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Abstract—The amplitude of the surface EMG (sEMG) is

commonly estimated by rectification or other nonlinear trans-
formations, followed by smoothing (low-pass linear filtering).

Although computationally efficient, this approach leads to an

estimation accuracy with a limited theoretical signal-to-noise ratio
(SNR). Since sEMG amplitude is one of the most relevant features

for myoelectric control, its estimate has become one of the limiting

factors for the performance of myoelectric control applications,
such as powered prostheses. In this study, we present a recursive

nonlinear estimator of sEMG amplitude based on Bayesian fil-

tering. Furthermore, we validate the advantage of the proposed
Bayesian filter over the conventional linear filters through an on-

line simultaneous and proportional control (SPC) task, performed

by eight able-bodied subjects and three below-elbow limb deficient
subjects. The results demonstrated that the proposed Bayesian

filter provides significantly more accurate SPC, particularly for

the patients, when compared with conventional linear filters. This
result presents a major step toward accurate prosthetic control

for advanced multi-function prostheses.

Index Terms—Bayesian filter, EMG amplitude estimation,

simultaneous and proportional control.

I. INTRODUCTION

T HE surface myoelectric signal (sEMG) carries neural

control information from the central nervous system and

therefore can be used to infer and estimate motion intentions.

For this reason, the sEMG has been used as a control signal for

multi-function upper limb prostheses for more than six decades

and is currently the only reliable control source for this appli-

cation [1], [2]. Currently, almost all commercial prostheses still

use a very basic sEMG processing scheme. With this approach,

the control can only be sequential and for a limited number
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(usually not greater than two) of degrees-of-freedom (DoF).

The switch between DoFs is usually based on counter-intuitive

muscle activations, such as co-activation of agonist/antagonist

[3]. Due to the limited functionality and unnatural control, the

patient compliance of these prostheses is low and 75% of

upper limb amputees choose not to use active prostheses [4].

Because of the problems outlined previously, there has been

an interest in the research community to improve the function-

ality and usability of multi-function prostheses, by better ex-

tracting neural control information with advanced signal pro-

cessing and machine learning methods. After many decades of

research and development, pattern recognition based methods

show the first signs of potential clinical applications, with pilot

systems being introduced into the market [5]. However, there

are some inherent limitations of the pattern recognition-based

methods. One of these limits is that these algorithms can only

provide sequential control of multiple functions, while the neu-

romuscular system controls multiple physiological DoFs with

a simultaneous and proportional (SPC) approach [1]. More re-

cently, various approaches have been reported to realize SPC

from the sEMG, either with regression approaches [6]–[8], or

with modifications of the classic pattern recognition paradigm

[9], [10].

Currently, all the approaches for EMG control are based on

the extraction of features from the EMG signal and almost all of

them use the signal amplitude or power estimation. Being a sto-

chastic process, the amplitude of the sEMG is its standard devia-

tion that can be estimated with estimators such as themean abso-

lute value (MAV) or root mean square value (RMS) [11]. Signal

amplitude is a key feature in classic pattern recognition and

essentially the only feature for regression-based methods [6],

[12]–[14] in myocontrol. Although simple to calculate, classic

estimators of EMG amplitude have high variability, which can

be quantified by deriving the theoretical signal-to-noise ratio of

the estimate [15]–[17]

SNR (1)

where is the sEMG signal, is its statistical equivalent

bandwidth, and is the width of the processing window. To

reduce the variability of the estimate, the effective bandwidth

can be increased by whitening [18]. This strategy has been

proven effective in pattern recognition-based myoelectric con-

trol algorithms [18]. Alternatively, varying will also influence

the SNR of the estimate but this can be done within strict limits

since a too long interval would increase the delay in the control
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output. This limitation is essentially the same as that associated

to force/torque estimation from sEMG [19].

Alternatives of sEMG amplitude estimation to the traditional

approach of RMS or MAV have been proposed, including a

Bayesian-based estimator designed for detection of the EMG

onset [20]. More recently, Bayesian filtering was specifically

designed for sEMG amplitude estimation during dynamic con-

tractions [21]. In the latter study, it was shown that the Bayesian-

based amplitude estimator outperformed RMS and MAV, both

in terms of stability and responsiveness [22]. However, the study

in [22] was offline and was conducted only for one channel, one

muscle, and with a simple ramping-up task.

In this study, we modified the Bayesian filtering approach

proposed in [22] and applied it in an SPC framework. This is, to

the best of our knowledge, the first time that Bayesian filtering

was implemented and systematically evaluated in an online SPC

experiment for myoelectric control.

II. METHODS

A. Bayesian Filtering of sEMG

In the following, we present a formal framework of Bayesian

filtering for surface EMG with some differences with respect to

the presentation in [22]. Rather than a Fokker-Planck equation,

we propose to use the differential Chapman-Kolmogorov equa-

tion [23] based on Markov processes, because formally the evo-

lution equation presented in [22] is not a Fokker-Planck equa-

tion (which describes diffusion processes but not finite jump

processes [24]) and is not derivable from the stochastic differ-

ential equation presented therein.

Given a recording of sEMG, denoted by , and the under-

lying “neural drive”, denoted by , we have the following

model:

(2)

Let us assume that both are Markov processes such that

(3)

where denotes the conditional probability density

function. Our goal is to estimate , where

, i.e., the probability of the underlying

neural drive taking a certain value, given the measured sEMG

signal. We can express this conditional density by the densities

given in (3) using the Bayes formula

(4)

For recursive estimation of the amplitude with at

each point in time, we need to define two probability densities

as can be seen from (3) and (4) (the denominator in (4) is just

a normalization factor). We get the prior density of the current

time step in (4) from the posterior density of the previous time

step by applying amodel for the temporal evolution, i.e.,

. Additionally, we need to define a likelihood model in

order to have all terms in the Bayes formula (4) set which allows

us to update our estimates with the measurements. This two-step

procedure is also termed evolution and observation model and

defines the general procedure for Bayesian filters [25]. Besides

the filter proposed in [22] and here, also the well-knownKalman

filters and particle filters belong to this family of filters [25].

The temporal evolution is, as proposed in [22], assumed to be

stochastic and governed by sudden jumps and diffusion. Such a

stochastic process can be described by a differential Chapman-

Kolmogorov equation (the derivation based on Markov pro-

cesses can be found in [23]). The general form of this equation

is as follows:

(5)

By assuming a 1-D l system and by setting the drift coefficient

to , the diffusion coefficient to

, and the jump rates to

, we recover the time evolution equation, also reported

in [22]

(6)

With respect to the equation derived in [22], however, the sup-

port of the stochastic variable is now set to instead

of [0, 1] and, hence, an additional term appears in (6)

which assures conservation of the probability under the evolu-

tion equation.

The likelihood can take several forms, such as

[22], is shown as follows:

(7)

(8)

(9)

Equations (7), (8) and (9) are referred to as the Poisson model,

Gaussian model, and double exponential or Laplacian model,

respectively, which are well grounded from previous sEMG re-

search [26]. By discretizing in space and time (6) and deciding
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on a point estimation method based on the posterior distribution

evaluated at each time step, we get the following recursive al-

gorithm:

1) Time evolution updating:

(10)

2) Observation updating:

(11)

3) Point estimation:

(12)

In the current study, we chose the point estimation (see point 3

of the previous algorithm) to be the expectation value rather than

the maximum of the posterior distribution that was proposed in

[22]. This was necessary to reduce the frequent large sudden

“jumps” in estimates produced by the latter choice during fast

dynamic contractions. For example, Fig. 1 shows the estimated

sEMG amplitude of four contractions. The first three contrac-

tions reached stable force levels and the last was a linearly in-

creasing force contraction. A three-fold increase in the reso-

lution (number of bins) of the amplitude axis smoothened

small amplitude estimate variations but did not affect the large

ones. Using the expectation value as point estimation, as pro-

posed in this study, reduced the number and magnitude of the

large sudden variations. The exponential distribution [see (9)]

was chosen for a model of the likelihood as it resulted in better

SNR. A uniform prior with resolution of 100 bins

was set. From an offline analysis performed on pilot

data, the values of the two parameters and were set to 10

and 10 , respectively. The offline analysis considered max-

imizing the SNR while minimizing the large “jumps” in esti-

mates (see Fig. 1).

B. Subjects

Eight able-bodied volunteers (5M, 4F, 22–40 years old) and

three subjects with limb deficiency participated in the experi-

ments. Two of the limb-deficient subjects are transradial am-

putees, and one has congenital deformation of the right hand/

wrist. None of the participants had any known neurological dis-

orders. At the time of participation, most of the able-bodied sub-

jects had never participated in a myoelectric control experiment,

while all amputees were users of commercial myoelectric pros-

theses, which operate in the classic one channel/one function

regime with co-activation triggered mode switch. The subject

with congenital deformation never used a prosthesis. Prior to

the participation, all subjects read and signed the study protocol

Fig. 1. Comparison of estimates with respect to fast variations of the ampli-

tude. The same EMG signal was filtered using the maximum of the posterior

distribution (as in Error! Reference source not found.) with a resolution of 100

bins (top). The resolution was then increased three-fold (middle panel) with the

same approach. Finally, the expectation value was used for the point estimation,

as suggested in this study, with 100 bins (bottom panel). The red bar marks the

largest variation in the amplitude estimate trajectory.

and the informed consent form, which was approved by the re-

search ethic committee of the University Medical Center Göt-

tingen (No. 22/2/12).

C. Experiment Procedures

The experiment protocol was similar to those of previous

studies on myoelectric SPC [7], [27], [28]. For the sake of

clarity, the experimental procedure is again described here.

1) Instrumentation Setup: During the experiment, the sub-

ject was seated, with the dominant arm in the neutral position:

arm at the side of the body, with the palm facing inward. Six-

teen monopolar surface electrodes (Neuroline 720, Ambu, Den-

mark) were placed equidistantly in two rows, with eight elec-

trodes per row. The two rows were centered approximately 1/3

distal of the forearm, measured from the olecranon process to

the styloid process of the ulnar bone. The inter-row distance was

approximately 10 mm, and the inter-electrode distance within

each row varied from 25 to 35 mm, depending on the circumfer-

ence of the subject's forearm. The EMG signals were acquired

by a bio-signal amplifier (EMGUSB2, OT Bioelettronica, Italy)

at a sampling rate of 2048 Hz (12 bit A/D, 3 Hz to 900 Hz

sixth-order Butterworth band-pass, 500–1000 gain). During the



1336 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 24, NO. 12, DECEMBER 2016

experiment, instructions and virtual objects were displayed on a

monitor, which was placed in front of the subject at a distance of

1–1.5 m. Raw EMG signals were displayed on a separate mon-

itor to the experimenter, so the quality of the acquired signal

was monitored constantly during the experiment. Each exper-

imental session consisted of three phases: familiarization, cal-

ibration/training, and online control. Each phase of the exper-

imental session contained one or more runs, i.e., a continuous

data recording. The subject could request rests during a run at

any time. During the session, the subject was instructed to per-

form a series of movements, activating either separately or si-

multaneously 2 DoFs of the dominant wrist.

2) Familiarization Phase: The first phase was the familiar-

ization phase, during which the subject was introduced to the

virtual environment, where a virtual arrow on the monitor could

move left/right or rotate in clockwise and counter-clockwise di-

rection. The subject was instructed that the left/right movement

of the arrow would be associated to the wrist flexion and ex-

tension (DoF1) in latter phases of the experiment, whereas the

rotational movement would be associated to the wrist supination

and pronation (DoF2). The displacement of the arrow from its

original position would correlate to the effort of the contraction.

3) Calibration Phase: After the familiarization phase, the

calibration phase would start. In this phase, the subject was cued

to perform movements of DoF1 and DoF2, with the moving

arrow displayed on the screen, i.e., the subject would follow the

arrow, by performing corresponding single DoF wrist contrac-

tions. Each DoF movement was repeated for eight trials, and

each trial lasted approximately 10 s, with breaks in between at

the request of the subject. The calibration phase consisted in the

16 trials and usually lasted less than 3 min. The data recorded

during this phase were used to calibrate the step-wise non-neg-

ative matrix factorization (NMF) regressor, which has been de-

scribed previously [6], [7]. In short, it is a minimally supervised

algorithm that is capable of estimating simultaneous activations

of multiple DoFs by using multi-channel EMG recorded during

single DoF contractions. In the current study, two features were

used to calibrate the NMF regressor: the classic MAV feature

used in earlier studies and the estimates obtained using the pro-

posed Bayesian filter. Both features were calculated at the same

rate (with 140 ms window, 100 ms overlapping, equivalent to 25

Hz). Therefore, two estimators were obtained for each subject,

which are referred to as MAVe and BAYe hereinafter. Once the

two regressors were calibrated, the online control phase would

start immediately.

4) Online Control Phase: During this phase, with the regres-

sors calibrated, the EMG data generated by the subject were

translated into a 2-D control signal that represented the esti-

mated activation intentions of the subject in the two DoFs in

real time. These estimates were mapped to the movements of

the virtual arrow, i.e., the subject controlled the movements of

the arrow, rather than following the movement of the arrow as in

the calibration phase (see Fig. 2). Now, in addition to the arrow,

in the online control phase, a series of circular targets were used.

The subject was instructed to hit the targets with the tip of the

arrow and to remain within their reach for at least 300 ms (the

dwelling time). If this task was accomplished in less than 20

s, the target hitting was considered successful, as also described

Fig. 2. Feedback presented to the subject during the experiment. Left-right

movements of the arrow represented wrist flexion and extension (DoF1), and

the rotational movements of the arrow represented wrist rotation (DoF2). A rep-

resentative large target of type T3, which required the activation of both DoFs,

is illustrated as well.

in previous studies [6], [27], [28]. When the 20-s period elapsed

without success, the trial was considered as failed. In the present

study, we further implemented two target sizes, which differed

from the previous studies. The large target had a diameter of 8

density-independent pixels (dp) [29], and the small target was 4

dp in diameter. As the entire working space for the subject, i.e.,

the space where the tip of the arrow could reach, was 360 60

dp, the areas of the targets were only 1% and 0.25% of the en-

tire working space, for the large and small targets, respectively.

For each size, three target types were presented to the subject.

To reach the first type of targets (T1), the subject only needed to

activate DoF2 (wrist rotation), although he could decide to ac-

tivate both DoFs. To reach the second type of targets (T2), the

subject only needed to activate DoF1 (wrist flexion and exten-

sion), although he could decide to activate both DoFs. The third

type of targets (T3) was placed in a way that the subject had to

activate both DoFs simultaneously at least for a period during

the trial. Twenty targets for each type and each size were pre-

sented to each subject, for MAVe and BAYe. The set of targets

was identical for the two regressors and for all subjects but were

presented randomly in fixed subsets of four during the experi-

ment for a specific algorithm and subject, so that it appeared to

be random for the subject during the experiment, while it was

still possible to do repeated measures in statistical analysis (see

the following). The subject was blind as to which regressor was

used during the experiment. The order of MAVe and BAYe for

each subject was fully randomized. In this phase, the trajectory

of the arrow tip, as well as the time of each trial, were recorded

for further analysis, as detailed in the following. Different from

our earlier studies [7], [27], [28], after each attempt, the sub-

ject did not have to return the arrow to the original position be-

fore attempting the next target but could just continue from one

target to the next until the set of four would be finished. This

strategy was chosen as it was more engaging for the subjects

and it better simulated what could be translated into object ma-

nipulation task.

D. Performance Analysis

The trajectories of the arrow tip as well as the time for each

trial in the online control phase were further processed offline,
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TABLE I

DEFINITIONS OF ONLINE PERFORMANCE INDICES

Fig. 3. Representative example of sEMG signal and the corresponding esti-

mations with the proposed Bayesian filter and MAV, respectively. Data is from

an amputee subject. Only 8 out of 16 channels are shown. Estimation by the

Bayesian filter is smoother than MAV.

in order to analyze the control performance of each regressor

under different conditions (target size and type).

Five online performance indices were used: completion rate

, completion time , overshoots , throughput ,

and efficiency coefficient , which are defined in Table I. It is

important to note that and in here is different from those

defined in [30], as the coordinate system of the current study

was not Cartesian, as in [30].

E. Statistical Analysis

The objective of the current study was to investigate if the

two regressors, MAVe and BAYe, performed differently under

different conditions (target size and type) during the online con-

trol experiment. For this purpose, three-way repeated measure

ANOVA tests were conducted. Separate tests were performed

for able-bodied and limb-deficient subjects. The response vari-

ables for the tests were the performance indices: , , and

. The three factors of the ANOVAwere target type (T1, T2 and

T3), target size (S and L, standing for small and large targets, re-

spectively), and features (MAV and BAY). The repeated mea-

sure was done over subjects and targets, by setting these two

factors as random factors. In all ANOVA tests, the full model

was used first. When significant interaction(s) were detected,

focused ANOVA was conducted by fixing the levels of one of

the interacting factors. When no interaction was detected, the

interaction terms were pooled, and the reduced ANOVA model

with only the main factor was performed. Tukey comparison

with Bonferroni correction was performed when a factor was

found to be significant. The significance level for all tests was

0.05. All statistical analyses were performed using Minitab 16.

III. RESULTS

A. Descriptive Results

Representative EMG signals and the estimated amplitudes

using both MAV and Bayesian filter are shown in Fig. 3, using

part of the calibration data from one amputee subject. The con-

trol signal obtained by the Bayesian filter was smoother than

that of MAV, but also more responsive to fast changes. This

observation is confirmed by the online trajectories reported in

Fig. 4. The trajectories of BAYe are clearly smoother than those

of MAVe and the superior responsiveness of BAYe is evident

by the fact that the subject can start and stop the arrow with less

overshoots. The difference between the two controllers is more

pronounced when the fine control, i.e., small targets, is required

(top-right and bottom-right panel of Fig. 4 for BAYe and MAVe,

respectively). The five performance indices, , , , and ,

are summarized in Table II and Fig. 5, respectively.

B. Completion Rate

Completion rates for both subject groups, all target types and

sizes can be found in Table I. In the able-bodied group, BAYe

shows improvement over MAVe for large target size only in T3.

However, when the target size is small a consistent improve-

ment can be seen across all tasks. For limb-deficient subjects

improvement is observed only for T1 regardless of size. This is

probably due to the small sample size in this group.

C. Completion Time

For able-bodied subjects, there was no significant two-way

or three-way interaction in the full model ANOVA for

. After pooling the interaction terms, the of BAYe was

found to be significantly lower than for MAVe .

For limb-deficient subjects, target type was found interacting

with the algorithm in , with no further inter-

actions. Focused ANOVA on target type found that BAYe out-

performed MAVe for T1 (DoF2 only) and T3 (combined DoF),

with and , respectively. For T2 (DoF1

only), the algorithm was not a significant factor .

Focused ANOVA on target size found that in both large and

small target sizes, the algorithm had a significant effect on ,

with and , respectively. In summary, when

using BAYe, both able-bodied and limb-deficient subjects could

accomplish the tasks with a significantly shorter time than when

using MAVe, in most cases.

D. Path Efficiency

For able-bodied subjects, no interaction was found in the full-

model ANOVA. After pooling the interaction terms, the algo-

rithm was found to be significant , and BAYe out-
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Fig. 4. Representative example of the trajectories of one of the amputee subjects, for a T3 target, using the two algorithms (top: Bayes; bottom: MAV), and when

the target had two different sizes (left: large; right: small). In each scenario, the left plot is the trajectory in the 2-D working space. The cross indicates the resting

position of the arrow, and the green dot indicates the position of the target circle. The plot on the right-hand side of each scenario is the time course plot of the x

(solid line) and y (dashed line) position of the tip of the arrow. As described in the text, the subject started the task without necessarily returning the arrow to the

rest position (e.g., in MAV size 8).

TABLE II

COMPLETION RATES IN PERCENTILES FOR BOTH GROUPS OF SUBJECTS, WITH

RESPECT TO ALL TARGET TYPES AND BOTH LARGE (L) AND SMALL (S)

TARGET SIZES

performed MAVe (the mean values of were 0.5 versus 0.4,

respectively). Similarly, for limb-deficient subjects, BAYe also

outperformedMAVe in the path efficiency measure

(0.4 versus 0.3). In summary, BAYe provided significantly better

path efficiency than MAVe, regardless of target type or target

size, for both able-bodied subjects and limb-deficient subjects.

E. Throughput

For able-bodied subjects, the full model ANOVA found a sig-

nificant interaction between target type and target size

. Subsequent focused ANOVA found that only for target

T3, the algorithm had a significant influence . How-

ever, for limb-deficient subjects, the algorithm was found to

be significant in the three-way analysis , with no

significant interaction . The results indicated that

BAYe's advantage over MAVe on Throughput is most apparent

for limb-deficient subjects. For able-bodied subjects, BAYe out-

performed MAVe when the task required simultaneous activa-

tions of both DoFs.

F. Overshoot

For able-bodied subjects, the algorithm interacted with both

target type and target size in the three-way ANOVA, and with

the remaining factor in all the subsequent focused two-way

ANOVA. In the further focused one-way ANOVA, BAYe was

consistently shown to have a smaller than MAVe (

for all cases). For limb-deficient subjects, the focused ANOVA

showed that BAYe had a smaller number of overshoots than

MAVe for both target sizes , and the same for

all three target types . Although the statistical

analysis for overshoot seemed to be most complicated and less

straightforward, it is clear, as shown in Fig. 5, that the values

of in BAYe were remarkably smaller than those of MAVe.

The interaction mainly stemmed from the fact that the extent

of the difference of two features on depended on target type

and target size. Clearly, the more difficult the tasks were, the

greater advantage BAYe had over MAVe.

IV. DISCUSSION

In this study, we present a novel approach using sEMG am-

plitude estimation within the framework of Bayesian filtering.

The effectiveness of this approach in myoelectric control with

SPC was systematically analyzed through goal-oriented online

experiments, with both able-bodied subjects and below elbow

limb-deficient subjects. We demonstrated that the proposed

Bayesian filtering framework provides significant advantages

over conventional amplitude estimators. Not only does it pro-

vide smoother estimates of the underlying “neural drive” from

the sEMG but it is also more responsive to sudden changes in
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Fig. 5. Summary of the online performance results. The four panels are for , , , and . Each panel is organized in a factorial design. The lower left plot is

the grand average of the corresponding performance measure of the two algorithms: BAYe (black) and MAVe (gray). The top and middle rows are for large and

small target, respectively, and the two left-most plots of these two rows are the average values for each size. The second, third and fourth columns from the left are

for each target type, and the three plots in the bottom row are the average values for each type. The white background (the lower left) indicate the grand average;

the light gray background indicates average of the case when the level of one of the factors is fixed, and the dark gray color indicates the average of the case when

the levels of two factors are fixed. Stars denote the significance of ANOVA tests (*: ; **: ; ***: ). “A” denotes

able bodied subjects and “P” denotes limb-deficient subjects.

the neural drive. Consequently, when the proposed approach

was used for SPC tasks, the subject was able to accomplish the

tasks more efficiently. Our results also showed that the benefit

of the proposed approach was more evident in subjects with

limb deficiencies than able-bodied subjects.

A. Bayesian Filtering and Conventional Linear Filters

The conventional sEMG amplitude estimation follows the

procedure of rectification (e.g., absolute value or square root) or

other nonlinear transformations, followed by smoothing (low-

pass filtering). As discussed in Section I, this approach suffers

from the limited SNR [see (1)]. To improve the SNR, one could

use a filter with a longer time constant, at the expense of less

responsiveness. Prewhitening of the signal can improve it by in-

creasing the statistical equivalent bandwidth of the signal. But

this approach is still subject to the limitation of the low-pass

filter, i.e., the compromise between the smoothness versus re-

sponsiveness. The proposed Bayesian filter allows control of

these two factors separately, thanks to the two parameters in (6),

i.e., and , respectively. The diffusion constant, , determines

the smoothness of the estimate when the underlying neural drive

is constant, while controls the possibility of sudden “jumps”

and consequently the responsiveness of the estimator. There-

fore, the proposed approach has the highly desirable property of

achieving both smoothness and responsiveness simultaneously.

One potential advantage of the conventional approach is its

low computational load. However, we have shown that aMatlab

implementation of the proposed algorithm can run in real time

on a regular PC (a 2.5 GHz CPU was used for the experiments

performed for this study). An optimized and compiled version

of the algorithm would allow an embedded system implemen-

tation whose feasibility was shown already in [31]. Scripts of

the Bayes Chapman Kolmogorov filter for EMG amplitude es-

timation can be found in the following repository: https://github.

com/MPIDS/EMG-BayesFilter.git.

B. Effectiveness in Myoelectric SPC

Due to the property of achieving smoothness and responsive-

ness in the amplitude estimation, the proposed approach demon-

strated a clear advantage over the conventional linear filter, such

as MAV in the online myoelectric SPC experiment. In all online

performance indices, BAYe showed statistically significant per-

formance gain over MAVe. The subjects were able to perform

the tasks faster (shorter task completion time), the trajectories

were more economic (higher path efficiency), and it was easier
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to precisely place the arrow tip inside the target (less number of

overshoots), with consequent overall higher control throughput.

The advantages of BAYe were more evident when the task was

complex, i.e., when the task required simultaneous activations

of the both DoFs, and when the target was smaller. Further, the

limb-deficient subjects seemed to benefit more from BAYe than

able-bodied subjects, since in almost all cases BAYe showed

statistically significant advantages over MAVe.

C. Difference With Other Bayesian Filtering for EMG

A few early works, using a similar approach, include Kalman

filters for prosthetic control [20], [32], EMG prediction from

cortical recordings [33], EMG change point estimation [21],

Bayesian-based sensor fusion [34], [35], and recursive EMG

amplitude estimation [22] on which our study is based. Among

these, the recent work by Anugolu et al. [35] and Kumar et

al. [34] were focused on offline analysis and therefore are

difficult to compare against. Other studies applying [22] used

it for proportional control of four finger functions [36], EMG

driven biomechanical modelling of walking patterns [37]

and biofeedback-based rehabilitation procedures [31], [38]. It

should be noted that the time evolution model in [22] is, by

definition, not a Fokker Planck equation, which only describes

diffusion processes [24]. Instead, we proposed to use the dif-

ferential Chapman-Kolmogorov equation, so as to provide a

mathematically rigorous framework. Moreover, we propose

a different point estimation method. We find that using the

expectation value makes a significant difference as compared to

the maximum of the posterior distribution proposed in [22]. It

alleviates the detrimental effect of fast signal variations during

control tasks that occur when the force level is changed fast.

Indeed, we observed increased smoothness of the amplitude

estimate with respect to sudden bursts of EMG signals using

the proposed point estimation. Other studies achieved similar

degrees of smoothness by clipping the raw EMG signal prior to

any filtering [22], [36]. However, this ad hoc clipping approach

cannot be used to track sudden decreases in the neural drive,

contrary to the proposed algorithm (see Fig. 1). It might also

obscure intended bursting neural commands, which can be

useful in dexterous control.

D. Conclusion

In conclusion, a method for sEMG amplitude estimation

based on Bayesian filtering and its application to SPC for active

prostheses has been proposed and validated. It represents a step

forward in the use of EMG for myocontrol by reducing its basic

source of variability.
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