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Abstract— This paper presents a Bayes recursion for tracking a
target that generates multiple measurements with state dependent
sensor field of view and clutter. Our Bayesian formulation is
mathematically well-founded due to our use of a mathematically
consistent likelihood function derived from random finite set
theory. A particle implementation of the proposed filter is given.
Under linear Gaussian assumptions, an exact closed form solution
to the proposed recursion is derived, and efficient implementa-
tions are given.

I. I NTRODUCTION

The objective of target tracking is to estimate the state of
the target from measurement sets collected by the sensor at
each time step. This is a challenging problem since the target
can generate multiple measurements which are not always
detected by the sensor, and the sensor receives a set of spurious
measurements (clutter) not generated by the target. Existing
techniques for handling this problem rest on the simplifying
assumptions that the target generates at most one measurement
and that the sensor field of view is constant. Such assumptions
are not realistic, for example, in extended object tracking
or tracking in the presence of electronic counter measures,
which have increasingly becoming important due to high
resolution capabilities of modern sensors. Nonetheless, these
assumptions have formed the basis of a plethora of works e.g.
the probabilistic data association (PDA) filter [1], the multiple
hypothesis tracker (MHT) [2], [3] and their variants. However,
such techniques are not easily adapted to accommodate mul-
tiple target generated-measurements and state dependent field
of view. Moreover, it is not clear how such techniques are
mathematically consistent with the Bayesian paradigm.

This paper presents a mathematically well-founded
Bayesian approach to tracking a target that can generate multi-
ple measurements, in the presence of detection uncertainty and
clutter. In our formulation, the collection of observations at any
time is treated as a set-valued observation which encapsulates
the underlying models of multiple target-generated measure-
ments, state dependent sensor field of view, and clutter [4], [5].
Since the observation space is now the space of finite sets, the
usual Euclidean notion of a density is not suitable. Random
finite set (RFS) or point process theory provides an elegant
and rigorous framework to derive mathematically consistent
densities needed in the Bayes recursion [4], [5].

The key contributions of this paper are

• A mathematically consistent Bayes recursion together
with a particle implementation that accommodates multi-
ple target-generated measurements, state dependent field
of view and clutter using RFS theory.

• A closed form solution to the proposed recursion for the
special class of linear Gaussian single target models.

Assuming no clutter and that the target generates exactly
one measurement, the proposed recursion reduces to the
usual Bayes recursion and the particle filter implementation
reduces to the standard particle filter. Under additional linear
Gaussian assumptions, our closed form recursion reduces to
the celebrated Kalman filter. In the case of a linear Gaussian
model with at most one target-generated measurement, con-
stant field of view, and uniform clutter, the proposed closed
form recursion reduces to the Gaussian mixture filter given in
[6]. Moreover, if at each time step, gating is performed and
the Gaussian mixture posterior density is collapsed to a single
Gaussian component, then the proposed recursion reduces to
the PDA filter [1].

II. BACKGROUND

A. The Bayes Recursion

In the classical Bayes filter the hidden statexk is assumed
to follow a first order Markov process on the state space
X ⊆ Rnx according to a transition densityfk|k−1(xk|xk−1).
The observationzk ∈ Z ⊆ Rnz is assumed conditionally
independent given the statesxk and is characterized by a
likelihood gk(zk|xk), which is the probability density that,
at time k, the target with statexk produces a measurement
zk. Under these assumptions, the classical Bayes recursion
propagates the posterior densitypk in time according to

pk|k−1(xk|z1:k−1)=
∫

fk|k−1(xk|x)pk−1(x|z1:k−1)dx, (1)

pk(xk|z1:k)=
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

. (2)

wherez1:k = [z1, ..., zk]. All inference on the target state at
time k is derived from the posterior densitypk at timek.

The Bayes recursion (1)-(2) is formulated for single-target
single-measurement systems. In practice due to multi-path
reflections, electronic counter measures, etc. the target may



generate multiple measurements, in addition to spurious mea-
surements not generated by the target. Note that the order
of appearance of these measurements has no physical signifi-
cance. Hence, the sensor effectively receives an unordered set
of measurements denoted byZk, and the observation space
is now the space of finite subsets ofZ, denoted byF(Z).
Consequently, the Bayes update (2) is not directly applicable.

To accommodate set-valued measurements, we require a
mathematically consistent generalization of the likelihood
gk(zk|xk) to the set-valued case. In other words, we need a
mathematically well-founded notion of the probability density
of the setZk given xk. However, the notion of such densities
is not straightforward because the spaceF(Z) does not inherit
the usual Euclidean notions of volume and integration on
Z. RFS theory or point process theory provides rigorous
notions of volume and integration onF(Z) needed to define
a mathematically consistent likelihood [7].

B. Random Finite Sets

Intuitively, an RFS is simply a finite-set-valued random
variable (for further details, see e.g. [7]–[9]). Let(Ω, σ(Ω), P )
be a probability space, whereΩ is the sample space,σ(Ω) is
a σ-algebra onΩ, andP a probability measure onσ(Ω). A
random finite setZ onZ is defined as a measurable mapping

Z : Ω → F(Z). (3)

with respect to the Borels sets ofF(Z), generated by the
Mathéron topology [10]. Theprobability distribution of the
RFSZ is given in terms of the probability measureP by

Pr(Z ∈ T ) = P ({ω ∈ Ω : Z(ω) ∈ T }) (4)

where T is any Borel subset ofF(Z). The probability
distribution of the RFSZ can be equivalently characterized by
a discrete probability distribution and a family of joint proba-
bility distributions. The discrete distribution characterizes the
cardinality (the number of elements) of the RFS, whilst for a
given cardinality, an appropriate distribution characterizes the
joint distribution of the elements of the RFS [7]–[9].

The probability densitypZ of Z is given by the Radon-
Nikodým derivative of its probability distribution with respect
to an appropriate dominating measureµ. The conventional
choice of dominating measure is the unnormalized distribution
of a Poisson point process [11]

µ(T ) =
∑∞

r=0 λr(χ−1(T ) ∩ Zr)/r! (5)

whereλr is therth product (unitless) Lebesque measure, and
χ is a mapping of vectors to sets defined byχ([z1, ..., zr]T ) =
{z1, ..., zr}. The integral of a measurable functionf :
F(Z) → [0,∞) with respect toµ is defined as follows

∫
T f(Z)µ(dZ) =∑∞

r=0
1
r!

∫
χ−1(T )∩Er f({z1, ..., zr})λr(dz1...dzr). (6)

The 1st-order moment of a random finite setZ on Z, also
called theintensity function, is a non-negative functionvΣ on
Z with the property that for any closed subsetS ⊆ Z

E [|Z ∩ S|] =
∫

S
vZ(x)dx

where|Z| denotes the cardinality ofZ. In other words, for a
given pointx, the intensityvZ(x) is the density of expected
number of targets per unit volume atx.

An important class of RFSs are thePoissonRFSs, which
are completely characterized by their intensity functions. The
cardinality of a Poisson RFSZ is Poisson distributed with
mean NZ =

∫
vZ(x)dx, and for a given cardinality the

elements ofZ are each independent and identically distributed
(i.i.d) with probability densityvZ/NZ .

For simplicity in notation, we shall use the same symbol
for an RFS and its realizations hereon.

III. T HE RFS SINGLE TARGET BAYES RECURSION

As previously argued, in the presence of detection un-
certainty and clutter, the measurement is set-valued. In this
section, we describe a RFS measurement model and derive
the corresponding likelihood function.

A. RFS Measurement Model

The collection of measurements obtained at timek is
represented as a finite subsetZk of the original observation
spaceZ ⊆ Rnz . More concisely, if M(k) observations
zk,1, . . . , zk,M(k) ∈ Z are received at timek, then

Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z). (7)

Suppose at timek that the target is in statexk. The mea-
surement process is given by the RFS measurement equation

Zk = Θk (xk) ∪ Ek(xk) ∪Wk, (8)

where Θk (xk) is the RFS of the primary target measure-
ment,Ek(xk) is the RFS of extraneous target measurements,
and Wk is the RFS of clutter. For exampleΘk (xk) may
represent a single direct path measurement,Ek(xk) may
represent measurements generated by multi-path effects or
counter measures, andWk may represent state independent
spurious measurements. It is assumed thatΘk (xk), Ek (xk)
andWk are independent RFSs.

We modelΘk (xk) as a binary RFS

Θk(xk)=
{
∅ with probability 1− pD,k(xk)
{z∗k} with probability densitypD,k(xk) gk(z∗k|xk)

where pD,k (xk) is the probability of detection for the pri-
mary measurement givenxk, and gk (z∗k|xk) is the primary
measurement likelihood givenxk. Hence, the probability of
not obtaining the primary measurement is1− pD,k (xk), and
conversely, given that there is a primary measurement the
probability density of obtaining the primary measurementz∗k
given xk is gk (z∗k|xk).

We modelEk(xk) andWk as Poisson RFSs with intensities
vW,k (·) and vE,k (·|xk) respectively. For convenience we
group these RFSs together as

Kk (xk) = Ek (xk) ∪Wk. (9)

SinceKk (xk) is a union of statistically independent Poisson
RFSs, it is also a Poisson RFS with intensity

vK,k (zk|xk) = vW,k (zk) + vE,k (zk|xk) . (10)



The cardinality distributionρK,k (·|xk) of Kk (xk) is Poisson
with mean

∫
vK,k (zk|xk) dzk. Hence, if the target is in state

xk at time k, the probability ofKk (xk) having exactlynk

measurements isρK,k (nk|xk), whilst each measurementzk

is independent and identically distributed according to

ck (zk|xk) = vK,k (zk|xk) /
∫

vK,k (zk|xk) dzk. (11)

Proposition 1 Suppose that measurements follow the RFS
model in (8). Then, the probability density that the statexk at
time k produces the measurement setZk is given by

ηk(Zk|xk) = [1−pD,k(xk)]ρK,k(|Zk| |xk) |Zk|!
∏

zk∈Zk

ck (zk|xk)

+ pD,k (xk) · ρK,k(|Zk| − 1|xk) · (|Zk| − 1)!

×
∑

z∗k∈Zk

gk(z∗k|xk)
∏

zk 6=z∗k

ck (zk|xk) (12)

in the sense thatηk(·|xk) is the Radon-Nikod́ym derivative of
the probability distribution ofZk givenxk with respect to the
dominating measure (6).

The likelihood (12) has|Zk|+1 terms each of which admits
an intuitive interpretation. The first term relates to a missed
primary measurement detection, whilst each of the remaining
|Zk| terms relates to a primary measurement detection. To
explain the first term, notice that when there is a missed
primary measurement detection,Zk = Kk (xk). Hence, the
likelihood of Zk comprises:1 − pD,k (xk), the probability
of a missed primary measurement detection;ρK,k(|Zk| |xk),
the probability thatKk (xk) has exactly|Zk| measurements;∏

zk∈Zk
ck (zk|xk), the joint density of the measurements; and

a factorial term to account for all possible permutations ofZk.
To explain each of the|Zk| remaining terms, notice that when
there is a primary measurement detection,Θk (xk) = {z∗k} and
Kk (xk) = Zk\{z∗k}. Hence, the likelihood ofZk comprises:
pD,k (xk), the probability of a primary measurement detection;
ρK,k(|Zk| − 1|xk), the probability thatKk (xk) has exactly
|Zk|−1 measurements;gk(z∗k|xk)

∏
zk 6=z∗k

ck (zk|xk), the joint
density of the measurements and a factorial term to account
for all possible permutations ofKk (xk).

B. RFS Single Target Bayes Recursion

The Bayes recursion (1)-(2) can be generalized to ac-
commodate multiple target generated measurements, detection
uncertainty and clutter, by replacing the standard likelihood
gk(zk|xk) with the RFS measurement likelihood (12). Hence,
the posterior densitypk(·|Z1:k) can be propagated as follows

pk|k−1(xk|Z1:k−1) =
∫
fk|k−1(xk|x)pk−1(x|Z1:k−1)dx, (13)

pk(xk|Z1:k) =
ηk(Zk|xk)pk|k−1(xk|Z1:k−1)∫
ηk(Zk|x)pk|k−1(x|Z1:k−1)dx

, (14)

where Z1:k = [Z1, ..., Zk]. In general, no analytic solution
exists for this recursion. In Section IV we present a generic
sequential Monte Carlo implementation whilst in Section V a
closed form solution to this recursion is derived under linear
Gaussian assumptions.

Remark:If there is always a primary target generated mea-
surement, no extraneous target generated measurements and
no clutter, thenηk({zk}|xk) = gk(zk|xk) and the recursion
(13)-(14) reduces to the classical Bayes recursion (1)-(2).

Remark:Multiple sensors can be handled with a straightfor-
ward extension. Suppose that there areS mutually independent
sensors and that each sensor is modelled by a likelihood
η
(s)
k (·|·) at timek wheres = 1, . . . , S. If each sensor receives

a measurement setZ(s)
k at time k, where s = 1, . . . , S,

then the combined likelihood accounting for all sensors is
ηk(Z(1)

k , . . . , Z
(S)
k |xk) =

∏S
s=1 η

(s)
k (Z(s)

k |xk).

IV. SEQUENTIAL MONTE CARLO IMPLEMENTATION

In this section, we describe a generic sequential Monte
Carlo (SMC) (see also [12], [13]) implementation of the RFS
single target Bayes recursion (13)-(14) and demonstrate the
proposed filter on a non-linear tracking example.

Suppose at timek − 1 that the posterior densitypk−1(·) is
represented by set of weighted particles{w(i)

k−1, x
(i)
k−1}N

i=1, i.e.

pk−1(xk−1|Z1:k−1) ≈
∑N

i=1 w
(i)
k−1δx

(i)
k−1

(xk−1). (15)

Then, for a given proposal densityqk(·|x(i)
k−1, Zk) satisfying

support(pk) ⊆ support(qk), the particle filter approximates
the posterior densitypk(·) by a new set of weighted particles
{w(i)

k , x
(i)
k }N

i=1, i.e.

pk(xk|Z1:k) ≈ ∑N
i=1 w̃

(i)
k δ

x
(i)
k

(xk) (16)

where

x
(i)
k ∼ qk(·|x(i)

k−1, Zk), (17)

w̃
(i)
k = w

(i)
k /

∑N
i=1 w

(i)
k , (18)

w
(i)
k = w

(i)
k−1

ηk(Zk|x(i)
k )fk|k−1(x

(i)
k |x(i)

k−1)

qk(x(i)
k |x(i)

k−1, Zk)
. (19)

The recursion is initialized by generating a set of weighted
particles{w(i)

0 , x
(i)
0 }N

i=1 representingp0. Equations (17)-(19)
then provide a recursion for computing the set of weighted
particles representingpk from those representingpk−1 when
a new measurement arrives.

A resampling step is usually performed after each update to
minimize particle degeneracy and after resampling, an optional
Markov Chain Monte Carlo (MCMC) step can be used to
increase particle diversity (see [12], [14] for further details).

A. Non-Linear Example

In this section, a non-linear scenario is used to demonstrate
the performance of the particle implementation of the proposed
filter. In particular, a nearly constant turn model with varying
turn rate [15] together with bearing and range measurements is
considered. The observation region is the half disc of radius
2000m. The state variablexk = [ x̃T

k , ωk ]T comprises the
planar position and velocitỹxT

k = [ px,k, ṗx,k, py,k, ṗy,k ] as
well as the turn rateωk. The state transition model is

x̃k = F (ωk−1)x̃k−1 + Gwk−1,

ωk = ωk−1 + ∆uk−1,



where

F (ω) =




1 sin ω∆
ω 0 − 1−cos ω∆

ω
0 cos ω∆ 0 − sin ω∆
0 1−cos ω∆

ω 1 sin ω∆
ω

0 sin ω∆ 0 cos ω∆


, G =




∆2

2 0
∆ 0
0 ∆2

2
0 ∆


,

wk−1 ∼ N (·; 0, σ2
wI), anduk−1 ∼ N (·; 0, σ2

uI) with ∆ = 1s,
σw = 5m/s2, andσu = π/180rad/s. The observation region
is the half disc[−π/2, π/2]rad × [0, 2000]m. The primary
target measurement is a noisy bearing and range vector

zk =
[
atan(px,k/py,k),

√
p2

x,k + p2
y,k

]T

+ εk,

whereεk ∼ N (·; 0, Rk), with Rk = diag([ σ2
θ , σ2

r ]T ), σθ =
2(π/180)rad, and σr = 10m. The sensor field of view is
modelled by

pD,k(x) = N ([px,k, py,k]T ; 0, 2000I2).

whereIn denotes ann× n identity matrix. Extraneous mea-
surements are modelled as a Poisson RFS with intensity

vE,k(z|x) = λ
(1)
k N (z;

[
atan(px,k/py,k), 2

√
p2

x,k+p2
y,k

]T

, Dk),

where λ
(1)
k = 3, Dk = σ2

ι I2 and σι = 10m. Clutter is
modelled as a Poisson RFS with intensity

vW,k(z) = λ
(0)
k u(z)

whereu(·) is the uniform probability density over the obser-
vation region,λ(0)

k = λc,kV is the expected number of clutter
returns withV = 2000πradm is the ‘volume’ of observation
region andλc,k = 3.2 × 10−3 (radm)−1 (giving an average
of λ

(0)
k = 20 clutter returns per scan).

The transition density is used as the proposal, and re-
sampling is performed at every step. A total ofN = 1000
weighted particles is used to represent the posterior density at
each time step. Figure 1 show the tracks, measurements and
filter estimates forx and y coordinates versus time for each
approximation on a typical sample run. This figure suggests
that the proposed filter satisfactorily tracks the target in the
presence of multiple target generated measurements, clutter
and state dependent field of view.

For performance comparison purposes, we consider the non-
linear analogue of the Gaussian mixture filter in [6]. Our
reason for choosing this filter is that it subsumes many popular
traditional techniques for tracking in clutter including the
PDA. A typical sample run of this filter on the same set of
data is also superimposed on Figure 1, which suggests that
the traditional approach is prone to track loss. This is further
reinforced in Figure 2, which shows the root mean square
error (RMSE) versus clutter rate for both the proposed filter
and the traditional filter. The RMSE for each clutter rate is
obtained from 1000 Monte Carlo (MC) runs on the same target
trajectory but with independently generated measurements for
each trial. Figure 2 suggests that across a wide range of
clutter conditions, the proposed RFS single-target Bayes filter
performs well over traditional methods. The former correctly
identifies the track, whereas the latter consistently looses track.
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V. CLOSED FORM SOLUTION FOR L INEAR GAUSSIAN

MODELS

In this section, we derive a closed form solution to the
proposed filter for the class of linear Gaussian single target
models. In addition to linear Gaussian transition and likelihood

fk|k−1(x|ζ) = N (x; Fk−1ζ, Qk−1) (20)

gk(z|x) = N (z; Hkx,Rk), (21)

the linear Gaussian single target model assumes a constant
sensor field of view, i.e.pD,k(x) = pD,k and linear Gaussian
intensity of extraneous target measurements i.e.

vE,k(z|x) = λ
(1)
k N (z; Bkx + bk, Dk). (22)

Proposition 2 Suppose at timek−1 that the posterior density
pk−1(·) is a Gaussian mixture of the form

pk−1(x) =
Jk−1∑

j=1

w
(j)
k−1N (x; m(j)

k−1, P
(j)
k−1). (23)

Then, the predicted densitypk|k−1(·) is also a Gaussian
mixture and is given by

pk|k−1(x) =
Jk−1∑

i=1

w
(i)
k−1N (x; m(i)

k|k−1, P
(i)
k|k−1) (24)



wherem
(i)
k|k−1 = Fk−1m

(i)
k−1, P

(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T

k−1.

For the closed form update equation, it is convenient to
define two intermediate operatorsΦk,z andΨk,z on X by

(Φk,zφ)(x) = Ξz[gk, φ](x), (25)

(Ψk,zφ)(x) = Ξz[ck, φ](x), (26)

where(Ξz[s, φ])(x) = s(z|x)φ(x). If

s(z|x) = s̄(z) + wsN (z;Hsx + bs, Ps) (27)

φ(x) =
∑U

u=1
w

(u)
φ N (x; m(u)

φ , P
(u)
φ ), (28)

then,(Ξz[s, φ])(·) is a Gaussian mixture and is given by

(Ξz[s, φ])(x) = s̄(z)φ(x) +
U∑

u=1

w
(u)
Ξ (z)N (x; m(u)

Ξ (z), P (u)
Ξ ),

(29)
where

w
(u)
Ξ (z) = wsw

(u)
φ q

(u)
Ξ (z), (30)

q
(u)
Ξ (z) = N (z; η(u)

Ξ + bs, S
(u)
Ξ ), (31)

η
(u)
Ξ = Hsm

(u)
φ , (32)

S
(u)
Ξ = Ps + HsP

(u)
φ H

T

s , (33)

m
(u)
Ξ (z) = m

(u)
φ + K

(u)
Ξ (z − η

(u)
Ξ − bs), (34)

P
(u)
Ξ = (I −K

(u)
Ξ Hs)P

(u)
φ , (35)

K
(u)
Ξ = P

(u)
φ HT

s (S(u)
Ξ )−1. (36)

Proposition 3 Suppose at timek that the predicted density
pk|k−1(·) is a Gaussian mixture of the form

pk|k−1(x) =
Jk|k−1∑

j=1

w
(j)
k|k−1N (x; m(j)

k|k−1, P
(j)
k|k−1). (37)

Then,ηk(Zk|x)pk|k−1(x) is also a Gaussian mixture and is
given by

ηk(Zk|x)pk|k−1(x) = d̄k(x) +
∑

z∗∈Zk

dk(x; z∗) (38)

where

d̄k(x) = ρK,k (|Zk|) · |Zk|! · (1− pD,k)
× ([∏

z∈Zk
Ψk,z

]
pk|k−1

)
(x), (39)

dk(x; z∗) = ρK,k(|Zk| − 1) · (|Zk| − 1)! · pD,k

×
([∏

z 6=z∗ Ψk,z

] [
Φk,z∗pk|k−1

])
(x), (40)

and by convention a product of operators denotes a composi-
tion, i.e.

∏N(k)
i=1 Ψk,zk,i

= Ψk,zk,1 ◦Ψk,zk,2 ◦ · · · ◦Ψk,zk,N(k) .

Remark: The Gaussian mixture (38) can also be writ-
ten in asηk(Zk|x)pk|k−1(x) =

∑Jk

j=1 w
(j)
k N (x; m(j)

k , P
(j)
k )

Consequently, the posterior density is given bypk(x) =∑Jk

j=1 w̃
(j)
k N (x;m(j)

k , P
(j)
k ) where w̃

(j)
k = w

(j)
k /

∑Jk

j=1 w
(j)
k

and
∑Jk

j=1 w
(j)
k is the normalizing constant.

It follows by induction from Propositions 2 and 3 that if the
initial density p0 is a Gaussian mixture, then all subsequent
predictedpk|k−1 and posterior densitiespk are also Gaussian
mixtures. Proposition 2 provides closed form expressions for
computing the weights, means and covariances ofpk|k−1 ,
whilst Proposition 3 provides closed form expressions for
computing the weights, means and covariances ofpk when
a new set of measurements arrives.

If the posterior at timek−1 hasJk−1 components, then the
posterior at timek hasJk−1

[
2|Zk| + |Zk|2|Zk|−1

]
= O(Jk−1 ·

2|Zk|) components. To reduce this complexity, we only retain
measurements that fall within a standard elliptical validation
region around each mixture component ofpk|k−1; we truncate
(Φk,zφ)(·) or (Φk,zφ)(·) to the Ĵmax terms with highest
weights (whilst ensuring the sum of the weights before and
after truncation must the same), we also discard components
of pk with negligible weights and merge components that are
close together.

A. Linear Gaussian Example

The following linear Gaussian single-target model is used.
The target state is a vector of position and velocityxk =
[ px,k, py,k, ṗx,k, ṗy,k ]T and follows a linear Gaussian transi-
tion model (20) with

Fk =
[
I2 ∆I2

02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

whereIn and0n denote then× n identity and zero matrices
respectively,∆ = 1s is the sampling period, andσν =
5(m/s2) is the standard deviation of the process noise. The
primary measurement likelihood is linear Gaussian (21) with

Hk =
[
I2 02

]
, Rk = σ2

εI2,

where σε = 10m is the standard deviation of the mea-
surement noise. The observation region is the squareZ =
[−1000, 1000] × [−1000, 1000] (units are inm). The corre-
sponding probability of detection is fixed atpD,k = 0.98.
Extraneous target measurements are modelled as a Poisson
RFS with linear Gaussian intensity

vE,k(z|x) = λ
(1)
k N (z; Bkx,Dk),

whereλ
(1)
k = 3, Bk =

[
2I2 02

]
, Dk = σ2

ι I2 andσι = 10m.
Clutter is modelled as a Poisson RFS with intensity

vW,k(z) = λ
(0)
k u(z)

whereu(·) is the uniform probability density overZ, λ
(0)
k =

λc,kV , λc.k = 1.25×10−5m−2 is the average clutter intensity
andV = 4× 106m2 is the ‘volume’ ofZ (giving an average
of λ

(0)
k = 50 clutter returns per scan).

In this scenario, the target follows a curved path with
varying velocity. The filter is initialized with the true initial
location. Figure 3 illustrates a typical sample run showing
the tracks, measurements and filter estimates forx and y
coordinates versus time. This figure suggests that our proposed
filter correctly identifies the track, and does not suffer any



track losses in the presence of multiple target generated
measurements and clutter.
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Fig. 3. Linear Gaussian RFS single-target Bayes filter estimates and true
target tracks inx andy coordinates versus time.

Similar to the non-linear example, we compare with the
Gaussian mixture filter in [6]. Figure 3 has superimposed a
typical sample run for the same data. Again, it can be seen that
traditional approaches tend to loose the track and erroneously
follow the pattern of the extraneous target measurements. This
observation is supported by the results of 1000 Monte Carlo
(MC) runs performed on the same target trajectory but with
independently generated measurements for each trial. The MC
runs are performed for our proposed filter, and for the filter
in [6]. In Figure 4, the RMSE is shown versus the clutter
rate suggesting that across a wide range of conditions, the
proposed RFS single-target Bayes filter performs well over
traditional methods. The former correctly identifies the true
tracks, whereas the latter consistently loses the true track.
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Fig. 4. RMSE values from 1000 MC runs for varyingλc,k

VI. CONCLUSION

This paper has presented a Bayes recursion that formally
accommodates multiple target-generated measurements, detec-
tion uncertainty and clutter. The proposed Bayes recursion
(referred to as the RFS single-target Bayes recursion) has been
derived from the random finite set or point process framework

using standard measure theoretic probability. A particle imple-
mentation has been given and a closed form solution has been
derived for linear Gaussian single-target models. The closed
formed solution can be easily extended to nonlinear models via
linearization or unscented transformation. Simulations have
suggested that the proposed filter performs well compared
to traditional techniques in the presence of multiple target
generated measurements, clutter and detection uncertainty.
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