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Abstract A hierarchical Bayesian factor model for multivariate spatially correlated

data is proposed. Multiple cancer incidence data in Scotland are jointly analyzed,

looking for common components, able to detect etiological factors of diseases hidden

behind the data. The proposed method searches factor scores incorporating a depen-

dence within observations due to a geographical structure. The great flexibility of

the Bayesian approach allows the inclusion of prior opinions about adjacent regions

having highly correlated observable and latent variables. The proposed model is an

extension of a model proposed by Rowe (2003a) and starts from the introduction

of separable covariance matrix for the observations. A Gibbs sampling algorithm is

implemented to sample from the posterior distributions.

Keywords Bayesian inference · Cancer incidence data · Correlated factor loadings ·

Factor analysis · Spatial data

1 Introduction

Spatially referenced data occur in diverse scientific disciplines, such as environmen-

tal sciences (Webster and Oliver 2001; Wikle 2003), ecological systems (Scheiner

and Gurevitch 2001), econometrics (Anselin 2000), disease mapping (Lawson 2001)

and in broader public health contexts (Waller and Gotway 2004). Spatial data are

referenced over a fixed set of locations, that are sometimes discretely indexed with

well-defined neighbors (typically regions or counties in a map, etc.); alternatively, they

M. Mezzetti (B)

Dipartimento SEFEMEQ, Facoltà Economia, Università Tor Vergata, Via Columbia 2,

00133 Rome, Italy

e-mail: maura.mezzetti@uniroma2.it

123



50 M. Mezzetti

may be referenced by precise coordinates (latitude-longitude, easting-northing, etc.),

a situation called point-level or geostatistical data.

Spatial data analysis is challenged by the presence of a possible dependence among

values from neighboring regions (or points) and the main difficulty is taking into

account spatial correlation for correct inference. Correlations among values in contig-

uous areas can sometimes be explained in terms of observed covariates that are also

spatially correlated or can result from some unsuspected or unmeasured variables.

Mixed effects models have provided a convenient means of modeling spatial corre-

lations by using random effects (Yasui and Lele 1997; Waller et al. 1997). Over the

past two decades, spatial statistical methods have been developed for normally distrib-

uted data (Cressie and Wikle 2011; Haining et al. 1989), discrete data (Journel 1983;

Cressie 1993a,b; Diggle et al. 1992; Cressie et al. 2009) and multivariate data (Le et al.

1997). Statistical models used for spatially correlated data can be fully parameterized,

with inference procedures based on maximum likelihood (Clayton and Kaldor 1987;

Cressie 1993a,b), penalized maximum likelihood (Breslow and Clayton 1993) and

Markov chain Monte Carlo (Besag et al. 1991; Waller et al. 1997). Bayesian meth-

ods are increasingly being applied to the analysis of spatial data (Best et al. 2005)

since they offer a way to accurately quantify uncertainty and they incorporate spatial

correlation, through a flexible and robust approach.

The paper focuses on the analysis of geographical variation in disease rates, whose

interest is increasing since it is fundamental in the formulation and validation of eti-

ological hypotheses. Mapping the geographical distribution of cancer incidence, sur-

vival, or mortality rates allows us to describe the geographical distribution of disease,

to highlight sources of heterogeneity underlying spatial patterns in the health outcomes

and consequently to suggest important public health determinants or etiologic clues.

Much of the work in the area of mapping disease has focused on a single disease, how-

ever, many diseases share common risk factors, and it is recently emerging that the

estimates (either incidence or mortality rates) can be further improved by “borrowing”

information from different diseases, not only from adjacent areas. Age-standardized

incidence rates for the principal cancer sites in 56 counties of Scotland, relative to

2005, are considered. This data set is particularly interesting in this context since, on

one hand, if a county has a high incidence/death rate for one kind of cancer, it most

likely has high rates for some other kinds of cancers. On the other hand, the evidence

that adjacent neighboring counties have similar cancer rates is emerging. Therefore,

the incidence rates are correlated both within county and across counties. The main

idea is to explain these two types of correlations, through the flexibility of a Bayesian

approach, by assuming that all these different cancer sites share one (or more) spatially

correlated common factors. This common component can be interpreted as a surrogate

for unobserved covariates that display spatial structure.

Factor analysis is a powerful statistical tool for describing and modeling the under-

lying structure in multivariate datasets, since it uses the correlation or covariances

among a set of observed variables to describe them in terms of a smaller set of latent

variables. Most proposals in the factor analysis literature assume that the data rep-

resent random, independent samples from a multivariate distribution and this is not

a plausible assumption for the spatially referenced data we are analyzing. Despite

the acknowledged advantages, Bayesian approaches to factor analysis have been so
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far quite limited. Bayesian factor analysis was introduced by Martin and McDonald

(1975) and Press and Shigemasu (1989). They had to use rather restrictive model

assumptions since most of the computational techniques for Bayesian data analysis

were not available yet. Later, after iterative MCMC simulation methods, a few fully

Bayesian approaches to factor analysis were proposed, for example, Polasek (1997),

Arminger and Muthen (1998), Aguilar and West (2000), Lopes and West (2004) and

Rowe (2003a), whose approach inspired most the current work. The Bayesian approach

bears directly on the problem of parameter identification, by incorporating proper prior

information.

Many new parameters are introduced when we attempt to account for correlation

across observed variables, and the problem of indeterminacies is greatly increased.

Through a Bayesian model, it is possible to take into account correlation between

observations and to simplify the covariance structure by using proper prior infor-

mation. The idea of factor analysis for correlated data is not new. Wang and Wall

(2003) introduced a factor-analytic model for spatially correlated multivariate cause-

specific mortality, which provides area-specific scalar summaries of mortality via

factor scores. Christensen and Amemiya (2003) developed semiparametric latent var-

iable models, introducing a general spatial factor analysis model that incorporated

spatially lagged factor dependencies. Hogan and Tchernis (2004) propose a hier-

archical Bayesian factor analytic model of spatially correlated data to summarize

area-specific material deprivation from multiple census variables where spatial corre-

lation is modeled on the latent variable scale and can be specified either marginally or

conditionally.

The proposed method is a Bayesian approach to factor model dealing with cor-

relation between observations, and it extends Rowe and Press (1998) proposal. The

first required step is to rewrite the matrix of observations as a vector vec(X) =

(x ′
1, x ′

2, . . . , x ′
N )′, whose length is N × p, N is the number of observations and

p number of variables. The observation vector has a separable covariance matrix:

var(vec(X)) is proportional to Φ ⊗ Ψ , where ⊗ denotes the Kronecker product. The

introduction of a separable covariance matrix represents the main innovation and its

great advantage consists on the interpretation: Φ is now the between-observations

covariance matrix, and the matrix Ψ is the within-observations covariance matrix.

The proposed method is an extension of Mezzetti and Billari (2005), who propose a

Bayesian model for analysis of demographic panel data able to handle the temporal

dependence between the observations.

The approach follows Rowe (2003a) and Mezzetti and Billari (2005) where the

modeling structure is incorporated through the column(s) of the factor score(s). The

main novelty is the development of the factor model for spatially correlated data moti-

vated by the simultaneous analysis of multiple cancer incidence data and, furthermore,

the introduction of a scalar parameter to simplify the separability structure.

In Sect. 2 the motivating cancer epidemiologic data set is illustrated, while Sect. 3

contains a detailed description of the method proposed by Rowe and Press (1998).

Section 4 shows our proposal and the way it extends Rowe’s model. After a descrip-

tion of the computational aspects in Sect. 5, the application will be shown in Sect. 6,

together with sensitivity analysis in Sect. 7. Finally, Sect. 8 contains final conclusions

and remarks.
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2 Epidemiological data

In Scotland, there are 56 counties and, for each county, the age-standardized incidence

rates per 100,000 population, for the most common cancer sites relative to 2005 are

considered (Cancer in Scotland 2010). An age-standardized rate (ASR) is a summary

measure of the rate that a population would have if it had a standard age structure. Stan-

dardization is necessary when comparing several populations that differ with respect

to age, since age has a powerful influence on the risk of cancer. In this case World

standard population is used.

Scotland data have been often used for mapping disease study: data are available

locally for each county and the distributions of some diseases present a geographical

correlation. Incidence rates referred to twelve cancer sites for women are considered,

and incidence rates referred to ten cancer sites for men are considered. Female cancer

sites considered are: lips, oral, esophagus, stomach, large bowel, pancreas, lung, breast,

ovary, uterine corpus, uterine cervix, and hodgkin’s lymphoma. Male cancer sites con-

sidered are: lips, oral, esophagus, stomach, large bowel, pancreas, lung, prostate, testis

and non hodgkin’s lymphoma. The most common diseases are selected.

Cancer is now the leading cause of premature death in Scotland, the main idea

is that detecting etiological factors between cancer incidences could provide a great

improvement from a public health prospective. For males, the most common cancers

are lung, prostate and colorectal cancers accounting for 53% of cancers in males. For

females, the most common cancers are breast, lung and colorectal cancers accounting

for 55% of cancers in women. Thanks to improvement of survival, overall cancer

mortality rates have decreased by 12% in males and 5% in females in the last 10 years.

Death rates from breast cancer, the most frequently diagnosed cancer in females, have

decreased by 12% over the last 10 years, in spite of the increased incidence. Due to

improvement in early diagnosis and survival, cervical cancer deaths have decreased

by 32% over the same time period.

Since correlations among cancer sites are affected by differences from county to

county in diagnosis, treatment, survival rates and other factors, the analysis cannot

leave aside the geographical distributions. In Figs. 1, 2, 3, 4 it is possible to observe

data correlations from two different points of view: between counties (Figs. 1, 2) and

within counties (Figs. 3, 4). Figures 1 and 2 show the geographical distribution of

incidence rates for some selected cancer sites for men and women. Observing the

distribution of cancer incidences, the presence of spatial aggregation is shown, in par-

ticular lung and lips cancer for men, and lung and stomach cancer for women. The

Scotland lip cancer example is well-known in the spatial data analysis literature and

has been analyzed several times, since Clayton and Kaldor (1987) introduced it.

Figures 3 and 4 show the between-observations sample correlation matrices, respec-

tively within males (starting from a 10×56 matrix) and within females (from a 12×56

matrix). The cell occupying the position h, k represents cor(x ′
h, x ′

k), the correlation

between h and k counties (within the cancer age standardized incidences rates strati-

fied by sex). Observing the Figures, the presence of correlation between regions is evi-

denced. Under the hypothesis of independence between observations, the two (within

observations correlation) matrices would be closer to the identity matrix. The regions

are ordered such that adjacent regions have closer rank numbers; thus, area around
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Fig. 1 Distribution of cancer standardized incidence ratio in male

principal diagonal is more likely to represent area of neighboring regions. Observing

the two Figures, areas with higher correlations actually correspond to neighboring

counties. Comparing Fig. 3 with Fig. 4, presence of spatial correlation is stronger

between males than between females. Mean correlation between adjacent regions

(within the cancer age standardized incidence rates) is 0.41 for males and 0.15 for

females.

Smoking and excessive alcohol use are risk factors for a large number of cancers.

According to the National Cancer Institute (www.can\discretionary-cer.gov), smoking

damages nearly every organ in the body and is linked to at least ten different cancers.

It accounts for nearly 30% of all cancer deaths, tobacco use is specifically associ-

ated with cancers of the lung and bronchus, oral cavity (excluding lip), esophagus,

stomach and pancreas. Three of the previous cancer sites also share the risk factor of

excessive alcohol consumption. Most people who smoke also drink alcohol, therefore

the common geographical pattern of some disease may essentially be interpretable

as surrogate for geographical variation in tobacco and alcohol consumption across

Scotland.

In addition to smoking and alcohol consumption, these cancers share other risk fac-

tors; oesophagus and pancreas cancers are linked to bodyweight/obesity; oesophagus

and stomach cancer are associated with diet. The association between diet and cancer
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Fig. 2 Distribution of cancer standardized incidence ratio in female

Sampled correlation matrix: Male
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Fig. 3 Between observations sample correlation matrix (male)
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Sampled correlation matrix: Female
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Fig. 4 Between observations sample correlation matrix (female)

creates a need to understand the causes of cancer beyond those related to tobacco

or other established risk factors. A large body of literature indicates that as much as

30% of all cancer cases is linked to poor dietary habits, and is therefore preventable.

Understanding the distribution of environmental and behavioral risk factors can be

fundamental for public health strategies.

The idea is that different latent components may be shared by different subsets

of diseases and the area-specific values of these components as well as the relative

contribution of each relevant disease to the common component may be estimated, as

it will be shown in the next two sections.

3 Bayesian factor model

This section recalls classical and Bayesian factor analysis, in order to introduce the

model developed in Rowe (2003a) and to simplify the illustration of our approach in

the following section. Factor analysis model is illustrated by first assuming that for

each of many subjects several variables (p) are observed. Let xi denote the p-vector

of observations on subject i . For any specified positive integer m ≤ p, the standard

m-factor model relates each xi to an underlying m-vector of random variables fi , the

common factors, via:

(xi |µ,Λ, fi , m) = µ + Λ fi + εi .

(p × 1) (p × 1) (p × m) (m × 1) (p × 1)
(1)

µ is a p-dimensional unobserved population mean vector, Λ the p × m matrix of

unobserved constants called the factor loadings matrix, fi a m-dimensional vector of
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unobservable “common” factor scores for the i-th subject, and εi a p-dimensional

vector of “specific” factors or disturbance terms of i-th subject on p variables.

The parameters (µ,Λ, f ) in the model are unknown and thus require estimation.

Generally, the estimate of the population mean µ is easily found by maximum likeli-

hood and coincides with sample mean, see Lawley (1940). From now on, to simplify

calculations but without lack of generality, vector xi is assumed to be zero mean (Press

and Shigemasu 1989, 1997; Lopes and West 2004; Rowe 2003a).

The classical factor analysis model assumes εi ∼ N (0, Ψ ) and Ψ a diagonal covari-

ance matrix (p× p), implying that, conditional on the common factors, the observable

variables are uncorrelated: hence the common factors explain all the dependence struc-

ture among the p variables. By permitting ε to have non-diagonal covariance matrix,

the Bayesian model accounts for the possibility of specification error; as for example,

omission of one or more factors from the model.

In practical problems, especially with larger values of p, the number of factors m is

often small relative to p. The factor scores f can be considered either random vectors

or non-random vectors. The main problem encountered is that the model is overpa-

rameterized, the likelihood does not have a maximum, and we cannot reach maximum

likelihood estimates through differentiating the log likelihood function. By assum-

ing the factor scores not fixed, but random normally distributed variables with mean

0, standard deviation 1 and correlation R, independent from error random variables

εi , it is possible to overcome unidentifiability problem. The variance and covariance

matrix of observed vectors can be written as V ar(xi |Λ,Ψ, m) = ΛRΛ′ + Ψ and

estimated by sample variance Σ̂ . Since the model is invariant under transformations

of the form Λ⋆ = ΛP ′ and f ⋆
i = P fi ; where P is any orthogonal p × p matrix,

different proposals for identifying the model exist. We can get unique solutions by

adding constraints on the parameters (as for example R being the identity and Λ being

columnwise orthogonal).

Under assumption of centered, uncorrelated and standardized factors, on one hand

the conditional structure is xi | fi ,Λ,Ψ ∼ N (0, Ψ ) and, on the other hand, the uncondi-

tional structure is xi |Λ,Ψ ∼ N (0,ΛΛ′ + Ψ ). Therefore the variance can be decom-

posed in the following way: var(xih | f,Λ,Ψ ) = ψ2
hh , cov(xih, xik | f,Λ,Ψ ) = 0,

var(xih |Λ,Ψ ) =
∑m

j=1 λ2
h j + ψ2

hh and cov(xih, xik |Λ,Ψ ) =
∑m

l=1 λlhλlk . Each

element ψ2
hh measures the residual variability of each variable once that contributed

by the factors is accounted for. The element in the j-th row and k-th column is the

covariance between the j-th variable and k-th score. Thus a large element of Λ implies

a strong correlation between the corresponding variable and the corresponding factor.

Aguilar and West (2000) introduced a reasonable assumption, that is to constrain Λ

a block lower triangular matrix, assumed to be of full rank, with diagonal elements

strictly positive. This form provides both identification and, often, useful interpreta-

tion of the factor model. In this form, the loadings matrix has r = pm − m(m − 1)/2

free parameters.

One of the major challenges and more discussed topics in factor analysis is the

determination of parameter m, the number of factors. Generally the researcher has to

compromise between two risks: on one hand, underextraction can lead to the loss of

relevant information and a substantial distortion in the solution; on the other hand,
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overextraction can lead to factors with few substantial loadings, which can be difficult

to interpret and to replicate. A general suggestion could be to “guess” the number of

factors m based on underlying theory and previous studies; many different rules exist

for the choice of number of factors in the non-Bayesian literature (an examples are

the scree test or the percent variation), while Bayesian inference allows a probabilistic

approach (Lopes and West 2004).

The Bayesian approach to factor analysis model bears directly on the problem

of parameter identification, by incorporating proper prior information. If subjective

information is introduced through the class of priors suggested, the usual rotational

identification problem will disappear so that all the parameters of the factor loading

matrix will be identified. We follow here the approach of Press and Shigemasu (1997),

since it is considered so far the best and most complete reference on Bayesian factor

analysis.

Starting from the model in (1), we obtain the likelihood by assuming:

εi ∼ N (0, Ψ ), i = 1, . . . , N .

E(Ψ ) is assumed to be diagonal to represent traditional beliefs of the model contain-

ing common and specific factors. While Lawley (1940) hypothesizes that the matrix is

strictly diagonal, here the hypothesis is that a full positive definite diagonal matrix on

the expected value. The likelihood for the observations can be written as the following

matrix normal distribution (from now on, trace will be indicated with tr):

p(X |F,Λ,Ψ, m) ∝ |Ψ |−N/2 exp

(

−
1

2
tr

(

(X − FΛ′)Ψ −1(X − FΛ′)′
)

)

(2)

where the i-th row of X and F are, respectively, x ′
i and f ′

i as in (1). In Press and

Shigemasu (1997) natural conjugate families of prior distributions are used. The fac-

tor loadings are assumed to depend on the disturbance covariance matrix, the distur-

bance covariance matrix is assumed to be independent of the factor scores and the

factor scores are assumed to be independent of the factor loadings and the disturbance

covariance matrix. More specifically, the joint prior distribution has the following

form:

p(F,Λ,Ψ |m) = p(Λ|Ψ, m)p(Ψ )p(F |m),

moreover, we have the following set of prior distributions:

p(Λ|Ψ, m) ∝ |Ψ |−m/2 exp

(

−
1

2
tr

(

Ψ −1(Λ − Λ0)H(Λ − Λ0)
′
)

)

, (3)

p(Ψ ) ∝ |Ψ |−(ν+2p+2)/2 exp
(

−
ν

2
tr Ψ −1 B

)

, (4)

p(F |m) ∝ exp

(

−
1

2
tr F ′F

)

. (5)
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with Ψ and H definite positive matrices, and B is a positive diagonal matrix. Param-

etrization in (4) is chosen such that E(Ψ |B) = B.

Straightforward posterior distributions are reached. More specifically, the factor

scores given the factor loadings, the disturbance covariance matrix and the data, are

normally distributed as:

p(F |Λ,Ψ, X, m) ∝ exp

(

−
1

2
tr

(

(F − F̃)(Im + Λ′Ψ −1Λ)(F − F̃)′
)

)

, (6)

where F̃ = XΨ −1Λ(Im + Λ′Ψ −1Λ)−1. The conditional posterior distribution of the

factor loadings given the factor scores, the disturbance covariance matrix and the data,

is a multivariate Gaussian distribution as follows:

p(Λ|F, Ψ, X, m) ∝ exp

(

−
1

2
tr

(

Ψ −1(Λ − Λ̃)(H + F ′F)(Λ − Λ̃)′
)

)

(7)

where Λ̃ = (X ′F + Λ0 H)(H + F ′F)−1.

The conditional posterior distribution of the disturbance covariance matrix given

the factor scores, the factor loadings and the data, is an inverted Wishart density:

p(Ψ |F,Λ, X, m) ∝ |Ψ |−(N+m+ν+2p+2)/2 exp

(

−
1

2
tr

(

Ψ −1U
)

)

(8)

where U = (X − FΛ′)′(X − FΛ′) + (Λ − Λ0)H(Λ − Λ0)
′ + νB.

As expected in Bayesian inference, the expected values of the conditional poster-

ior distributions (6), (7) and (8) are weighted means between prior expected values

and contributions from likelihood. In particular, posterior expected value of Ψ is a

combination of prior opinion, information from the data and prior opinion about Λ:

E(Ψ |F,Λ, X, m) =
N

N + m + ν

(X − FΛ′)′(X − FΛ′)

N

+
m

N + m + ν

(Λ − Λ0)H(Λ − Λ0)
′

m
+

ν

N + m + ν
B

(9)

As it emerges from this section, a Gibbs sampling algorithm is easily implementable

(Rowe and Press 1998).

4 Model proposed

Classical factor model and Bayesian factor model assume independent rows of the

observation matrix, this assumption turns out to be not a reasonable assumption for

spatially correlated data. We try to remove the previous assumption starting from
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Eq. (1) rewriting the N × p matrix of observations as a vector of length N p (where

the first p elements are the p-observations relative to first region):

(X|µ,Λ, F, m) = IN ⊗ Λ F + ε

(N p × 1) (N × N ⊗ p × m) (Nm × 1) (N p × 1)
(10)

According to the previous equation, F is a vector of length Nm and ε is now a

vector of length N p and the following distribution is now assumed:

ε ∼ N (0,Ω).

The number of unknown parameters is greatly increased, that is the reason why Rowe

(2003a) introduced the innovative idea of defining the matrix Ω as a separable covari-

ance matrix by a Kronecker product of two matrices, Φ(N × N ) and Ψ (p × p). The

great advantage of the previous definition is the interpretability of matrix Ω . Matrix

Ψ is related to covariances between variables (conditional on the factor model, as a

consequence, if the model is well defined we do expect Ψ to be diagonal). On the other

hand, matrix Φ indicates the spatial structure, containing in each cell the covariance

between regions. Furthermore, if we let Φ be proportional to the identity matrix, we

have the model in (1).

Since matrix Ω is invariant under transformations of the form Φ ′ = k × Φ and

Ψ ′ = (1/k) × Ψ , where k is any positive constant, Kronecker product has prob-

lems with not uniqueness of solutions (Srivastava et al. 2008). A scalar parameter

is introduced. Ω is now defined as σ 2
ε Φ ⊗ Ψ (⊗ indicate Kronecker product), and

matrices Φ and Ψ have traces, respectively, equal to N and p. If X is again a matrix,

whose each row xi contain the p-vector of observations on region i , under separable

structure, var(xi |Φ,Ψ, m, f,Λ) = σ 2
ε φi iΨ and the covariance between rows i and

j of X is σ 2
ε φi jΨ , while the covariance between columns h and k of X (representing

observations of variable h and k on the N regions) is σ 2
ε ψhkΦ.

Starting from model in Eq. (10), the likelihood for the observations can be written

as the following matrix normal distribution

p(X |F,Λ,Ψ,Φ, m) ∝

σ−N p
ε |Φ|−p/2|Ψ |−N/2 exp

(

−
σ−2

ε

2
tr

(

Ψ −1(X − FΛ′)′Φ−1(X − FΛ′)

)

)

, (11)

where again the i-th row of X and F are, respectively, xi and fi .

We will use natural conjugate families of prior distributions for the parameters. The

joint prior distribution is given by

p(Φ,Ψ, σ 2
ε , F,Λ|m) = p(Ψ )p(Φ)p(σ 2

ε )p(F |Φ, m)p(Λ|Ψ, m).
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For the moment, we let unspecified prior distribution of Φ and we have the following

set of prior distributions:

p(σ 2
ε ) ∝ σ−2κ−2

ε exp

(

−
θ

σ 2
ε

)

, (12)

p(Λ|Ψ, m) ∝ |Ψ |−m/2 exp

(

−
1

2
tr

(

Ψ −1(Λ − Λ0)H(Λ − Λ0)
′
)

)

, (13)

p(Ψ̃ ) ∝ |Ψ̃ |−(ν+2p+2)/2 exp
(

−
ν

2
tr Ψ̃ −1 B

)

, (14)

Ψ = p
Ψ̃

tr(Ψ̃ )
(15)

p(F |Φ, m) ∝ |Φ|−m/2 exp

(

−
1

2
tr Φ−1 F F ′

)

. (16)

Again, Ψ and H are definite positive matrices, and B is a definite positive matrix.

B is not necessary a diagonal matrix, even if, as explained in the previous section,

assuming E(Ψ |B) to be diagonal is a reasonable assumption. The introduction of the

scalar parameter, σ 2
ε , allows to redefine Ψ in the following way:

Ψ = p ×
Ψ̃

tr(Ψ̃ )
.

The trace of Ψ is now constrained to be equal to p. The distribution of Ψ is derived

in Leorato and Mezzetti (2011) and turns to be again a conjugate distribution, with a

great simplification of the computational aspect and the interpretation.

From the set of prior distributions just introduced, following considerations arise:

– Besides introduction of scalar parameter σ 2
ε , prior distributions for Ψ and Λ in

(13) and (14) remain the same as in (4) and (3). Dependence between observations

does not affect prior opinions about factor loadings and the within observations

covariance matrix.

– Prior distribution for F in (16) is different from (5), since hypothesis of depen-

dence between observations affects prior opinion about F . Vectorizing matrix F ,

we obtain a vector Nm × 1, F, whose covariance matrix is now the Kronecker

product of Φ and an identity matrix (due to independence between factors).

– Prior distributions of Λ depends on Ψ and not on Ψ̃ , since factor loadings are

assumed to be standardized.

The idea underlying our proposal is that the factor scores, fi , share the same correla-

tion structure with the data. The spatial dependence between regions imply the same

spatial dependence within the latent factors; in a way, our hypothesis is that factor

scores are not explaining themselves all the spatial structure in the data. This latter

consideration represents an important difference respect to other approaches to factor

analysis for spatial data.

After definition of likelihood in (11) and the set of prior distributions in (12)–(16),

an appropriate prior distribution for the matrix Φ needs to be defined. The ideal would
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be to define a prior distribution able to leave posterior distributions analytically trac-

table. Three different scenarios for the matrix Φ are proposed and will be illustrated

later.

Letting p(Φ) unspecified for the moment, conditional posterior distributions for

F , Λ, σ 2
ε and Ψ are reached in a straightforward way. More specifically, the joint

posterior distribution for the unknown parameters of interest is given by:

p(F, Λ, Ψ, Φ, σ 2
ε |X, m)∝p(Φ)p(σ 2

ε )σ−2N p
ε |Φ|−(p+m)/2|Ψ |−(N+m+ν+2p+2)/2|H |p/2

× exp

(

−
1

2
tr

(

Ψ −1U
)

)

exp

(

−
1

2
tr

(

Φ−1 F F ′
)

)

where:

U = σ−2
ε (X − FΛ′)′Φ−1(X − FΛ′) + (Λ − Λ0)H(Λ − Λ0)

′ + νB.

The conditional posterior density of the factor loadings given the factor scores, the

disturbance covariance matrix and the data, is again multivariate normal:

p(Λ|F, Ψ,Φ, X, m) ∝ exp

(

−
1

2
tr

(

Ψ −1(Λ − Λ̃)(H + F ′Φ−1 F)(Λ − Λ̃)′
)

)

(17)

where Λ̃ = (X ′Φ−1 F +Λ0 H)(H + F ′Φ−1 F)−1. Comparing (17) with (7), we notice

that the introduction of dependence between observations does affect the posterior dis-

tribution of factor loadings through the incorporation of matrix Φ in covariance matrix

of F .

The conditional posterior density of the disturbance covariance matrix given the

factor scores, the factor loadings and the data, is again an inverted Wishart density:

p(Ψ̃ |F,Λ,Φ, X, m) ∝ |Ψ̃ |−(N+m+ν+2p+2)/2 exp

(

−
1

2
tr

(

Ψ̃ −1U
)

)

. (18)

E(Ψ̃ |F,Λ,Φ, σ 2
ε , X, m) =

N

N + m + ν

σ−2
ε (X − FΛ′)′Φ−1(X − FΛ′)

N

+
m

N + m + ν

(Λ − Λ0)H(Λ − Λ0)
′

m
+

ν

N + m + ν
B

(19)

Again, the component deriving from the observed data contain matrix Φ, as it is also

evident by the modification of posterior expected value respect to (9). The conditional

posterior distribution for the factor scores given the correlation matrix, the disturbance

covariance matrix, the factor loadings and the data is multivariate normal. Equation (6)

is modified as follows:
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p(F |Λ,Ψ,Φ, X, m) ∝ exp

(

−
1

2
tr

(

Φ−1(F − F̃)(Im + Λ′Ψ −1Λ)(F − F̃)′
)

)

,

(20)

where F̃ = XΨ −1Λ(Im + Λ′Ψ −1Λ)−1.

If we let p
(

σ 2
ε

)

, prior distribution for σ 2
ε , to be an inverse Gamma distribution

with parameters (k, θ0), posterior distribution for σ 2
ε is again an inverse Gamma with

updated parameters κ + N p and θ0 + tr
(

Ψ −1(X − FΛ′)′Φ−1(X − FΛ′)
)

p(σ 2
ε | F,Λ,Ψ,Φ, X, m) ∝

∝ (σ 2
ε )−2(κ+N p+1) exp

{

−
θ + tr

(

Ψ −1(X − FΛ′)′Φ−1(X − FΛ′)
)

σ 2
ε

}

(21)

The posterior expected value of σ 2
ε results a weighted mean between prior expected

value and maximum likelihood estimate:

E
(

σ 2
ε | · · ·

)

=
κ

κ + N p

θ

κ
+

N p

κ + N p

tr
(

Ψ −1(X − FΛ′)′Φ−1(X − FΛ′)
)

N p
(22)

Here we propose three different scenarios for Φ, (posterior distributions will be dis-

cussed in the following Section):

First scenario: Φ is a constant matrix; as for example, correlation between

regions is inversely proportional to any distance between the

regions, or the covariance can rely on any other neighborhood

structures.

Second scenario: Φ has a priori inverted Wishart distribution with expected value

equal to a defined matrix G, and again similar to Eqs. (14) and

(15), we assume that:

p(Φ̃) ∝ |Φ̃|−(γ+2N+2)/2 exp
(

−
γ

2
tr

(

Φ̃−1G
))

(23)

Φ = N ×
Φ̃

tr(Φ)
(24)

Introduction of scalar parameter σ 2
ε affects also prior distribu-

tion of Φ, that justifies Eq. (24). We remove the assumption of

independence between observations, but we do not specify any

form of dependence and let the data determine that. If we let

parameter γ small enough, we let prior distribution of Φ to be

quite uninformative.

Third scenario: Φ = f (W, ρ) where f is a distance decay function, differen-

tiable and such that Φ result positive definite, ρ is a vector of

parameters, and W a fixed defined matrix. It is, first, necessary

to define a matrix W ; each cell wi j represents a relation between

regions i and j . W can be either an adjacency matrix or a “dis-

tance” matrix: in the first case wi j is equal to 1 if only if regions
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i and j are adjacent, otherwise wi j = 0. In the second case wi j

indicates any distance between region i and region j . Distance

can be defined as, for example, distance between barycenters of

the two regions, or minimum distance between borders. The cor-

relation between two adjacent regions depends on wi j through

the random parameters ρ. By proposing a prior distribution for

ρ, (one or more dimension scalar parameter) another level on

the hierarchical Bayesian model is introduced.

5 Computations

Gibbs Sampling algorithm is straightforward implemented to generate samples form

(17)–(21). Starting with initial values for F and Ψ , for example F̃(0) and Ψ̃(0) and

leaving unspecified from now Φ, then the cycle goes through:

Λ̂i+1 = a random sample from P(Λ|F̂i , Ψ̂(i), Φ̂(i), σ̂
2
ε(i), X)

F̂i+1 = a random sample from P(F |Λ̂i+1, Ψ̂(i), Φ̂(i), σ̂
2
ε(i), X)

Ψ̂i+1 = a random sample from P(Ψ |Λ̂i+1, F̂(i+1), Φ̂(i), σ̂
2
ε(i), X)

σ̂ 2
ε(i+1) = a random sample from P(σ 2

ε |Λ̂i+1, F̂(i+1), Ψ̂(i+1), Φ̂(i), X)

Finally, the means of the random sampling are the sampling based posterior marginal

mean estimates of the parameters.

Identifiability is a well-known problem in factor analytic models and, to guarantee

a unique solution, some suitable constraints must be imposed on the factor scores and

factor loadings. As regarding F , we assume to have an identity variance matrix, as in

(16). However, when using MCMC, which estimates the entire posterior distribution

of the parameters and not just a (local) maximum, at each iteration step we look for a

rotational solution, that maximizes the sum of the variances of the squared loadings.

Concerning the sampling from posterior distribution of Φ, we will show the three

situations mentioned before.

First scenario The first scenario represents the easiest one from a computational

point of view. Φ is assumed to be equal to a determined fixed

matrix and it has not any prior distribution. On the other hand,

the weight of the prior opinion is too strong.

Second scenario The second prior corresponds to the conjugate prior, so Φ̃ has a
posterior inverted Wishart distribution with updated parameters.
The expected value is a weighted sum of data covariance, factor
scores covariance and prior hypothesis about covariance between
observations, more precisely:

E(Φ̃|F, Λ, Ψ, σ 2
ε , X) =

p

p + m + γ

σ−2
ε (X − FΛ′)Ψ −1(X − FΛ′)′

p

+
m

p + m + γ

F F ′

m
+

γ

p + m + γ
G (25)
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and again

Φ = N ×
Φ̃

tr(Φ̃)

Third scenario The ideal would be to define the covariance as a distance decay

function. Let, for example, ∆ be a matrix whose elements rep-

resents any distance between two regions, and let matrix A be

defined as exp(−ρ∆), where each element of A is the exponential

of the element of ∆: ai j = exp(−ρδi j ). The matrix A encoun-

ter some identification and estimation problem, since the matrix

A is not positive definite for all possible values of ρ (Cressie

1993a,b; Anselin 2001). We first define ∆ as the minimum dis-

tance between two regions, (we operate a shift such that only the

diagonal elements are equal to zero). Let define Φ as a two param-

eters function: τ exp(−ρ∆)+ IN , in this way, for each couple of

values (τ, ρ), closer two regions are, higher is the corresponding

covariance. Fixing τ , when the value of ρ is increasing, matrix

Φ is closer to the identity matrix; lower ρ is, the spatial structure

is stronger. On the other hand, lower τ is, closer the matrix to the

identity matrix.

We cannot solve analytically posterior distribution for ρ and

τ , and sampling needs implementation of adaptive rejection

Metropolis sampling following Gilks et al. (1995). Letting Φ =

τ exp(−ρ∆) + IN

p(τ, ρ|Λ,Ψ, m, X) ∝ p(τ, ρ)|τ exp(−ρ∆) + IN |−(p+m)/2

× exp

(

−
1

2
tr

(

(τ exp(−ρ∆) + IN )−1 G̃
)

)

(26)

where:

G̃ = σ 2
ε (X − FΛ′)Ψ −1(X − FΛ′)′ + F F ′.

As a prior distribution for ρ, Gamma distribution can be reason-

ably chosen, while as a prior for τ flat beta distribution is chosen.

Gilks’s is easily adapted to a bivariate distribution, fixing at each

step one of the two parameters.

6 Results

The incidence rates of different cancers sites in Scotland are jointly modeled to explore

the patterns of spatial correlation among them. Furthermore, the joint analysis is nec-

essary to identify common latent factors, and to estimate how the incidence of each

cancer site contribute to the shared risk factors. The incidence rates are considered
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Table 1 Factor loadings for female cancer sites

Site 1st factor 2nd factor 3rd factor 4th factor 5th factor

Lips 0.0278 −0.0161 0.4283 0.2869 −0.0318

Oral −0.0681 0.0982 0.2681 −0.2366 −0.0274

Esophagus −0.0219 0.2925 0.1407 −0.0103 0.2792

Stomach −0.0903 0.2914 −0.0314 0.2042 −0.0265

Large bowel 0.2363 0.1189 0.0073 0.1443 −0.1371

Pancreas −0.2700 0.1093 −0.0409 −0.0047 −0.1698

Lung −0.0265 0.3269 −0.0303 −0.0173 −0.1291

Breast 0.2090 0.1436 0.1128 −0.1379 −0.0812

Ovary 0.0528 −0.0440 0.0347 0.0151 −0.5654

Uterine 0.2685 −0.0254 0.3582 0.0086 0.0642

Cervix −0.1205 −0.1834 0.1516 −0.0403 −0.1588

Hodking −0.1296 0.0150 0.0922 0.3789 0.0444

on a standardized logarithmic scale to overcome the problem of inappropriateness of

the normality assumption. Instead of a Poisson distribution, a Gaussian distribution

is assumed and it represents an advantage since it allows to take into account the

uncertainty attached to the incidence rates.

By the analysis of correlation coefficients between cancer incidences, it emerges

that some of them result significantly high and some of them significantly low. Partic-

ularly, for each cancer site a positive association is present between males and females

(a part from a zero between oral cancer in men and oral cancer in women). Further-

more, esophagus cancer is associated with stomach, and strongly with pancreas and

lung cancer. A negative correlation between the previous ones and lips cancer emerges

and a negative correlation between oral cancer and thyroid is present.

The results reported are based on posterior samples of 100,000 iterations per

MCMC, with a burn-in iterations of 50,000, convergence for each parameters was

checked by visual examination of trace plots and by the calculation of the Brooks and

Gelman diagnostic (Brooks and Gelman 1998). Convergence of matrices was checked

through convergence of eigenvalues. In terms of real time, the runs took between 4

and 7 h per model.

We run different models, we start now considering second prior distribution for Φ.

The two matrices Φ and Ψ have both an inverted Wishart prior, their prior expected

values are considered to be the identity matrix, letting scale parameters ν and γ to

be small enough, as one tenth of matrix dimension, allows the prior distributions to

be quite uninformative. In next section the choices for hyperparameters will be dis-

cussed. Applying different criterions, the number of factors considered relevant is

three, applying the procedure stratified for sex and then overall. The mean of the pos-

terior sampled factor loading matrices of females and males are shown, respectively,

in Table 1 and in Table 2.

First factor loading in females is highly positive correlated with large bowel, breast,

and uterine cancers, while it is negative correlated with pancreas cancer. Association
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Table 2 Factor loadings for male cancer sites

Site 1st factor 2nd factor 3rd factor 4th factor 5th factor

Lips −0.4616 0.0135 0.4637 0.0824 −0.0494

Oral 0.0118 0.1777 0.3435 0.0178 0.0960

Esophagus −0.0320 0.0837 −0.0176 0.1286 −0.6238

Stomach 0.3377 −0.0323 −0.1766 0.1617 −0.1464

Large bowel −0.0590 −0.0333 0.2090 0.5816 −0.0280

Pancreas 0.3451 −0.1682 0.1364 −0.1464 −0.0799

Lung 0.4477 0.1314 0.0150 0.1354 0.1086

Prostate 0.0394 −0.2688 0.3541 0.0678 −0.1280

Testis −0.0929 −0.4275 −0.0408 0.0031 0.0243

Non Hodking −0.0013 −0.2642 −0.1200 0.2397 0.2601

shown confirms, in a way, the epidemiological evidence of a link between ovula-

tion and ovarian cancer (“the incessant ovulation theory” Fathalla (1971)), breast and

reproductive variables, creating a strong link between breast and gynecological can-

cer. Breast and large bowel cancers can be hypothesized to share diet and alcohol

consumption as a risk factor. First “female” factor explain 60% of the entire variance,

and it can be defined as “a reproductive factor”.

The second women factor, explaining 25% of total variation, is positively associated

with esophagus, stomach and lung cancers. These sites share cigarette smoking and

diet risk factor. The main interesting interpretation for second factor loading extracted

can be linked to behavioral factors (smoking, alcohol and diet). The weaker negative

association with cervix can be interpreted in terms of competing risk. The highest

value for the second factor loading is the coefficient relative to lung, this confirm the

possible interpretation of a latent factor score for smoking habit.

First factor loading in males signs the big contrast between lips cancer and, on the

other side, lung, pancreas and stomach cancer. Scottish male lips cancer is very inter-

esting since it is strongly spatially aggregated. Distribution of lips cancer has been

studied by many statisticians for its strong spatial aggregation, still partially unex-

plained. Lips cancer is very common in the areas where high percentage of worker

outside is present. As expected, strong association between lung, stomach and pancreas

emerges, being the three of them related to smoking consumption. The first “male”

factor, that can defined as “smoking factor”, explain alone 70% of the entire variance.

It is evident from Fig. 6 the strong spatial structure. Furthermore, it emerges a positive

correlation with population density, assuming high values in metro areas. We can inter-

pret first factor loading as signing contrast between urban and rural life. The negative

association of the three tumors with lips cancer need to be further investigated; a pos-

sible explanation could be looked as a “confounder” effect: lips cancer is negatively

associated with “smoking” related cancers, since “smoking” related cancers are more

common in urban regions, where lips cancer is more rare.

The second men factor loading is characterized by high correlation between tes-

ticular, prostate and non-Hogking disease. Results of ecological studies suggest that
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prostate cancer is associated with a western lifestyle and in particular, diet that includes

a high intake of fat and meat (Fritschi et al. 2007; Grönberg 2003). At the same time,

testis cancer is much more common in developed contest, thus the second men factor

loading can be interpreted as a “social” factor, and positively associated with can-

cer more present in lower socioeconomic group, assuming higher values in poorer

regions. Many studies conducted in all Western countries have reported large social

inequalities in health, using a variety of socioeconomic indicators and including both

general health and disease-specific outcomes (Spadea et al. 2010).

Finally, third factor between men is characterized by strong positive association

between lips and prostate cancer. Some recent studies (Fritschi et al. 2007; Grönberg

2003) shows that farming is related to prostate cancer, probably due to exposure to

pesticides and fertilizers. Since farming implies working outside and having higher

exposure to sunlight, this can explain the association between prostate and lips cancer.

Finally we look for factor loadings considering the 23 variables together, the anal-

ysis consider female and male cancers at the same time. Results are not shown here,

first factor is definitely signed by a strong association between breast and prostate

cancer. In fact, prostate cancer was found to occur at a higher rate in families with

other cancers such as breast cancer. Carriers of the breast cancer (BRCA1) gene had

twice the incidence of prostate cancer of noncarriers (Grönberg 2003). The percentage

variance explained is 55%, lower than the fist factor obtained after stratification.

The main advantage of the second prior distribution for Φ is that it is not neces-

sary to assume high correlation between adjacent regions. We adopt an uninformative

prior, we let Φ be far from diagonal matrix as much as data determine this distance.

By assuming an inverted Wishart distribution for Φ with a reasonable choice for

hyperparameter γ , we let the data determine the “distance” between sampling covari-

ance matrix and diagonal matrix. The data will determine weather there is indepen-

dence between regions, within cancer incidences, and weather the possible dependence

evidenced is due to geographical structure.

Third prior distribution for matrix Φ adds a level in the hierarchical model, Φ

depends now on two parameters (ρ, τ ) that represents the strength of the spatial struc-

ture through the relation τ exp(−ρ∆)+ IN , where ∆ is the minimum distance between

the points in the border of the two regions, but different proposal can be considered

(such as adjacent matrix, for example). In Fig. 5 posterior estimation of Φ under the

different scenarios is shown. Third prior distribution for Φ considers only the case

of lack of independence between observations due to spatial structures (imposed by

subjective choice of ∆). Moreover, it is computationally complicate, some constraints

on the parameters’ domain need to be added to allow sampling. Posterior distribution

of the two parameters is not shown here, since it is considered hard and uninteresting to

interpret respect to straightforward interpreting Φ, since it does not have a direct inter-

pretation as a correlation coefficient. (Male coefficients result τ = 1.2 and ρ = 0.31,

female coefficients result τ = 0.85 and ρ = 0.4). As shown in Fig. 5 spatial structure

results higher in males than in females; this consideration can be achieved just by

graphical comparison, more complicate is comparisons of parameters. Observing the

diagonal elements in the four graph, heterogeneities between regions emerge, partic-

ularly for men. Third prior distribution for Φ cannot capture regional heterogeneities.
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Fig. 5 Posterior estimates for Φ under different scenarios, between males and females
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Fig. 6 First Factor Scores under different scenarios for Φ, between males and females

Critical is the choice of Λ0, a prior expected value for Λ. Following Rowe (2003a),

we first obtain maximum likelihood estimation from covariance method obtained with

traditional factor analysis followed by varimax rotation on a small subset of observa-
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tions, this estimate is used as a value for Λ0, leaving the prior precision quite small.

Regarding posterior estimation of Λ, as expected it is not robust against the change

of Λ0 but it is robust to the choice of training data. Furthermore, we investigate the

behavior of the posterior estimation of Λ by changing prior distribution of Φ, the

main question is whether different latent factors arise by strongly supporting presence

of spatial structure in the data. An other important question arising is whether the

posterior estimation of Λ change from other proposed model. After exploring differ-

ent situations, we conclude that difference between maximum likelihood estimation

and our estimation of Λ is as big as is the distance between posterior estimates of Φ

and the identity. When prior opinion about existence of correlation between adjacent

regions is strongly assumed, first factor between females is no longer correlated with

breast cancer (that does not present spatial structures) and first factor between males is

more strongly correlated with lips and lung cancer. In Fig. 6, comparison of first factor

by assuming second and third prior is shown both within males and within females.

Since spatial correlation is stronger between males than between females: first factor

extracted from male cancer sites remains the same regarding the prior distribution

assumed for Φ, and, on the other hand, first factor extracted from female cancer sites

changes regarding the prior assumed. From Fig. 6, greater change we observe within

females, since spatial structures does not result unless strongly assuming it a priori.

The big contrast between lips cancer and other disease is pointed out only when spatial

correlation is taken into account, and further investigation of this result should follow.

Interesting is the change in the percentage of variation explained by the factors. First

“male” factor presents a strong correlation between adjacent regions with any prior

assumed; its relative contribution is higher with third prior. On the hand, contribution

of first “female” factor is higher with first prior, since spatial correlation is weaker

respect to men.

The interpretation of negative loadings may create problems. The negative sign

does not mean that a disease-related factor for one cancer location is preventive for

some other cancer location. The explantation can be given thinking about competing

risks, the presence of some risk factor, i.e. pollution, can be the cause of respiratory

related disease hiding the risk of other cancers.

An important issue to be faced is the determination of the number of factors. We

select the number of factors by empirical methods as percent variation: the resulting

chosen number of factors is the minimum number that accounts for at least that amount

of total variation in the observed covariance matrix. We compare our results with the

ones obtained through a Bayesian approach. Defining p(m), a prior on m, easily by

Bayes’ Rule it is possible to compute the probability of each of the number of factors

given the parameters

p(m | µ,Λ, F, Ψ,Φ, σ 2
ε , X)

∼ p(m)p(µ)p(Λ|F, Ψ, m)p(F |Φ, m)p(Ψ )P(Φ)p(σ 2
ε )p(X |µ,Λ, F, Ψ, m)

(27)

and determine the number of factors as the most probable. In this case, the results of

the two approaches coincide, so we did not investigate further the latter mentioned
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method, although a probabilistic approach to the determination of the number of

factors deserves to be better developed. Christensen and Amemiya (2003) discuss a

systematic method for selecting an appropriate model, in terms of number of factors,

combining the Bayes factor with the joint Bonferroni test for spatially independent

errors. Reversible Jump MCMC (RJMCMC) methods are useful for exploring poster-

ior distributions for model parameters in the context of uncertainty about m, and with

m included as a parameter. As we move between models with different numbers of

factors, the dimension and meaning of the model parameters change, and RJMCMC

methods are designed for just such problems.

7 Sensitivity analysis

Once the Bayesian model is described, the assessment of the hyperparameters has to

be considered. The process of hyperparameter assessment is described in Rowe (2000,

2002, 2003a,b), while more sophisticated methods are proposed in Hayashi and Sen

(2001).

We need to define the hyperparameters in Eqs. (12)–(16). Lee and Press (1998)

concluded that the estimation of Λ is not robust against change of values for hyperpa-

rameters Λ0. Maximum likelihood estimation from covariance method obtained with

traditional factor analysis over a subsample will be assumed as a prior mean for Λ.

By definition, H is any positive definite matrix, it is assumed that H is either a diag-

onal matrix or proportional to the identity. Assuming H = nH Im , as a value for nH ,

the training sample size is chosen. There is no reason to assume a prior correlation

between elements in Λ.

We assess the hyperparameter ν, the prior degrees of freedom by a method due

to Hayashi and Sen (2001). We start with the Bayes estimator for the disturbance

covariance matrix

E(Ψ̃ |F,Λ,Φ, σ 2
ε , X, m) =

N

N + m + ν

σ−2
ε (X − FΛ′)′Φ−1(X − FΛ′)

N

+
m

N + m + ν

(Λ − Λ0)H(Λ − Λ0)
′

m
+

ν

N + m + ν
B

(28)

We can consider Ψ̂ as a weighted average of the three terms in (28). The scalar values

associated with the terms are N , m and ν respectively. Because we consider the first

and third terms as representing respectively the data and the prior information, we can

choose ν as greater as much strong is our prior opinion. Considering ν equal one tenth

of the sample size is a reasonable choice.

Regarding B, a diagonal matrix is proposed. The expected value of any diagonal

element is

E(ψ̃i i ) = b0i , i = 1, . . . , p.
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In case we substitute the training sample covariance matrix Σ̂ and the a priori mean

for the factor loadings in the above equations we have

Ψ0 = Σ̂ − Λ0Λ
′
0,

then taking the average of the diagonal elements

1

p
tr(Ψ0) =

1

p
tr(Σ̂ − Λ0Λ

′
0).

Sensitivity analysis studies show that if ν and γ are both assumed to be equal to

approximately one tenth of matrices dimension, posterior estimates are not sensitive

to choice of B and G. Regarding posterior distribution of σ 2
ε it results strongly sensi-

tive to the parameters γ and ν, decreasing they are, increasing is the posterior sample

mean of σ 2
ε . Lower value for k, results in not informative prior for σ 2

ε and this turns

out to be a reasonable choice. Finally considering third prior for Φ, results are robust

to change of prior distribution of ρ and τ , assuming prior correlated distribution does

not change the posterior estimations.

8 Conclusion

The spatial distribution of cancer mortality and morbidity rates has been studied by

many authors. Since Burkitt (1969, 1970) stated that the variation in the geograph-

ical pattern of the disease may be related to its cause, and in view of this assertion

many authors have studied geographic distribution of cancer. In order to examine

Burkitt’s assumption that the similar geographic distribution of different cancer sites

may suggest the existence of a common etiological cause between them, a factor

analysis seems to be the most appropriate multivariate techniques. From an epidemi-

ological point of view, the current work helps to form a picture of the cancer burden in

Scotland. The simultaneous study of multiple diseases figures out similar geographical

trends of risk and it should be further strengthen the evidence for common sources that

reflect underlying shared risk factors. Furthermore the evidence of strong within-region

geographical heterogeneity should be further investigated.

Here Bayesian factor analysis model for spatially correlated data is proposed. The

main hypothesis underlying the proposed model is that the latent factors share the

same between-observations dependence as the observed variables. The correlations

between variables within locations and the correlations across locations for each vari-

able are hypothesized to be caused by the same latent spatial factor. Through a Bayes-

ian approach, incorporation of our prior opinion about spatial pattern in disease risk

is possible. The idea behind the proposed methodology is to look for latent factors

explaining different distribution of the disease by defining a prior distribution for

matrix Φ that attributes a high correlation to two regions, (or census tracts), that are

close to each other. Assuming an inverted Wishart distribution for matrix Φ, the model

proposed does not force the correlation within variables to be necessarily determined

by geographic distance, but let the data determine the nature of the lack of indepen-

dence. Our resulting method borrows information either across geographical areas and
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across different cancer sites. The Bayesian method eliminates an important part of the

variability unrelated to the true underlying cancer incidence rate by considering the

information contained in other cancer sites and areas incidence rates.

The main novelty is the development of the factor model for spatially correlated

data motivated by epidemiological data, in particular the innovation is twofold. On

one hand the simultaneously analysis of multiple diseases, although not new (Knorr-

Held and Best 2001; Dowing et al. 2008; Yanai et al. 1978; Tzala and Best 2008), it

is not investigated in all its potentialities. The idea that other cancer sites incidence

can provide information to better estimate a given cancer site incidence can be really

innovative from a public health point of view. Analyzing together cancers not obvi-

ously related, such as for example female breast and male lung cancer, it is shown

that can improve estimates. On the other hand, the approach follows Rowe (2003a)

and Mezzetti and Billari (2005) where modeling structure is incorporated through

the columns of the factor scores. Introduction of scalar parameter σ 2
ε in (11) repre-

sents a novelty respect to model proposed in Rowe (2003a) and Mezzetti and Billari

(2005). Its main advantage is to eliminate problem we can encounter multiplying by

a constant the two matrices Ψ and Φ, an other alternatives could have been using

correlation matrix instead of covariances matrix, but our proposal include also the

case of heterogeneities of different regions.

The work can be extended in several directions. First, different spatial structures

can be investigated. Also environmental or diet variables can be included, such that

factor scores become a combination of cancer sites and corresponding risk factors. The

current results contribute to reinforcing the hypothesis that environmental factors can

act as a common risk factors for many types of cancers, and, since very likely adjacent

regions share the same environmental factors, adjacent regions share the same cancer

risk factors.

Finally, the proposed methods can be generalized to more complex models and a

temporal structure can be introduced to allow the search of a common trend in the

spread of the diseases. To this aim, since the flexibility of the Bayesian approach allows

us to define different structures for Φ, the expression Φ = ΦT ⊗ ΦS ,where ΦT is

defined as in Mezzetti and Billari (2005) for panel data, could be investigated and this

model could enable simultaneous investigation of space-time variations in multiple

health outcomes.
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