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Abstract— This paper presents a Bayes recursion for trackinga  The key contributions of this paper are

target that generates multiple measurements with state dependent | o mathematically consistent Bayes recursion together

sensor field of view and clutter. Our Bayesian formulation is ith ticle imol tation that dat i
mathematically well-founded due to our use of a mathematically with a particie Implementation that accommodates muiti-

consistent likelihood function derived from random finite set ple target-generated measurements, state dependent field
theory. A particle implementation of the proposed filter is given. of view and clutter using RFS theory.

Under linear Gaussian assumptions, an exact closed form solution A closed form solution to the proposed recursion for the
to the proposed recursion is derived, and efficient implementa- special class of linear Gaussian single target models

tions are given. )
Assuming no clutter and that the target generates exactly
|. INTRODUCTION one measurement, the proposed recursion reduces to the

. hat th . Moreover, if at each time step, gating is performed and
assumptions that the target generates at most one measure aussian mixture posterior density is collapsed to a single

and that the sensor field of view is constant. Such assumpti Sussian component, then the proposed recursion reduces to
are not realistic, for example, in extended object trackin[ge PDA filter [1]

or tracking in the presence of electronic counter measures,
which have increasingly becoming important due to high 1. BACKGROUND
resolution capabilities of modern sensors. Nonetheless, th@serne Bayes Recursion
assumptions have formed the basis of a plethora of works e.g[n the classical Bayes filter the hidden stateis assumed
the probabilistic data association (PDA) filter [1], the multiple foll f. dy Mark h
hypothesis tracker (MHT) [2], [3] and their variants. Howeve|IO oflow a first order Markov process on the state space
i
/

. . " .
such techniques are not easily adapted to accommodate nj%l-g R according to a transition densitf—i (wx|zr—1)-

: . "
tiple target generated-measurements and state dependent obsderv?thnzk fh Z tgtR ISd qssuhmed i:orjdltcljor;ally
of view. Moreover, it is not clear how such techniques a epencent given the states and IS characterized by a

likelihood g (zx|xk), which is the probability density that,

mathematically consistent with the Bayesian paradigm. . .
. . a(l]t time &, the target with state;;, produces a measurement
This paper presents a mathematically well-founde

Bayesian approach to tracking a target that can generate mutti- Under these assu_mptlons_, the F:Iassmal Bayes recursion
ple measurements, in the presence of detection uncertainty gﬁ%nagates the posterior densjy in time according to
clutter. In our formulation, the collection of observations atany  p, . (z|216-1) = [ faje—1 (@x|)pr—1(z|z15-1)dz, (1)
time is treated as a set-valued observation which encapsulates 9 (28 |2k )Prje—1 (k] 21:5-1)

the underlying models of multiple target-generated measure- Pr(Tr|21k) = I (2
ments, state dependent sensor field of view, and clutter [4], [5]. J v (arle)pige—r (2 21:0-1)de
Since the observation space is now the space of finite sets, wWiere z;., = [z1, ..., z]. All inference on the target state at
usual Euclidean notion of a density is not suitable. Randatime % is derived from the posterior densipy, at time k.

finite set (RFS) or point process theory provides an elegantThe Bayes recursion (1)-(2) is formulated for single-target
and rigorous framework to derive mathematically consistesingle-measurement systems. In practice due to multi-path
densities needed in the Bayes recursion [4], [5]. reflections, electronic counter measures, etc. the target may




generate multiple measurements, in addition to spurious mediere|Z| denotes the cardinality of. In other words, for a

surements not generated by the target. Note that the orderen pointz, the intensityvz(z) is the density of expected

of appearance of these measurements has no physical signifimber of targets per unit volume at

cance. Hence, the sensor effectively receives an unordered sétn important class of RFSs are th®issonRFSs, which

of measurements denoted B, and the observation spaceare completely characterized by their intensity functions. The

is now the space of finite subsets 8f denoted byF(Z). cardinality of a Poisson RFZ is Poisson distributed with

Consequently, the Bayes update (2) is not directly applicabfeean N; = [wvz(z)dz, and for a given cardinality the
To accommodate set-valued measurements, we requirelements ofZ are each independent and identically distributed

mathematically consistent generalization of the likelihoofl.i.d) with probability densityv, /N .

gk (zk|xy) to the set-valued case. In other words, we need aFor simplicity in notation, we shall use the same symbol

mathematically well-founded notion of the probability densitjor an RFS and its realizations hereon.

pf the setZk given z;. However, the notion of such d_ensit_ies . THE RES SNGLE TARGET BAYES RECURSION

is not straightforward because the sp&te€) does not inherit ) ) )

the usual Euclidean notions of volume and integration onAS previously argued, in the presence of detection un-

Z. RFS theory or point process theory provides rigorOLj?@rtainty and clutter, the measurement is set-valued. In this

notions of volume and integration ofi(Z) needed to define section, we describe a RFS measurement model and derive

a mathematically consistent likelihood [7]. the corresponding likelihood function.
B. Random Finite Sets A. RFS Measurement Model

Intuitively, an RFS is simply a finite-set-valued random The collection of measurements obtained at tifmeis
variable (for further details, see e.g. [7]-[9]). L&, o(Q2), P) represented as a finite sub%;_ of thg original observgnon
be a probability space, whefe is the sample space,(2) is space Z C R"=. More concisely, if M (k) observations

a o-algebra onf), and P a probability measure oa(Q). A 2k,1,---,2k,M(k) € £ are received at timé, then
random finite seZ on Z is defined as a measurable mapping Zi = {zh1, s 2narny } € F(2). @
Z:Q— F(2). (3)

Suppose at timé that the target is in state,. The mea-

with respect to the Borels sets of(Z), generated by the surement process is given by the RFS measurement equation

Mathéron topology [10]. Theprobability distribution of the N

RFS Z is given in terms of the probability measufe by 2 = Ok (wk) U By (k) U W, ®)

i o . where ©, (x) is the RFS of the primary target measure-

PrizeT)=P(we:Zw) €T} “) ment, Ek(:gk) )is the RFS of extraneous target measurements,

where 7 is any Borel subset ofF(Z). The probability and W, is the RFS of clutter. For exampl®; (z;) may

distribution of the RFSZ can be equivalently characterized byepresent a single direct path measuremdnj(xz;) may

a discrete probability distribution and a family of joint probarepresent measurements generated by multi-path effects or

bility distributions. The discrete distribution characterizes theounter measures, and’;, may represent state independent

cardinality (the number of elements) of the RFS, whilst for gpurious measurements. It is assumed ®atzy), Ex (xy)

given cardinality, an appropriate distribution characterizes th@d 1V, are independent RFSs.

joint distribution of the elements of the RFS [7]-[9]. We model©y, (z) as a binary RFS
The probability densityp, of Z is given by the Radon- . .
o B . TR . o with probability 1 — pp  (z)
Nikodym derivative of its probability distribution with respect©(x;)= {{275} with probability densitypp,. (xr) g (5| zx)

to an appropriate dominating measyte The conventional
choice of dominating measure is the unnormalized distributiovhere pp . (zx) is the probability of detection for the pri-
of a Poisson point process [11] mary measurement given,, and gy (2} |zy) is the primary
N yr(1 ™ ol measurement likelihood given,. Hence, the probability of
wT) =2 NI (T) N 27 /1t ®) not obtaining the primary measurementlis- pp j (zx), and
where " is therth product (unitless) Lebesque measure, armbnversely, given that there is a primary measurement the

x is a mapping of vectors to sets definedoyz1, ..., z,]7) = probability density of obtaining the primary measurement

{z1,...,2-}. The integral of a measurable functiofi : givenzy is gp (z;|xk).

F(Z) — [0,00) with respect tou is defined as follows We modelEy (z)) andW,, as Poisson RFSs with intensities
fT F(2)u(dZ) = vwi (-) and vgk (-|zg) respectively. For convenience we

o 1 . group these RFSs together as
Dm0 o1 fx—l(T)mET fHz1, 2. ) A" (d21...d2,).  (6)

- K =F U Wy. 9
The 1st-order moment of a random finite sebn Z, also k() = B (2x) U W ©)
called theintensity functionis a non-negative functions, on  Since K, (z) is a union of statistically independent Poisson
Z with the property that for any closed subsetC Z RFSs, it is also a Poisson RFS with intensity

E[IZNS| = [quz(z)da vk k (zklzr) = vwk (21) + vE K (28|T8) - (10)



The cardinality distributiong i, (-|zx) of K} (x1) is Poisson Remark:If there is always a primary target generated mea-
with mean [ vk  (zx|zx) dz;. Hence, if the target is in statesurement, no extraneous target generated measurements and
xy at time k, the probability of K, (x,) having exactlyn,, no clutter, themn, ({zx}|zx) = gx(zx|zr) and the recursion
measurements igx j (ni|zk), whilst each measuremenj, (13)-(14) reduces to the classical Bayes recursion (1)-(2).

is independent and identically distributed according to Remark:Multiple sensors can be handled with a straightfor-
ward extension. Suppose that there gmautually independent
o (2klor) = vick (zilan) / [oicn (zaler) dz. (1) sensors and that each sensor is modelled by a likelihood
-]-) at timek wheres = 1,...,S. If each sensor receives

Proposition 1 Suppose that measurements follow the RF@

dﬁ’(s)
model in (8). Then, the probability density that the stateat a measurement s at tlme k, wheres = 1,....5, .
. . then the combined I|keI|hood accountmg for all sensors is
time k produces the measurement g&t is given by

1 S S
(27, 2 ) = T, 0 (28 ).

M (Zklwr) = [1=ppk(@r)lprr(1Zk| [2x) | Zx]! HZCk (2k|r) IV. SEQUENTIAL MONTE CARLO IMPLEMENTATION
2k €4k
+ pok (z) - pr(1Zel — Law) - (| 2] — 1) In this section, we describe a generic se.quential Monte
Carlo (SMC) (see also [12], [13]) implementation of the RFS
x Z 9w (zi|zx) kH e (2k|k) (12) single target Bayes recursion (13)-(14) and demonstrate the
z EZk Z Zk

proposed filter on a non-linear tracking example.
in the sense thaiy (-|z;) is the Radon-Nikogn derivative of ~ Suppose at timé — 1 that the postenor denSka 1() is
the probability distribution ofZ;, givenz;, with respect to the represented by set of weighted parhc{e&z,C 1,xk 1}1 1, i.e.

dominating measure (6). N ;

Ph—1(Th—1]Z1:6—1) = D, wk,lts (@ (Z‘k—1)- (15)

The likelihood (12) ha$Z,|+1 terms each of which admits

an intuitive interpretation. The first term relates to a missékhen, for a given proposal density,(-=\” ,, Z;) satisfying
primary measurement detection, whilst each of the remainingpport(pr) € support(qy), the particle filter approximates
|Z| terms relates to a primary measurement detection. MB postenor density,(-) by a new set of weighted particles
explain the first term, notice that when there is a mlsse{duk ,a"k }1 1, Le.
primary measurement detectioffy = K} (zx). Hence, the N SNV @
likelihood of Z, comprises:1 — pp (2x), the probability Pr(@k[Z1k) R 2 0imy By 00 (k) (16)
of a missed primary measurement detectipR;x (| Zx| |z1), Where

the probability thatK, .(x.k) has gxactly|Zk| measurements; x;j) ~ gl |1,]C ) 17)
[1., ez, cx (2k]7k), the joint density of the measurements; and (i) i)

a factorial term to account for all possible permutation pf Wy = /Z =1 W o (18)
To explain each of theZ, | remaining terms, notice that when M _ 0 e (Zilo) Fupa (2 |23 19
there is a primary measurement detecti®p(zx) = {z; } and W = Wi (19)

i)
Ky (z) = Zi\{z;}. Hence, the likelihood of; comprises: qk(z’f |I’f 12 Zk)
pp.x (1), the probability of a primary measurement detection; The recur5|on |s initialized by generating a set of weighted
prk(|Zk] — 1|z), the probability thatK}, (z) has exactly particles {w\, z’}\., representings,. Equations (17)-(19)
| Zi|— 1 measurementsi (z; |x) [, .- c& (2k|2x), the joint then provide a recursion for computing the set of weighted
density of the measurements and a factorial term to acco@atticles representing;. from those representing; _; when

for all possible permutations ot (xy). a new measurement arrives.
_ _ A resampling step is usually performed after each update to
B. RFS Single Target Bayes Recursion minimize particle degeneracy and after resampling, an optional

The Bayes recursion (1)-(2) can be generalized to a¥dlarkov Chain Monte Carlo (MCMC) step can be used to
commodate multiple target generated measurements, detectigfiease particle diversity (see [12], [14] for further details).
uncertainty and clutter, by replacing the standard likelihood Non-Linear Example
gk (zr|zk) with the RFS measurement likelihood (12). Hence

' In this section, a non-linear scenario is used to demonstrate
the posterior densityy(-|Z1.,) can be propagated as follows

the performance of the particle implementation of the proposed
Prlk—1 @k Z11) = [frjpot (@k|2)pro (@] Z1.1 )da, (13)  filter. In particular, a nearly constant turn model with varying
M (Zi ) Py (21| Z1) turn rate [15] together with bearing and range measurements is

Pr(Tk|Z1k) = T (Zul) @z Yz’ (14) considered. The observation region is the half disc of radius
(2l )P Lk 2000m. The state variable, = [ #1,wy |7 comprises the
where Zy., = [Z1,...,Zg]. In general, no analytic solution planar position and velocity} = [ ps.k, bz ks Py, k,pyk ] a

exists for this recursion. In Section IV we present a geneneell as the turn rates,. The state transition model is
sequential Monte Carlo implementation whilst in Section V a
closed form solution to this recursion is derived under linear
Gaussian assumptions. Wi = wr—1 + Aug1,

Ty = F(wg—1)Tr—1 + Gwg_1,



where
2000

_ 1l—coswA

sinwA A2
== 0 ~w 5 0 £ 1000)
0 coswA 0 —sinwA A 0 g
F(w) = 0 lzcoswA 4 sinwA , G= 0 A2 | =
W w = g
0 sinwA 0 coswA 0 A % -1000f
. 2 . 2 i — _ . h h . i . . . :
wi—1 ~ N (;0,00,1), andug 1 ~ N(:;0,07.1) with _A =1s, 2070 20 30 40 50 60 70 80 90 100
0w = b5m/s?, ando, = 7/180rad/s. The observation region Time
is the half disc[—7/2,7/2]rad x [0,2000]m. The primary 2000 * Estimates: iroggsedlf\:proachh e
. . . ° timates: Tradition. I &
target measurement is a noisy bearing and range vector g .| e onafipproac oo B vl
T g Measurements & L B
2l = atar(pit,k?/pyk)7 \/piyk- +p§k:| + €k, g 1000
o
. . ¢ 500
whereey, ~ N (-0, Ry), with Ry, = diag([ 02,02 17), 0g = >
ol

2(7/180)rad, and o, = 10m. The sensor field of view is
modelled by

T
Pok(x) = N([Pa ki, Pyk] " 50,20001).
. . . Fig. 1. Particle RFS single target Bayes filter estimates and true target tracks
where I,, denotes am x n identity matrix. Extraneous mea-in ; andy coordinates versus time.

surements are modelled as a Poisson RFS with intensity

T

vik(zle) = AN (z; [atar(pm,k/py,k),2\/pi,k+pf,,k , Dy), 2000

~ 1500

(m

where A,(j) = 3, D, = 0%l and o, = 10m. Clutter is
modelled as a Poisson RFS with intensity > Proposed Approach

500 | Traditional Approach
owk(2) = )\;(CO)U(Z) L/,v ‘

. . - . 00 0.602 0.604 0.606 0.608 0.01 0.612 0.614 0.016
whereu(-) is the uniform probability density over the obser- A, (radm) ™

vation region,/\g)) = AV is the expected number of clutter
returns withV = 20007radm is the ‘volume’ of observation
region and., = 3.2 x 1073 (radm)~! (giving an average
of )\ECO) = 20 clutter returns per scan).

The transition density is used as the proposal, and re-V. CLOSED FORM SOLUTION FORLINEAR GAUSSIAN
sampling is performed at every step. A total 8f = 1000 MODELS
weighted particles is used to represent the posterior density afy this section, we derive a closed form solution to the

each time step. Figure 1 show the tracks, measurements grshosed filter for the class of linear Gaussian single target

filter estimates forr and y coordinates versus time for eachmodels. In addition to linear Gaussian transition and likelihood
approximation on a typical sample run. This figure suggests

that the proposed filter satisfactorily tracks the target in the frp—1(z[C) = N(z;Fi-1C, Qr-1) (20)

presence of multiple target generated measurements, clutter gr(zlr) = N(z; Hyx, Ry), (21)

and state dependent field c_)f VIEW. . the linear Gaussian single target model assumes a constant
For performance comparison purposes, we consider the Rz < “sield of view, i.epp, +(z) = pp & and linear Gaussian

linear analogue of the Gaussian mixture filter in [6]. Ou"htensity of extraneous target measurements i.e
reason for choosing this filter is that it subsumes many popular o

traditional techniques for tracking in clutter including the vpk(zlz) = )\,il)N(z;kaerk,Dk). (22)
PDA. A typical sample run of this filter on the same set of

data is also superimposed on Figure 1, which suggests tR&position 2 Suppose at timgé—1 that the posterior density
the traditional approach is prone to track loss. This is further—1(-) is a Gaussian mixture of the form

reinforced in Figure 2, which shows the root mean square Jh1

error (RMSE.)'versu.s clutter rate for both the proposed filtgr pe_1(z) = Z wz(f_)1N(33§m§gj_)1aP;§J_)1)- (23)
and the traditional filter. The RMSE for each clutter rate is J=1

obFained from 1_00(_) Monte Carlo (MC) runs on the same tar ﬁen, the predicted density,,_,(-) is also a Gaussian
trajectory but with independently generated measurements |E<ture and is given by

each trial. Figure 2 suggests that across a wide range o

clutter conditions, the proposed RFS single-target Bayes filter Te1 @) @) )

performs well over traditional methods. The former correctly Prje-1(2) = Z w2 N (@smy s Pr_y) (24)
identifies the track, whereas the latter consistently looses track. i=1

& 1000

RMS|

Fig. 2. RMSE from 1000 MC runs for varying, .



(@)

(i) (i)
k|k—1 2 Py

= Faamyy, oot = = Qi + Fk_lP,ii)lF,;. It follows by induction from Propositions 2 and 3 that if the
initial density pg is a Gaussian mixture, then all subsequent
edictedpy,,—; and posterior densitieg, are also Gaussian

mixtures. Proposition 2 provides closed form expressions for

wherem

For the closed form update equation, it is convenient
define two intermediate operatois, , and ¥, . on X' by

(Pr.0)(x) = E.[gk, ](2), (25) computing the weights, means and covariancegf_1 ,
- hilst Proposition 3 provides closed form expressions for
Uy s = =, 26) W P P P
(Ur,.0)(x) ek, 9)(2), (26) computing the weights, means and covarianceg;ofwhen
where (2. [s, ¢])(z) = s(z|z)p(x). If a new set of measurements arrives.
szlr) = 8(2)+w J\/(z~H 2+ by, Py) 27) If the posterior at timé — 1 hasJ,_; components, then the

v posterior at timek hasJy,_y [212 + | Z,,[2125171] = O(Jj_4 -

p(z) = Z v )N(x m¢ ) d(;u)), (28) 22kl components. To reduce this complexity, we only retain
‘= measurements that fall within a standard elliptical validation
region around each mixture compAonenm‘fk,l; we truncate
Dp.p)(-) or (Pr.¢)(-) to the Jnax terms with highest
(Exls, ¢ (z) = )+ Zw(E (su)(z)vpéu))» \(/veight)s( ()Whi|SE ensu)ri(n)g the sum of the weights before and
(29) after truncation must the same), we also discard components

of py with negligible weights and merge components that are

then, (2.[s, ¢])(+) is a Gaussian mixture and is given by

where
@ @) (@) close together.
Wg (Z) = WsWy gz ( )v (30) . .
() _ N W S(“) a1 A. Linear Gaussian Example
gz (2) = (i + s, ), (31) The following linear Gaussian single-target model is used.
= Hsmd,”), (32) The target state is a vector of position and velocity =
g _ p L H pw g” (33) [ Do k> Py ks Pa ks Dy, & |7 and follows a linear Gaussian transi-
( ): S( ) 3 f’) 57 w tion model (20) with
= (2) = my + Kz (z—nz" —bs), (34) X A3
(u) (u) (u) F. = I, Al Qp = 02 Lk FIh
PE = (I— KE HS)P¢ N (35) k — 05 I |’ k— 0Oy %3]—2 AQIQ
(w) _  pu) gT glu)y-1
Ke® = Py H; (827)7 (36) wherel,, and0,, denote then x n identity and zero matrices

respectively, A = 1s is the sampling period, and, =

5(m/s?) is the standard deviation of the process noise. The
Proposition 3 Suppose at timé that the predicted density primary measurement likelihood is linear Gaussian (21) with
Prjk—1(+) is a Gaussian mixture of the form

Hp=[I, 0], Ry =02l
Jrlk—1
(7) ©)) where 0. = 10m is the standard deviation of the mea-
w (x;m , P . 37 € ) . ) .
Pife-1( Z ’“"“ N@mgpy Poer)- G7) surement noise. The observation region is the square

[—1000, 1000] x [—1000,1000] (units are inm). The corre-
The”*”k@kmpklkfl(”ﬁ) is also a Gaussian mixture and 'Sspondmg probability of detection is fixed afy; = 0.98.

given by Extraneous target measurements are modelled as a Poisson
M (Zk)2)prji—1 (@) Z (23 2" (38) RFS with linear Gaussian intensity
2T EZ, vek(2z|z) = )\ggl)./\/(z; By, Dy,),
where )
_ where)\,’ =3, B, = [2I; 03], Dy, = 6?1, ando, = 10m.
de(z) = prk(1Zk]) - [Ze|' (1 —pDK) Clutter is modelled as a Poisson RFS with intensity
x Uy priet) (@), 39
) ([Lez, ¥r.2] Prin-1) (‘T)| (39) owk(2) = )\J(CO)U(Z)
di(;2%) = prr(|Zel =1) - (1Zk| = D! -pDk o
herew(-) is the uniform probability density oveE, A’ =
W | [ @ i ,(40) W : e~
x ([Hz?ﬁz k, } (k2 Pa 1]> (x). (40) AekV, Aer = 1.25 x 107°m~2 is the average clutter intensity

and by convention a product of operators denotes a compoandV =4 x 10%m?2 is the ‘volume’ of Z (giving an average
tion, i.e. T[NP Wy, = Wpsp, 0Wpsy 000 Wy vy Of A9 = 50 clutter returns per scan).
In this scenario, the target follows a curved path with

Remark: The Gaussian mixture (358) can also b‘(a'j)""”tvarylng velocity. The filter is initialized with the true initial
ten in asmy,(Zy|2)pyr—1(z) = Zy 1 W N (z; mk ’P ) location. Figure 3 illustrates a typical sample run showing
COJHSGE!??HW, th(e PO(S'E)EHOF den5|ty is QI(VEH bzy( ) (:) the tracks, measurements and filter estimatesafaand y
it Wy N (5 % ,P”) where @, = % /Z "’ coordinates versus time. This figure suggests that our proposed
and Z“’"lwk is the normalizing constant filter correctly identifies the track, and does not suffer any



track losses in the presence of multiple target generatel% tandard m re theoretic probability. A particle imol
measurements and clutter. using standard measure theoretic probability. A particie imple-

mentation has been given and a closed form solution has been
derived for linear Gaussian single-target models. The closed
formed solution can be easily extended to nonlinear models via
linearization or unscented transformation. Simulations have

suggested that the proposed filter performs well compared
to traditional techniques in the presence of multiple target

generated measurements, clutter and detection uncertainty.
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proposed RFS single-target Bayes filter performs well over
traditional methods. The former correctly identifies the true

tracks, whereas the latter consistently loses the true track.
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Fig. 4. RMSE values from 1000 MC runs for varying

VI. CONCLUSION

This paper has presented a Bayes recursion that formally
accommodates multiple target-generated measurements, detec-
tion uncertainty and clutter. The proposed Bayes recursion
(referred to as the RFS single-target Bayes recursion) has been
derived from the random finite set or point process framework



