investigate their roles, we perform
an experiment under five conditions: a) use both A and G; b) A → 0; c) G → 0
; d) A → G; e) G → A. The experiment results are shown in Table 2.

Experiments A and G A → 0 G → 0 A → G G → A

Accuracy 87.5% 84.93% 55.63% 83.73% 84.85%

Table 2. Roles of matrixes A and G in the log likelihood ratio metric. Both training
and testing are conducted on LFW following the unrestricted protocol. SIFT feature
is used and its dimension is reduce to 200 by PCA. Readers can refer to Section 4.4
for more information.

We can observe two things: most of discriminative information lies in the
cross inner product term x1

TGx2; the norm terms x1
TAx1 and x2

TAx2 also play
significant roles. They serve as the image specific adjustments to the decision
boundary.

There are many works trying to develop different learning methods for Ma-
halanobis distance. However, relatively few works investigate the other forms of
metrics like ours. A recent work [22] explores the metric based on cosine simi-
larity by discriminative learning. Their promising results may inspire us to learn
the log likelihood ratio metric in a discriminative way in the future work.



3.2 Connection with LDA and Probabilistic LDA

Linear Discriminant Analysis (LDA) [17] learns discriminative projecting direc-
tions by maximizing the between-class variation and minimizing within-class
variation. The solution for the projections are the eigenvectors of an eigen prob-
lem. The discriminative power of the projections decreases along with the corre-
sponding eigen value rapidly, which make the discriminative power distribution
is very unbalance. This heterogeneous property make it hard to find an appro-
priate metric to fully exploit the discriminative information in all projections.
Usually, LDA gets the best performance only with a few top eigenvectors, and
its performance will decrease if more projections are added even though there
are still useful information for discrimination.

Probabilistic LDA (PLDA) [18, 19] uses factor analysis to decompose the
face into three factors: x = Bα + Wβ + ξ, i. e. identity Bα, intra-personal
variation Wβ and noise ξ. The latent variables α, β and ξ are assumed as
Gaussian distributions. The covariance matrix of α and β are identity matrixes
and the covariance matrix of ξ is diagonal matrix Σξ. B, W and Σξ are unknown
parameters which needs to be learned. Similar to LDA, PLDA works well if the
dimension of hidden variables is low. But its performance will rapidly degrade if
the dimension of hidden variable is high, in which case, it is hard to get reliable
estimation of the parameters.

In contrast to LDA and PLDA, we do not make the low dimension assumption
and treat each dimension equally. Our joint model can reliably estimate the
parameters in high dimension and does not require elaborate initialization. These
two properties enable us to fully exploit the discriminative information of the
high dimensional feature and achieve better performance.

3.3 Connection with Reference Based Methods

Reference-based methods [11–14] represent a face by its similarities to a set of
reference faces. For example, in work [11], each reference is represented by a SVM
“Simile” classifier which is trained from multiple images of the same person. The
score of SVM is used as the similarity.

From the Bayesian view, if we model each reference as a gaussian N (µi, Σ),
then the similarity from a face x to each reference is the conditional likelihood
P (x |µi ). Given n references, x can be represented as [P (x |µ1 ) , ..., P (x |µn )].
With this reference-based representation, we can define the similarity between
two faces {x1, x2} as the following log likelihood ratio:

Log

(

1

n

∑n

i=1
P (x1|µi)P (x2|µi)

(

1

n

∑n

i=1
P (x1|µi)

) (

1

n

∑n

i=1
P (x2|µi)

)

)

. (11)

If we consider the references are infinite and independent sampled from a
distribution P (µ), the above equation can be rewritten as:

Log

(
∫

P (x1|µ)P (x2|µ)P (µ)dµ
∫

P (x1|µ)P (µ)dµ
∫

P (x2|µ)P (µ)dµ

)

. (12)



Interestingly, when P (µ) is a Gaussian, the above metric is equivalent to the
metric derived from our joint Bayesian in Eqn. (4). (The proof can be found in
supplementary). Hence our method can be considered as a kind of probabilistic
reference-based method, with infinite references, but under Gaussian assump-
tions.

4 Experimental Results

In this section, we compare our joint Bayesian approach with conventional
Bayesian face and other competitive supervised methods.

4.1 Dataset

Label Face in the Wild(LFW) [15] contains face images of celebrities collected
from the Internet with large variations in pose, expression, and lighting. There
are a total of 5749 subjects but only 95 persons have more than 15 images. For
4069 identities, just one image is available.

In this work, we introduce a new dataset, WDRef, to relieve this “depth”
issue. We collect and annotate face images from image search engines by querying
a set of people names. We need to emphasize that there is no overlap between our
queries and the names in LFW. Then, the faces are detected by a face detector
and rectified by affine transform estimated by five landmarks, i.e. eyes, nose and
mouth corners. The landmarks are detected by [23]. We extract two kind of
low-level features: LBP [24] and LE [25] in rectified holistic face.

Our final data set contains 99,773 images of 2995 people, and 2065 of them
have more than 15 images. The large width and depth of this dataset will en-
able researchers to better develop and evaluate supervised algorithms which
needs sufficient intra-personal and extra-personal variations. We will make the
extracted features publicly available.

Fig. 3. Sample images in WDRef dataset



4.2 Comparison with other Bayesian face methods

In the first experiment, we compare conventional Bayesian face, unified sub-
space, Wang and Tang’s unified subspace work [3], and our joint Bayesian. All
methods are tested on two datasets: LFW and WDRef. When tested on LFW,
all identities in WDRef are used for the training. We vary the identities number
in the training data from 600 to 3000 to study the performance w.r.t training
data size. When test on WDRef, we split it into two mutually exclusive parts:
300 different subjects are used for test, the others are for training. Similar to
protocol in LFW, the test images are divided into 10 cross-validation sets and
each set contains 300 intra-personal and extra-personal pairs. We use LBP fea-
ture and reduce the feature dimension by PCA to the best dimension for each
method (2000 for joint Bayesian and unified subspace, 400 for Bayesian and
naive formulation methods).
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Fig. 4. Comparison with other Bayesian face related works. The joint Bayesian method
is consistently better by using different training data sizes and on two databases:
LFW(left) and WDRef(right).

As shown in Figure.(4), by enforcing an appropriate prior on the face repre-
sentation, our proposed joint Bayesian method substantially better on various
training data sizes. The unified subspace stands in the second place by taking
the advantage of subspace selection, i.e. retaining the identity component and
excluding the intra-person variation component and noise. We also note that
when the training data size is small, the naive formulation is the worst. The
reason is that it needs to estimate more parameters in higher dimension. How-
ever, as training data increasing, The performance of conventional Bayesian and
unified subspace method(using the difference of face pair) gradually saturate.
In contrast, The performance of the naive joint formulation keeps increasing
as the training data increase. Its performance surpasses the performance of the
conventional Bayesian method and is approaching the performance of unified
subspace method. The trend of joint Bayesian method shares the same pattern
as the naive joint formulation. The observation strongly demonstrates that joint
formulation helps the discriminability.



4.3 Comparison with LDA and PLDA

We use the same experiment setting (trained on WDRef) as described in Section
4.2. LDA is based our own implementation and PLDA is from authors’s imple-
mentation [19]. In the experiment, the original 5900 dimension LBP feature is
reduced to the best dimension by PCA for each method (2000 for all methods).
For LDA and PLDA, we further traverse to get the best sub-space dimension
(100 in our experiment). As shown in Figure 5, our method significantly out-
performs the other two methods for any size of training data. Both PLDA and
LDA only use the discriminative information in such a low dimension space and
ignore the other dimensions even though there are useful information in them.
On the contrary, our method treats each dimension equally and leverages high
dimension feature.
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Fig. 5. Comparison with LDA and PLDA on LFW(left) and WDRef(right).

4.4 Comparison under LFW unrestricted protocol

In order to fairly compare with other approaches published on the LFW website,
in this experiment, we follow the LFW unrestricted protocol, using only LFW
for training. We combine the scores of 4 descriptors (SIFT, LBP, TPLBP and
FPLBP) with a linear SVM classifier. The same feature combination could also
be find in [12]. As shown in Table 3, our joint Bayesian method achieves the
highest accuracy.

Method LDML-MkNN [9] Multishot [12] PLDA [19] Joint Bayesian

Accuracy 87.5% 89.50% 90.07% 90.90%

Table 3. Comparison with state of the arts method following the LFW unrestricted
protocol. The results of other methods are from their original papers.



4.5 Training with outside data

Finally, we present our best performance on LFW along with existing state of the
art methods or systems. Our purposes are threefold: 1) verify the generalization
ability from one dataset to another dataset; 2) see what we can achieve using
a limited outside training data; 3) compare with other methods which also rely
on the outside training data.

We follow the standard unconstricted protocol in LFW and simply combine
the four similarity scores computed under LBP feature and three types of LE
[25] features. As shown by ROC curves in Figure 6, our approach with simple
joint Bayesian formulation is ranked as No.1 and achieved 92.4% accuracy. The
error rate is reduced by over 10%, compared with the current best (commercial)
system which takes the additional advantages of an accurate 3D normalization
and billions of training samples.
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Fig. 6. The ROC curve of Joint Bayesian method comparing with the state of the art
methods which also rely on the outside training data on LFW.

5 Conclusions

In this paper, we have revisited the classic Bayesian face recognition and pro-
posed a joint formulation in the same probabilistic framework. The superior
performance on comprehensive evaluations shows that the classic Bayesian face
recognition is still highly competitive and shining, given modern low-level fea-
tures and a training data with the moderate size.
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