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Bayesian fractional polynomials

Abstract

This paper sets out to implement the Bayesian paradigm for fractional polynomial models under the
assumption of normally distributed error terms. Fractional polynomials widen the class of ordinary
polynomials and offer an additive and transportable modelling approach. The methodology is based on a
Bayesian linear model with a quasi-default hyper-g prior and combines variable selection with
parametric modelling of additive effects. A Markov chain Monte Carlo algorithm for the exploration of
the model space is presented. This theoretically well-founded stochastic search constitutes a substantial
improvement to ad hoc stepwise procedures for the fitting of fractional polynomial models. The method
is applied to a data set on the relationship between ozone levels and meteorological parameters,
previously analysed in the literature. 



other k − 1 covariates are fixed. Formally, this is

η(x) := E(y |x) = β0 +
k
∑

i=1

βixi, (1.1)

where x = (x1, . . . , xk)
T . Of course, such a formulation can lead to incorrect inference if

the true relationship is far from linear for certain xi. An immediate generalization that

retains additive effects is to substitute βixi with fi(xi) in (1.1), i. e.

η(x) = β0 +
k
∑

i=1

fi(xi). (1.2)

Nonparametric smoothers are very flexible methods for estimating the unknown func-

tions fi, see Ruppert, Wand, and Carroll (2003) for a recent review. They emerged in

the last two decades and had their breakthrough with the definition of the generalized

additive model (Hastie and Tibshirani 1990). However, the resulting models are diffi-

cult to summarize in closed form, as each function fi is in itself a linear combination of

complicated basis functions, e. g. B-spline basis functions. Moreover, the local behaviour

of scatterplot smoothers can lead to artifacts in the resulting function and prohibits

any extrapolation outside the observed data range. Finally, estimation of the associated

smoothing parameters may become difficult, if k is large.

On the other hand, ad hoc approaches, such as equating fi with a polynomial of low

degree and comparing the model fit to that of a linear function, are common in applied

statistics. Lying within the framework of traditional parametric models, these global

models are easy to understand and communicate, but have severe disadvantages: their

form is quite limited and resorting to higher degrees may lead to unplausible features,

in particular near the minimum and maximum of xi. Therefore, Box and Tidwell (1962)

restricted themselves to polynomials of degree one or two before estimating the best

powers among all real numbers iteratively. They introduced the transformation now

known as the Box-Tidwell transformation,

x(a) =







xa if a 6= 0,

log(x) if a = 0,
(1.3)

where a is a real number. Few other attempts to develop methodology for systematic

parametric covariate transformation had been made until Royston and Altman (1994)
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extended the classical polynomials to a class which they called fractional polynomials

(FPs). This contribution is one of the most cited papers in Applied Statistics with more

than 400 citations at the time of writing, which illustrates that this method has been well-

received by applied researchers. Royston and Altman (1997) show that FPs“are particu-

larly good at providing concise and accurate formulae” for representing smooth relation-

ships between y and the xi. From a simulation study on the Cox model, Govindarajulu,

Malloy, Ganguli, Spiegelman, and Eisen (2009) conclude that FPs are among the least

biased smoothing methods for fitting non-linear exposure effects. So although Ambler

and Royston (2001) acknowledge that finding very complex non-linear relationships may

require more complex non-parametric regression methods, the FP approach has clearly

established a prominent role in the non-linear parametric methodology.

An FP of degree m with powers p1 ≤ · · · ≤ pm and respective coefficients α1, . . . , αm

is

fm(x;α,p) =

m
∑

j=1

αjhj(x), where

h0(x) = 1 and

hj(x) =







x(pj) if pj 6= pj−1,

hj−1(x) log(x) if pj = pj−1

for j = 1, . . . ,m.

(1.4)

Note that the definition of hj(x) allows repeated powers. The brackets around the

exponent denote the Box-Tidwell transformation (1.3). For m ≤ 3, Royston and Altman

(1994) constrained the set of possible powers pj to the set

S =

{

−2,−1,−1

2
, 0,

1

2
, 1, 2, 3

}

, (1.5)

which encompasses the classic polynomial powers 1, 2, 3 but also offers square roots and

reciprocals. Royston and Sauerbrei (2008, section 4.6) argue that this set is sufficient to

approximate all powers in the interval [−2, 3]. However, sometimes there are reasons to

extend this set, see e. g. Shkedy, Aerts, Molenberghs, Beutels, and van Damme (2006).

A problematic aspect of the logarithm inclusion is that x > 0 is required, which may

require a prior transformation of the original variable z. Often used is a shift x = z + ξ

with a natural point of origin ξ. Royston and Sauerbrei (2008, section 5.4) discuss
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sensitivity of the results depending on the choice of origin. Data-driven estimation of ξ

is also possible, but generally not recommended (Royston and Altman 1994).

For example, an FP with m = 3 powers in its power vector p = (p1, p2, p3) = (−1
2 , 2, 2)

would be

f3(x;α,p) = α1x
− 1

2 + α2x
2 + α3x

2 log(x),

where the last term reflects the repeated power 2. Note that, given the degree and

powers, the function is linear in the unknown coefficients. Indeed, when using FPs as

model functions fi in (1.2), this gives the same form as in (1.1):

η(x) = β0 +

k
∑

i=1

fmi

i (xi;αi,pi) = β0 +

k
∑

i=1

mi
∑

j=1

αijhij(xi). (1.6)

So besides having more summands the linear predictor η(x) is unchanged and established

estimation procedures apply. We call a model with structual assumption (1.6) a multiple

FP model.

It is worthwhile to gauge the complexity of the model space that has just been de-

scribed. Suppose we continue examining k continuous covariates x1, . . . , xk and content

ourselves with a maximum degree of mmax ≤ 3 for each fmi

i , i. e. 0 ≤ mi ≤ mmax for

i = 1, . . . , k, where mi = 0 denotes the omission of xi from the model. From the power

set S, m powers are chosen, which need not be different because of the inclusion of loga-

rithmic terms for repeated powers, cf. (1.4). Therefore, for only a single covariate x, the

number of possible fractional polynomials with degree m = 0, 1, 2, 3 is d(m) = 1, 8, 36

and 120, respectively. The model space complexity grows exponentially as a function of

the number k of covariates. For example, already for a moderate degree mmax = 2 and

k = 5 covariates (1+8+36)5 = 184 528 125 different models exist, which illustrates that

the search for the best model is expensive.

Royston and Altman (1994) conduct inference about the best degrees {mi} and powers

{pi} (where pij ∈ S, j = 1, . . . ,mi) for the corresponding fi(xi) = fmi

i (xi;αi,pi) in (1.2)

by implementing maximum likelihood in an iterative backfitting-like routine. Of course,

this algorithm may miss the best model in the restricted range of degrees as not every

combination of fractional polynomials is given a chance. This type of stepwise backward

elimination was slightly modified by Sauerbrei and Royston (1999), in order to reduce

the increase in the type I error rate inherent to the multiple testing setting, cf. Ambler

and Royston (2001).
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In this paper we implement the Bayesian paradigm for fitting and selecting a multiple

FP model under the assumption of normally distributed error terms. We use a hyper-g

prior for the regression coefficients as recently proposed in Liang, Paulo, Molina, Clyde,

and Berger (2008). Section 2 defines the models to be considered, which can be viewed

as a collection of special Bayesian linear models. An algorithm for posterior sampling

from the model space is presented and model selection and averaging are discussed in

Section 3. The approach is applied to real data in Section 4. Section 5 discusses the

paper findings and possible extensions.

2 Model definition

2.1 The multiple fractional polynomial model as a linear model

Consider the linear model with intercept,

y = β0 + Bβ + ε, (2.1)

where the (n×p)-design matrix B =
(

Bi(xj)
)

ji
with row indices j = 1, . . . , n and column

indices i = 1, . . . , p is a function of explanatory variables xj of the jth observation (j =

1, . . . , n). The responses y, the errors ε and the regression coefficients β are appropriate

column vectors of length n, n and p, respectively. The assumption of independent

homoscedastic normally distributed error terms εj results in ε ∼ Nn(0, σ2In), where In

denotes the identity matrix of dimension n. Hence, y also follows a multivariate normal

distribution with the same covariance matrix and mean vector µ = 1nβ0 + Bβ, which

determines the likelihood f(D |β, β0, σ
2), where D = {yj ,xj}n

j=1 denotes the observed

data.

A special way of defining the design matrix B is through the use of FPs. In this

case, the basis functions Bi are chosen as the transformations hij in (1.6), and with the

appropriate parameter vector β = (α1, . . . ,αk)
T , where αi = (αi1, . . . , αimi

), the FP

approach has been embedded into the linear model framework. The transformations hij

are determined by the power vectors p1, . . . ,pk through their definition (1.4), so that

each multiple FP model can be represented by a vector θ of ordered tuples:

θ = (p1, . . . ,pk) with

pi = (pi1 ≤ p12 ≤ · · · ≤ pimi
).
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The model parameter space Θ contains all such θ which fulfill the restriction of the

power set S given in (1.5). Note that θ is of varying dimension pθ :=
∑k

i=1mi. For the

null model, pθ = 0, because the ith tuple pi is empty if the covariate xi is not included

in the model (mi = 0). Quantities that depend on the model are henceforth subscripted

with θ. The columns of the covariates’ design matrix Bθ are centered such that

1T
nBθ = 0T

pθ

to ensure that the intercept β0 is a common parameter with identical interpretation in

all models.

Note that we could reparametrize the inclusion of xi with a binary variable inclusion

indicator γi = I(mi > 0). However, the reparametrization of a non-empty power vector

pi by an additional lower-level set of binary indicators would not be straightforward

nor natural, because the recursive FP definition (1.4) would need to be obscured. By

contrast, our parametrization retains the FP form, and of course also allows probability

statements about variable inclusion, cf. section 3.2.

2.2 Prior specification

We use the hyper-g prior of Liang et al. (2008), which is constructed as follows. Jeffreys’

prior is used for the regression variance σ2. Conditional on σ2, g > 0, an improper

flat prior on the intercept β0 and a mean-zero normal prior with covariance matrix

σ2g · (BT
θ Bθ)−1 on the remaining model-specific coefficients in βθ are used:

f(σ2) ∝ (σ2)−1,

f(β0,βθ |σ2, g) ∝ (σ2g)−
pθ
2

∣

∣BT
θ Bθ

∣

∣

1
2 exp

{

− 1

2σ2g
‖Bθβθ‖2

}

.

An advantage of this so-called g-prior (Zellner 1986) is that it accounts for multicollinear-

ity, because a priori coefficients of almost collinear columns are highly correlated and

have a large variance, which reflects that they should have the same magnitude and are

hard to estimate. The covariance factor g > 0 is assumed to be independent of σ2 with

prior density

f(g) =
a− 2

2
(1 + g)−

a
2 ,

where a ∈ (3, 4] ensures that the posterior mean E(g |θ,D) is finite in any given model θ.

Moreover, the implied prior on the factor t = g/(g + 1), which shrinks the mean vector
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µ towards the intercept β0, does not favor small values of t (heavy shrinkage) more than

the uniform distribution obtained from a = 4, see Liang et al. (2008) on p. 415.

This prior has several desirable asymptotic properties (Liang et al. 2008, section 4).

For n ≥ pθ +3, the information paradox of the fixed-g prior is resolved: the Bayes factor

of a model with R2
θ → 1 versus the null model can grow in parallel without restraint,

where R2
θ is the coefficient of determination for the OLS estimate with components

β̂0
OLS

= ȳ and β̂
OLS

θ = (BT
θ Bθ)−1BT

θ y. Moreover, whenever the true model is not

the null model, the maximum a posteriori (MAP) model is consistent for the true model

when n→ ∞. The hyper-g prior also produces Bayesian model average (BMA) estimates

which are consistent under prediction of new responses. Thus, although it might be a

strong assumption that the prior variance of the regression parameters depends on the

error variance σ2, the utilized prior remedies the deficiencies of the ordinary conjugate

normal-gamma and g-priors while still being computationally tractable.

Turning to the prior on the models, prior independence of the FP transformations

can be specified by assuming f(θ) = f(p1) × · · · × f(pk). For a single covariate xi

one noninformative prior is based on the idea that each degree 0 ≤ mi ≤ mmax has

the same prior probability, and that, given the degree mi, each combination of powers

pi1 ∈ S, . . . , pimi
∈ S is equally probable a priori. The number of degrees is mmax + 1

and the number of different FPs for degree mi was denoted as d(mi). Thus, this model

prior can be formulated as

f(pi) = f(pi1, . . . , pimi
|mi)f(mi) = d(mi)

−1(mmax + 1)−1 (2.2)

In this case, the null model has the highest prior probability (mmax + 1)−k. This prior

directly penalizes non-parsimonious models, which helps to concentrate the posterior

model probability in a small part of the model space and thus eases the model inference

in section 3.

If non-identifiable models exist in the original description of the model space, the

definition of the prior of a specific power vector pi in (2.2) is to be understood as a

definition up to a multiplicative constant, the kth power of which normalizes the model

prior f(θ) to a valid prior distribution. This is necessary, as we intend to assign such

models a zero prior probability.
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2.3 Posterior distribution of parameters

The posterior density of the parameters β0,βθ, σ
2 for a specific model θ and covariance

factor g is

f(β0,βθ, σ
2 | D, g) ∝ (σ2)−(

n+pθ
2

+1)g−
pθ
2 exp

{

− 1

2σ2

[

‖y − µ‖2 +
1

g
‖Bθβθ‖2

]}

.

This kernel can be shown to belong to the normal inverse-gamma distribution (Denison,

Holmes, Mallick, and Smith 2002, p. 16)

β0,βθ, σ
2 | D, g ∼ Npθ+1 IG

(

mθ,V θ,
n− 1

2
, cθ

)

where

V θ =

(

n−1 0T
pθ

0pθ

g
g+1(BT

θ Bθ)−1

)

, (2.3)

Zθ = (1n,Bθ),

mθ = V θZT
θ y =

(

ȳ
g

g+1 β̂
OLS
θ

)

, (2.4)

cθ = yT
[

In − ZθV θZT
θ

]

y/2. (2.5)

The marginal posterior density of the shrinkage factor t = g/(g + 1) is

f(t | D) ∝ (1 − t)(pθ+a−2)/2−1(1 −R2
θt)

−(n−1)/2.

Liang et al. (2008) have derived a closed form expression for the posterior mean of

t. However, we want to incorporate the posterior uncertainty with respect to t in our

analysis. To achieve this, we need to be able to sample from f(t | D). This can be

done by inversion, since the unnormalized cumulative distribution function (cdf) can be
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obtained by a change of variable to u = (1 −R2
θ)/(1 −R2

θt):

F̃θ(q) ∝
q
∫

0

f(t | D) dt

∝

1−R2
θ

1−R2
θ

q
∫

1−R2
θ

u[(n−1)/2−(pθ+a−2)/2]−1(1 − u)(pθ+a−2)/2−1 du

∝ Bθ

(

1 −R2
θ

1 −R2
θq

)

−Bθ(1 −R2
θ),

where Bθ is the cdf of the Beta distribution with shape parameters (n − pθ − a + 1)/2

and (pθ + a− 2)/2. The normalization constant of the shrinkage factor cdf is

F̃θ(1) = 1 −Bθ(1 −R2
θ),

yielding the posterior cdf Fθ(q) = F̃θ(q)/F̃θ(1). The inverse cdf can be derived from

that as

F−1
θ (p) =

(

1 − 1 −R2
θ

B−1
θ

(

p+ (1 − p)Bθ(1 −R2
θ)
)

)/

R2
θ. (2.6)

This allows effective inverse sampling from the model-specific posterior distribution of

the shrinkage factor t, and hence the covariance factor g = t/(1 − t).

3 Model inference

Inference on the space Θ of all possible models θ grounds on the posterior model prob-

abilities

f(θ | D) =
f(D |θ)f(θ)

f(D)
. (3.1)
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The hyper-g prior is convenient because it allows a closed form for the marginal likelihood

f(D |θ) of a model θ. From Liang et al. (2008) we have

f(D |θ) =
f(D | g,θ)f(g)

f(g | D,θ)

=
Γ(n−1

2 ) ‖y − 1nȳ‖−(n−1) (a− 2)2F1

(

n−1
2 ; 1; pθ+a

2 ;R2
θ

)

√
π

(n−1)√
n(pθ + a− 2)

∝ 2F1

(

n−1
2 ; 1; pθ+a

2 ;R2
θ

)

pθ + a− 2
, (3.2)

where factors which are not model-specific have been omitted in the last step and the

Gaussian hypergeometric function has the integral representation

2F1(a; b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

1
∫

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt,

cf. Abramowitz and Stegun (1964, section 15.3). See Appendix A for the numerical

calculation of the marginal likelihood and related quantities.

Posterior inference is conducted in two steps. First, posterior model probabilities

are estimated. This requires sampling from the model space (Section 3.1), when an

exhaustive computation of all marginal likelihoods is infeasible. Second, the posterior

distribution of FP curves in the most probable model or in a model average is estimated

by Monte Carlo (Section 3.2).

3.1 Posterior model sampling

As shown in Section 1, the model space may get very large due to its exponential growth

in the number of covariates k. This often renders an exhaustive computation of all

posterior model probabilities f(θ | D) for all θ ∈ Θ via (3.2), (2.2) and (3.1) infeasible.

Instead of utilizing ad hoc search strategies such as stepwise procedures, we are going

to sample from the posterior distribution f(θ | D) via a Markov Chain Monte Carlo

(MCMC) sampler, which is an adaption of the Metropolis-Hastings sampler by Denison

et al. (2002, pp. 53 ff. and p. 97). The approach is similar to the MCMC model

composition by Madigan and York (1995).

The proposal distribution q(θ′ |θ) is formed by four different move types, which define

how to jump from the current model θ to the new model θ′:
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BIRTH Randomly select one of the covariates with FP degree mi < mmax. Add a

power to its pi after randomly drawing it from S.

DEATH Randomly select one of the covariates with FP degree mi > 0. Remove a

randomly chosen power from its pi.

MOVE Randomly select one of the covariates with FP degree mi > 0. Remove a

randomly chosen power from its pi, then randomly draw a power from S and add

it to pi.

SWITCH Randomly select one of the covariates with non-empty power vector pi. Ran-

domly select one of the other covariates with power vector pj. Switch the power

vectors pi and pj .

Note that the SWITCH move is only sensible for k > 1 covariates, but for k = 1 all

models could easily be evaluated without any model sampling. The SWITCH move is

designed to be able to efficiently trace models with high posterior probability even in

situations where covariates are almost collinear. Each proposal begins with the proba-

bilistic choice of one of the move types, with the four probabilities bpθ
, dpθ

, mpθ
and spθ

depending on the current dimension pθ of the whole parameter vector θ:

bpθ
= 1, dpθ

= mpθ
= spθ

= 0 if pθ = 0,

bpθ
= dpθ

= mpθ
= spθ

=
1

4
if 0 < pθ < pmax,

bpθ
= 0, dpθ

= mpθ
= spθ

=
1

3
if pθ = pmax,

where the value pmax := min{n − 3 − a, k ×mmax} takes into account that more than

n− 3− a powers would render the posterior distributions in the model improper (Liang

et al. 2008, p. 420).

The proposed new model θ′ is accepted with probability

α(θ′ |θ) = min

{

1,
f(D |θ′)

f(D |θ)

f(θ′)

f(θ)

q(θ |θ′)

q(θ′ |θ)

}

,

which is the usual Metropolis-Hastings acceptance probability; in case of rejection the

chain stays at the previous model θ. The only parts of α(θ′ |θ) which still need to be

computed are the prior odds f(θ′)/f(θ) and the proposal ratio q(θ |θ′)/q(θ′ |θ), because
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the Bayes factor f(D |θ′)/f(D |θ) is known from (3.2). Both prior odds and proposal

ratio depend on the proposed move type.

For example, suppose a BIRTH proposed to add a power p to the ith FP which

formerly had the degree mi. Using the prior independence of the power vectors and (2.2),

the prior odds amount to

f(θ′)

f(θ)
=
f(p′

i)

f(pi)
=
d(mi + 1)−1(mmax + 1)−1

d(mi)−1(mmax + 1)−1
=

d(mi)

d(mi + 1)
=

mi + 1

|S| +mi
.

The proposal probability q(θ′ |θ) of this specific BIRTH move is

q(θ′ |θ) = bpθ
× 1

|F| ×
1

|S| ,

where F = {j : |pj | < mmax} collects the indices of the covariates in model θ that could

receive an additional power. The reverse probability of reaching the old model θ from

the proposed model θ′ by a converse DEATH move is

q(θ |θ′) = dpθ+1 ×
1

|P ′| ×
1p′

i
(p)

mi + 1
,

where P ′ = {j : |p′
j | > 0} abbreviates the index set of present covariates in the proposed

model θ′. The multiplicity of the newly chosen power p in p′
i is denoted by 1p′

i
(p).

Altogether we obtain

f(θ′)

f(θ)

q(θ |θ′)

q(θ′ |θ)
=
dpθ+1

bpθ

|F|
|P ′|

1p′

i
(p) · |S|

|S| +mi
.

The prior odds and proposal ratios for the DEATH, MOVE and SWITCH proposals

are computed analogously, see Appendix B. The sampling algorithm can be modified

without much effort to enable the selection of categorical covariates using “fixed form

covariates groups”: for each non-reference category of a categorical covariate, a binary

design variable is included in the corresponding covariate group, which is then included

as a whole in each FP model or not. By contrast to the continuous FP terms, the form

of the design variables is naturally fixed here. While we already have implemented this

extension of particular practical relevance, we omit the details here because the selection

of fixed form covariates groups is not an original feature of the FP approach.

We have been able to analytically marginalize the likelihood over the parameters β0,

βθ and σ2 and have arrived at the compact formula (3.2) for the marginal likelihood. So
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when the algorithm jumps to a new model θ′, we can immediately compute the posterior

model probability (3.1) up to the unknown multiplicative constant f(D)−1. Let the

models that have been visited by the algorithm be collected in Θ̂. The normalizing

constant can be approximated by the sum over its elements,

f(D) ≈
∑

θ∈Θ̂

f(D |θ)f(θ), (3.3)

and the values f(D |θ)f(θ) of the visited models θ ∈ Θ̂ can be normalized with this

sum, to obtain estimates f̂(θ | D). Of course, these estimates will be too high, because

the sum for the normalization constant is not taken over the whole model space Θ. In

a similar context George and McCulloch (1997) propose a more elaborated estimator,

which requires a preliminary run of the MCMC sampler. Here, the visited part Θ̂ is

effectively interpreted as an estimate of the whole model space Θ.

The sampling algorithm has strong connections to the simulated annealing approach,

which has also been utilized for frequentist model selection procedures, e. g. by Brooks,

Friel, and King (2003), as we need not base inference on the model frequencies in the

Markov chain. However, the MCMC construction ensures that for sufficiently long chains

the best models will be visited finally, as the chain converges to the true posterior distri-

bution f(θ | D). From this perspective, the sampling algorithm appears as a seemingly

simple search algorithm for the best models. The search is local in a sense, because in

the algorithm the current model is slightly modified to propose a model from the current

model’s neighborhood, and if the proposed model’s posterior probability is higher, then

it is essentially accepted (modulo the proposal ratio). If the proposed model’s posterior

probability is lower, then the algorithm might still accept the new model, so that our

approach is superior to stepwise or backfitting approaches, which get easily stuck in local

maxima.

3.2 Model selection and averaging

An intuitive approach is the selection of the model θMAP with the highest posterior

probability, which can be estimated by the algorithm described in Section 3.1. The

alternative is to take into account the uncertainty in model selection by marginalising

over the set of possible models. The resulting hypermodel is a BMA with weights given

by the posterior model probabilities. In general it will not be part of the original model
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space Θ, but in our application the BMA mean curve is again an FP, typically with a

higher degree than mmax.

The hypermodel can be estimated by drawing samples from the posterior in three

hierarchical steps:

1. Draw a model from the estimated posterior model distribution f̂(θ | D).

2. Sample a shrinkage factor t = g/(1 + g) from f(t | D,θ), using the quantile func-

tion (2.6) for inverse sampling.

3. Sample the intercept β0 and the coefficient vector βθ from the Student distributions

(see Denison et al. (2002, p. 238) for the parametrization used)

β0 | D,θ, g ∼ t

(

ȳ,
2cθ

n(n− 1)
, n− 1

)

and βθ | D,θ, g ∼ tpθ

(

g

g + 1
β̂

OLS
θ ,

2cθg

(n− 1)(g + 1)
(BT

θ Bθ)−1, n− 1

)

.

Samples from linear combinations of βθ, especially FP curve points fi(xi), are easily

obtained during the last step (see Appendix C for details on the computation of posterior

summaries). Samples from the regression variance can be drawn from the inverse-gamma

distribution σ2 | D,θ, g ∼ IG((n− 1)/2, cθ), if needed. Note that the above simulation is

necessary, because we have marginalized analytically over the model parameters β0, βθ

and σ2 before exploring the model space.

As the model sampling algorithm will typically visit hundreds of thousands of FP

models, it is impractical to include all of them in step 1 above. Thus we will adapt the

“Occam’s Window” strategy of Raftery, Madigan, and Hoeting (1997) and only save a

fixed number of best models for the BMA, collected in the set Θ̂
loc ⊂ Θ̂. The whole Θ̂

will only be used to calculate variable inclusion probabilities π̂i in addition to the “local”

counterparts π̂loc
i , via

π̂
(loc)
i :=

∑

θ∈Θ̂
(loc)

: pi 6=∅

f̂(θ | D), i = 1, . . . , k. (3.4)

If posterior inference given a single (best) model is desired, one simply omits step 1 of the

above algorithm and always uses the same θ. Similarly, one can define other subsets of

Θ̂
(loc)

and average over their elements. For example, Barbieri and Berger (2004) propose
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the median probability model that selects all variables with π̂i ≥ 1/2. As we also consider

transformations of the continuous covariates in addition to their selection, our median

probability model could be a BMA of those models which do not contain powers for

those covariates with π̂i ≤ 1/2. We may also rerun the model sampling algorithm on the

model subset or choose a lower threshold for the inclusion probabilities, following the

approach of Fouskakis, Ntzoufras, and Draper (2009).

4 Application

We will apply the Bayesian FP approach to the ozone data that was first analyzed

by Breiman and Friedman (1985) (with the alternating conditional expectations (ACE)

algorithm). Nine variables with the same maximum FP degree mmax = 2 had been

considered in the model selection procedure. They had been preliminarily transformed

to ensure positivity and to avoid numerical issues with large numbers. To assess the

predictive performance of the Bayesian FP models, we randomly select 30 observations

that shall form a test set. The training set which is used to fit the models comprises the

remaining 300 records. More details on the data set can be found in Appendix D. The

hyperparameter is set as a = 4.

In order to explore the vast model space of cardinality 756 · 1012, we have run the

search algorithm for 1 000 000 iterations. This task required only 11 minutes (on an

Intel T2500 with 2 GHz running Ubuntu 9.10), because we have used a fast C++ imple-

mentation of the model search algorithm. The R-package with a comfortable R-interface

and corresponding binaries for Windows and Mac operating systems are available from

R-Forge (http://r-forge.r-project.org/projects/bfp).

Two computational problems had to be solved before it was possible to implement the

sampler successively. First, most unnormalized posterior probabilities had been smaller

than 10−308 and it had been impossible to display them in double precision. Fortunately,

modern C++ compilers offer an extended precision floating-point data type (long double)

and compatible exponential and log functions, which solved this problem in a straight-

forward manner. Second, a naive implementation of the summation (3.3) of these values

had turned out to be insufficient, because large cancellations between summands of

different magnitudes had occurred. A sophisticated ‘distillation algorithm’ for floating-

15

http://r-forge.r-project.org/projects/bfp


point summation (Anderson 1999) had already been implemented by Kenneth Wilderi.

Though it consumes more memory and computing time, it has delivered sensible results,

which appear to be correct. It is important to mention that no probability estimates are

necessary for mere model ranking, as the (log) unnormalized posterior probabilities can

be used for an equivalent comparison.

Note that we also ran the sampler with three other hyperparameter choices a ∈
{3.1, 3.4, 3.7} for this data set, which barely changed the results. Furthermore, three

additional runs of the algorithm using a = 4 with different random number generator

seeds yielded very similar results. While emphasizing that the method is not sensitive to

the hyperparameter value, this also suggests that the chain length is sufficient to explore

the set of models with high posterior probability.

The transformation parameters and posterior inclusion probabilities are shown in Ta-

ble 1. Only z0 and z6, . . . , z10 have probabilities greater than 0.7, as z4 is borderline

significant with the local inclusion probability dropping below 0.5. These results roughly

correspond with those of Breiman and Friedman (1985), whose ACE algorithm selected

z0 and z7, . . . , z10. One reason for this good correspondence may be that only a very

mild transformation of y is proposed by the ACE procedure, so the considered depen-

dent variable is almost the same. The local inclusion probabilities that are based on

the saved 3 000 models with the highest posterior probabilities are quite similar to the

global inclusion probabilities. This indicates that at least in this respect Θ̂
loc

constitutes

a sensibly reduced model set. The mfp algorithm (Sauerbrei, Meier-Hirmer, Benner, and

Royston 2006) yields the model

η(x) = x0 + x0 log x0 + x4 + x5 + x6 + x
1
2
7 + x2

7 + x8 + x3
9 + x

− 1
2

10 + x
− 1

2
10 log x10, (4.1)

which includes all covariates at least linearly, and is not among the saved best 3 000

models with posterior probability 2 · 10−7.

The top ten models are summarized in Table 2. While the first column contains the

product of the marginal likelihood and the prior model probability, normalized within

all visited models by (3.3), the second column refers to the frequencies of the models

in the model sampling path. The two estimates differ considerably because the MCMC

iSee http://sites.google.com/site/jivsoft/Home/accurately-sum-the-elements-of-a-c---vector

for the original source.
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algorithm has not yet converged to the posterior model distribution, which is not rel-

evant here because we simply use it as a model search tool. Surprisingly, the top ten

models agree on which variables to include and only vary in the powers contained in the

respective power vectors. The MAP model configuration is

E(y |x,θMAP ) = β0 + α01x0 + α02x0 log(x0) + α61x6

+ α71x
3
7 + α81x

2
8 + α91x

3
9 + α10,1x

− 1
2

10 + α10,2 log(x10)
(4.2)

and can be obtained from the FP powers in the first row of Table 2 via the FP defi-

nition (1.4): for example, the MAP model contains the repeated power 1 for the first

covariate x0, which results in the FP part α01x0+α02x0 log(x0). The estimated FP parts

are graphed on the original scales in Figure 1. The plotted curves result from Monte

Carlo estimation using 20 000 samples from the posterior distribution of the coefficients

in the MAP model, see Appendix C.1 for details. Note that the estimated mean curve

matches the true mean curve obtained by using the posterior expected coefficients (up to

Monte Carlo error). Yet, just plugging in the posterior expected shrinkage value 0.9897

into the covariance matrix of the posterior normal inverse-gamma distribution would

lead to underestimation of the uncertainty, that means the credible intervals would be

too small.

A comparison of the FPs for z0 (day of the year), z7 (temperature at Sandberg)

and z10 (visibility) with their counterparts in Breiman and Friedman’s (1985) Figure 5

reveals similarities. On the other hand, the functions for z8 (inversion base height) and

z9 (pressure gradient) are quadratic and cubic power transformations with peaks at the

negative of their shifts 0 and 70, respectively. This differs from Breiman and Friedman’s

(1985) transformations, which have their peaks at 1 000 and 0.

The FP mixtures of the BMA over the saved 3 000 models have been estimated by

drawing 30 000 samples from their posterior distributions. The results are shown in

Figure 2, see Appendix C.2 for details on the computations. Note that the estimates

for f6 and f8 are based on less than 30 000 samples due to local inclusion probabilities

π̂loc
i smaller than unity, see Table 1. The function shapes are in general similar to those

in the MAP model, but the uncertainty is larger of course. The mean estimate for

z8 exhibits a peak around 1 000 and approaches Breiman and Friedman’s (1985) ACE

transformation. Note that the centering of the design matrix columns is essential in

order to obtain sensible results here, because correlations between the intercept and the
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Figure 1 – FPs estimates (means, solid lines) for the MAP model for the ozone data. The

functions are plotted on the original covariate scales. Pointwise (short dashed lines)

as well as simultaneous (long dashed lines) 95%-HPD intervals are given. The points

are partial residuals to the FP mean curves.
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Table 1 – Preliminary transformation parameters and posterior inclusion probabilities for the

nine covariates considered in the sampling process, which discovered 907 986 models

constituting Θ̂. Inclusion probabilities were estimated from Θ̂ or from the best found

3 000 models in Θ̂
loc

via (3.4). Note that the shifts ξi and scales ζi for the transfor-

mation xi = (zi + ξi)/ζi were chosen as in the mfp algorithm, see Appendix D for

details.

ξi ζi π̂i π̂loc
i

z0 0 100 1.0000 1.0000

z4 0 10 000 0.5758 0.3812

z5 1 10 0.2629 0.1692

z6 0 100 0.8447 0.8767

z7 0 100 0.9994 1.0000

z8 0 1 000 0.7039 0.7567

z9 70 100 1.0000 1.0000

z10 2 100 0.9991 1.0000

z11 0 100 0.0886 0.0595

FPs would result in much larger and non-interpretable credible bands.

Three different models were compared by computing their predictions {ŷi} for the test

set data and quantifying the distance of these predictions to the actual values {yi} by

means of the root mean squared prediction error (RMSPE). The mfp model (4.1) results

in RMSPE = 3.579. The MAP model (4.2), which had been found by sampling from the

posterior model distribution, is more successful with 3.512. Its RMSPE is even better

than the result 3.571 of the BMA, whose predictions have been obtained by averaging

over all 3 000 model-specific predictions.

5 Discussion

This paper has implemented the multiple FP modelling approach, which combines vari-

able selection and “parsimonious parametric modelling” (Royston and Altman 1994) of

the covariate effects, within a Bayesian framework for normal linear regression. The
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Figure 2 – FPs mixture estimates (solid lines) for the BMA over the best 3 000 FP models for

the ozone data. The functions are plotted on the original covariate scales. Pointwise

(short dashed lines) as well as simultaneous (long dashed lines) 95%-HPD intervals

are given. The points are partial residuals to the FP mean curves: the sample sizes

underlying each function estimate are printed in the top corners.
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Table 2 – Summary of the top ten models in terms of posterior probability. The power vectors

p4,p5 and p11 have always been empty and hence are omitted from the table.

i f̂(θi | D)a

×104

f̂freq(θi | D)b

×104

log f(D | θi) E(t | D, θi) p0 p6 p7 p8 p9 p10

1 22.74 0.75 -40515.99 0.989687 1, 1 1 3 2 3 -0.5, 0

2 21.68 0.33 -40516.03 0.989683 1, 1 0.5 3 2 3 -0.5, 0

3 18.53 0.87 -40516.19 0.989668 1, 1 1 3 2 3 -0.5, -0.5

4 18.10 0.69 -40516.21 0.989666 1, 1 1 3 3 3 -0.5, 0

5 17.52 0.15 -40516.25 0.989663 1, 1 0.5 3 3 3 -0.5, 0

6 16.19 0.13 -40516.33 0.989655 1, 1 1 3 2 3 -1, 0

7 15.74 0.16 -40516.35 0.989653 1, 1 0.5 3 2 3 -1, 0

8 15.44 0.43 -40516.37 0.989651 1, 1 1 3 3 3 -0.5, -0.5

9 15.40 0.08 -40516.38 0.989651 1, 1 0.5 3 3 3 -0.5, -0.5

10 15.31 0.10 -40516.38 0.989650 1, 1 0 3 2 3 -0.5, 0

aThe posterior probabilities are proportional to the exponential transformation of the sum of log f(D | θ)

and log f(θ) = −
Pk

j=1 log
ˆ

d(mj)(mmax + 1)
˜

, where here mmax = 2. We obtain log f(θi) =

−4 log(8) − 2 log(36) − 9 log(3) = −25.372315 for all models i = 1, . . . , 10.
bModel frequencies in the Markov chain of the model sampling algorithm.

Bayesian perspective allows coherent inference for models, covariate inclusion and FPs.

Model selection is the main issue and has been addressed by a stochastic search algorithm

that is a form of an MCMC algorithm. This path is computationally more demanding

than simple stepwise search procedures, but it is theoretically well-founded. Model av-

eraging is a valuable alternative, which directly accounts for model uncertainty, and the

used hyper-g prior ensures that the resulting predictions are consistent for the true FP

model’s predictions.

Simultaneous covariate and transformation selection in the linear model has been done

by Hoeting and Ibrahim (1998) and Hoeting, Raftery, and Madigan (2002), who give

examples from the Box-Cox family of transformations and change-point transformations,

respectively. Gottardo and Raftery (2009) use Box-Cox transformations also for the

response variable. However, this complicates the MCMC algorithm considerably.

The proposed prior distributions express noninformativeness both about the models

and the model parameters in order to do justice to the situations in which the modelling

approach will usually be applied. We have used a quasi-default prior where only the
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hyperparameter a ∈ (3, 4] has to be chosen by the user. We have conducted a sensitivity

study which has shown that the results are not sensitive to the hyperparameter choice

in this range, and only abnormal choices a ≫ 4 lead to a stronger shrinkage of the fit

towards the mean. So our approach avoids potentially dangerous manual tuning of the

smoothing parameter g and at the same time allows the computation of the marginal

likelihood for each model in question. The ‘Shotgun Stochastic Search’ algorithm by

Hans, Dobra, and West (2007) could therefore in principle be applied here, and we plan

to test its implementation for the Bayesian FPs in the future. This search algorithm

would be advantageous to efficiently use the full parallel computing power of clusters

of multiple computers or future many-core workstations. Moreover, we do not need

to implement complex reversible jump MCMC algorithms as that proposed by Jasra,

Stephens, and Holmes (2007) to effectively traverse the model space.

The computational costs of the method are moderate, which is at least partly due

to the use of a compiled language for the algorithm implementation. Besides allowing

all maximum degrees the user wishes, the approach can take account of model uncer-

tainty via Bayesian model averaging. This possibility should be used for checking the

conclusions drawn from single models.

Immediate extensions of the implemented FPs could include other transformations.

For instance, other powers in the set S or the exponential function would provide a

bigger model class. Even trigonometric functions could be useful for the description

of, e. g., seasonal data or blood measurements. Another improvement of the current

procedure would be to provide the opportunity to contain hierarchical interactions in

the linear predictor. At the moment, only manual input of products of covariate vectors

is possible, and this does not prevent the algorithm from proposing non-hierarchical and

thus non-interpretable models. The implementation of hierarchical interactions (with

non-hierarchical models having prior probability zero) would necessitate adaption of the

move types and hence adaption of the acceptance probability formulas.

Furthermore, the sampling approach used can readily be extended to distributions

for which auxiliary variable methods that complement the linear regression model exist.

For example, Holmes and Held (2006) extend the Albert and Chib (1993) method for

probit regression to binary and multinomial logistic regression models. An integration

of their findings into the multiple FP approach could be fruitful, as logistic regression

is probably the second most important regression model. Similarly, for Poisson regres-
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sion models auxiliary mixture sampling has been proposed by Frühwirth-Schnatter and

Wagner (2006) and Frühwirth-Schnatter, Frühwirth, Held, and Rue (2009).
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Frühwirth-Schnatter, S., R. Frühwirth, L. Held, and H. Rue (2009). Improved auxil-

iary mixture sampling for hierarchical models of non-Gaussian data. Statistics and

Computing 19 (4), 479–492.

George, E. I. and R. E. McCulloch (1997). Approaches for Bayesian variable selection.

Statistica Sinica 7 (2), 339–373.

Gottardo, R. and A. Raftery (2009). Bayesian robust transformation and variable

selection: a unified approach. The Canadian Journal of Statistics 37 (3), 361–380.

Govindarajulu, U. S., E. J. Malloy, B. Ganguli, D. Spiegelman, and E. A. Eisen

(2009). The comparison of alternative smoothing methods for fitting non-linear

exposure-response relationships with Cox models in a simulation study. Interna-

tional Journal of Biostatistics 5 (1), 1–19.

Hans, C., A. Dobra, and M. West (2007). Shotgun stochastic search for ”large p”

regression. Journal of the American Statistical Association 102 (478), 507–516.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized Additive Models. Chapman and

Hall.

Hoeting, J. A. and J. G. Ibrahim (1998). Bayesian predictive simultaneous variable and

transformation selection in the linear model. Journal of Computational Statistics

and Data Analysis 28 (1), 87–103.

24



Hoeting, J. A., A. E. Raftery, and D. Madigan (2002). Bayesian variable and trans-

formation selection in linear regression. Journal of Computational and Graphical

Statistics 11 (3), 485–507.

Holmes, C. C. and L. Held (2006). Bayesian auxiliary variable models for binary and

multinomial regression. Bayesian Analysis 1 (1), 145–168.

Jasra, A., D. A. Stephens, and C. C. Holmes (2007). Population-based reversible jump

Markov chain Monte Carlo. Biometrika 94 (4), 787–807.

Liang, F., R. Paulo, G. Molina, M. Clyde, and J. Berger (2008). Mixtures of g pri-

ors for Bayesian variable selection. Journal of the American Statistical Associa-

tion 103 (481), 410–423.

Madigan, D. and J. York (1995). Bayesian graphical models for discrete data. Inter-

national Statistical Review 63 (2), 215–232.

Raftery, A. E., D. Madigan, and J. A. Hoeting (1997). Bayesian model averaging for

linear regression models. Journal of the American Statistical Association 92 (437),

179–191.

Royston, P. and D. Altman (1997). Approximating statistical functions by using frac-

tional polynomial regression. Journal of the Royal Statistical Society. Series D

(The Statistician) 46 (3), 411–422.

Royston, P. and D. G. Altman (1994). Regression using fractional polynomials of

continuous covariates: Parsimonious parametric modelling. Journal of the Royal

Statistical Society. Series C (Applied Statistics) 43 (3), 429–467.

Royston, P. and W. Sauerbrei (2008). Multivariable Model-building: A Pragmatic

Approach to Regression Analysis based on Fractional Polynomials for Modelling

Continous Variables. Wiley Series in Probability and Statistics. Chichester: Wiley.

Ruppert, D., M. P. Wand, and R. J. Carroll (2003). Semiparametric Regression. Cam-

bridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge

University Press.

Sauerbrei, W., C. Meier-Hirmer, A. Benner, and P. Royston (2006). Multivariable

regression model building by using fractional polynomials: Description of SAS,

25



STATA and R programs. Journal of Computational Statistics and Data Analy-

sis 50 (12), 3464–3485.

Sauerbrei, W. and P. Royston (1999). Building multivariable prognostic and diagnostic

models: transformation of the predictors by using fractional polynomials. Journal

of the Royal Statistical Society. Series A (Statistics in Society) 162 (1), 71–94.

Shkedy, Z., M. Aerts, G. Molenberghs, P. Beutels, and P. van Damme (2006). Mod-

elling force of infection from prevalence data using fractional polynomials. Statistics

in Medicine 25 (9), 1577–1591.

Sutradhar, B. C. (1986). On the characteristic function of multivariate Student t-

distribution. The Canadian Journal of Statistics 14 (4), 329–337.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis

with g-prior distributions. In P. K. Goel and A. Zellner (Eds.), Bayesian Inference

and Decision Techniques: Essays in Honor of Bruno de Finetti, Volume 6 of Stud-

ies in Bayesian Econometrics and Statistics, Chapter 5, pp. 233–243. Amsterdam:

North-Holland.

A Numerical calculation of hyper-g quantities

In order to calculate the Bayes factor (Liang et al. 2008, formula (17)) and the posterior

expectation of g or the shrinkage factor g/(1 + g) given model θ (Liang et al. 2008,

formulas (18) and (19)), integrals of the common form

ψθ(b, c) :=

∞
∫

0

gb−1(1 + g)(n−1−pθ−c)/2
[

1 + (1 −R2
θ)g
]−(n−1)/2

dg

need to be computed. This results from

f(g | D,θ) ∝ f(D | g,θ)f(g |θ)

∝ (1 + g)(n−1−pθ )/2

[

1 + (1 −R2
θ)g
](n−1)/2

a− 2

2
(1 + g)−a/2

=
a− 2

2
(1 + g)(n−1−pθ−a)/2

[

1 + (1 −R2
θ)g
]−(n−1)/2
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for non-null models θ. The normalizing constant of this posterior density is the Bayes

factor of model θ versus the null-model MN ,

BF (θ : MN ) =
a− 2

2

∞
∫

0

(1+g)(n−1−pθ−a)/2
[

1 + (1 −R2
θ)g
]−(n−1)/2

dg =
a− 2

2
ψθ(1, a).

The a posteriori expected value of g in model θ is thus

E(g | D,θ) =

∫∞
0 g a−2

2 (1 + g)(n−1−pθ−a)/2
[

1 + (1 −R2
θ)g
]−(n−1)/2

dg
a−2
2 ψθ(1, a)

=
ψθ(2, a)

ψθ(1, a)
.

Similarly, the posterior expected value of t = g/(g + 1) given the model θ is

E(t | D,θ) =
ψθ(2, a+ 2)

ψθ(1, a)
. (A.1)

The first way of computing the ψθ function can be derived by employing the change

of integration variable g to t := g/(g + 1). The integration range is mapped onto the

unit interval and by the integral representation of the Gaussian hypergeometric function

(Liang et al. 2008, formula (20)) we obtain

ψθ(b, c) =

1
∫

0

tb−1(1 − t)(pθ+c)/2−b−1(1 −R2
θt)

−(n−1)/2 dt

= Beta

(

b,
pθ + c

2
− b

)

· 2F1

(

n− 1

2
; b;

pθ + c

2
;R2

θ

)

.

Liang et al. (2008) have reported occasional numerical difficulties with the Gaussian

hypergeometric function in the Cephes library (available from netlib). We have imple-

mented their alternative Laplace approximation, but its use was not necessary in our

applications.

B Model sampling acceptance probabilities

Suppose a DEATH happened and removed a power p from the ith FP. The prior odds

then are calculated analogously and equal

f(θ′)

f(θ)
=

d(mi)

d(mi − 1)
=

|S| − 1 +mi

mi
.
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Similarly, the proposal probabilities are computed in the same manner as for a BIRTH.

The results are

q(θ′ |θ) = dpθ
× 1

|P| ×
1pi

(p)

mi
and q(θ |θ′) = bpθ−1 ×

1

|F ′| ×
1

|S| .

Thus, for a DEATH move,

f(θ′)

f(θ)

q(θ |θ′)

q(θ′ |θ)
=
bpθ−1

dpθ

|P|
|F ′|

|S| − 1 +mi

1pi
(p) · |S| .

Second, consider a MOVE which substituted the power q for the power p in the ith

FP. Obviously, the prior odds are one, because the decisive degrees {mj}k
j=1 have not

changed. The proposal probabilities are

q(θ′ |θ) = mpθ
× 1

|P| ×
1pi

(p)

mi
× 1

|S| and q(θ |θ′) = mpθ
× 1

|P| ×
1p′

i
(q)

mi
× 1

|S| ,

differing only in one number because the degrees and, consequently, the dimension w

and the number of present covariates have not been altered. The proposal ratio hence

reduces to the ratio of the number of powers q in p′
i of the new model θ′ to the number

of powers p in pi of the current model θ, i. e.

q(θ |θ′)

q(θ′ |θ)
=

1p′

i
(q)

1pi
(p)

.

Lastly, suppose a SWITCH exchanged the power vectors of the ith and the jth FP.

The prior odds are one, because

f(θ′)

f(θ)
=
f(p′

i)f(p′
j)

f(pi)f(pj)

and p′
i = pj , p′

j = pi. If by chance pi = pj , then obviously the proposal ratio equals

one, and we do not need to think about probabilities contributed by MOVE s which also

result in the same model vector, and vice versa for the MOVE acceptance probabilities.

If pi 6= pj, the proposal probabilities are

q(θ′ |θ) = spθ
× 1

|P| ×
1

k − 1
×
[

I(mi > 0) + I(mj > 0)
]

,

q(θ |θ′) = spθ′
× 1

|P ′| ×
1

k − 1
×
[

I(m′
i > 0) + I(m′

j > 0)
]

,

and they are equal because the dimension pθ = pθ′ and the number of present covariates

|P| = |P ′| have not changed. So also the proposal ratio of the SWITCH moves equals

one.

28



C Posterior summaries

Having explored the posterior model space that was defined in Section 2, one is interested

in at least two things: first, one wants to get a general idea of the posterior model

distribution. For instance, one would like to know how probable the inclusion of certain

covariates is or what models are most plausible after taking account of the observed

data. Another kind of posterior summary is BMA, which can serve us as a benchmark

for single models. Second, if one selects a single model which is the ‘best’ in terms

of posterior probability or interpretability, point estimates and credible intervals for its

coefficients or crediblity regions for the FP functions are of particular interest. The

necessary methods are developed in this Section and were applied in the context of an

elaborate example in Section 4.

C.1 Describing a single FP model

In this section we will introduce techniques for summarizing a single multiple FP model.

Estimation of coefficients and regression variance Having decided on a certain model,

the intercept β0 and the various regression coefficients {αij}, which had been collected

into the large coefficient vector β, can be treated equally and are thus denoted as

β0, . . . , βp. As was shown in Section 3, a posteriori the whole vector β follows a p-

variate Student distribution, conditional on the covariance factor g. Because subvectors

of a vector with multivariate Student distribution are themselves t-distributed with their

respective parts of the mean vector and diagonal block of the original scale matrix as

parameters (Sutradhar 1986), the ith coefficient follows a univariate t-distribution:

βi | D, g ∼ t(mi, 2b/(n − 1)Vii, n− 1), (C.1)

where m = (m0, . . . ,mp)
T and V = (Vij)0≤i,j≤p are assumed. Standardization leads

to a central t-distribution with unit scale and the same degrees of freedom, i. e. with

si = 2b/(n − 1)Vii we can write

βi −mi√
si

| D, g ∼ t(n− 1).
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If the uncertainty from g should be taken into account for the model-specific part β, the

law of iterated expectations yields

β̂ := E(β | D) = E [E (β | D, g) | D]

= E

[

g

g + 1
β̂

(OLS)
θ | D

]

= E (t | D) · β̂(OLS)
θ (C.2)

that is the OLS estimate scaled by (A.1).

A conditional posterior equal-tailed (1 − α)-credible interval for βi that is centered

around the posterior mean mi can be calculated numerically only if g is held fixed.

Otherwise, equal-tailed or highest posterior density (HPD) credible intervals can easily

be Monte Carlo estimated via N samples, say, obtained from the sampling algorithm in

Section 3.1. Equal-tailed credible intervals are bounded by the empirical (1−α)/2- and

(1+α)/2-quantiles of the samples. The HPD intervals may be calculated in the following

manner. Let the number of samples to be included in the empirical HPD interval be

l = [N(1−α)]. After ordering the samples, the width of all N− l possible contiguous sets

comprising l elements is calculated. The set with minimal width is then the empirical

(1 − α)-HPD interval.

Likewise, one can proceed to estimate the marginal posterior distribution of the re-

gression variance σ2.

Estimation of FP curves If a FP function is part of the linear predictor, experiencing

the estimated relationship and uncertainty about it visually will be more helpful to the

user than reading credible interval bounds of the associated coefficients {αj}. Since the

approach is a form of additive modelling, the illustration of the effect fortunately boils

down to making a graph of a univariate function—namely the FP estimate f m̂(x; α̂, p̂).

The estimates of the power vector p and the degree m are assumed fixed here, as they

are part of the model definition, and only uncertainty about the coefficient vector α

remains to be considered.

Evaluation of the function estimate can be implemented by building a fine grid of

x-values in the observed range and interpolating the function values at these abscis-

sae. Each ordinate is computed by transforming x into the design vector h(x) =

30



(h1(x), . . . , hm(x)) and multiplying it with the point estimate α̂ which is the appro-

priate subvector of the grand posterior mode (C.2). Recall that the model parameters

determine the transformations {hj} via (1.4). This point estimate,

f m̂(x; α̂, p̂) = h(x)α̂, (C.3)

is the posterior expected function ordinate in the given model.

Pointwise credible intervals are well suited for expressing the range of plausible function

values at a certain predictor value. Yet, they are not qualified for illustrating the range

of plausible FP functions. In particular, the credible level 1 − α cannot be interpreted

as the posterior probability for a curve with coefficients drawn from the posterior to

be embedded in the region circumscribed by the connected lower and upper pointwise

bounds. The issue is more urgent here than, for example, in spline regression, where

the approximating functions are ‘local’ by nature. The FPs belong to the family of

parametric models, that is why they are ‘global’, meaning that a change of the function

in one point affects the whole curve.

A simulation-based approach to constructing a simultaneous (1 − α)-credible region

could proceed as follows. One starts with drawing N samples α(i), i = 1, . . . , N , from

the posterior distribution α | D. This again works like the algorithm sketched in Sec-

tion 3.1, that is one samples models covariance factors g(i) using the inverse sampling

scheme and samples t-distributed vectors α(i) using the formulas in step 2 with location

vector and scale matrix determined by the respective g(i) via (2.4) and (2.3). Afterwards

one computes the respective function estimates f m̂(x;α(i), p̂) at a grid of k abscissae.

An algorithmically advantageous formulation of a simultaneous (1 − α)-credible region

for the function which always includes the mean curve can then be derived from the

nonparametric approach that was developed by Besag, Green, Higdon, and Mengersen

(1995), particularly from their one-sided upper simultaneous credible band (SCB). It

is based on the (N × k)-matrix of the function values
(

v
(i)
j := f m̂(xj ;α

(i), p̂)
)

ij
, where

each function estimate is allocated in one row, and the different function estimates at

a certain x-value are allocated in one column each. Let the absolute distances between

the function values and the mean curve values be collected in a matrix

(

d
(i)
j := |v(i)

j − h(xj)α̂|
)

ij

of the same dimension. Now each column of (d
(i)
j )ij is ordered seperately to obtain the
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ranks {r(i)j }, j = 1, . . . , k, of the absolute distances at each of the k grid points. Denote

the number of functions which shall be included in the credible set by l := [N(1 − α)]

and the lth order statistic from the set of rowwise maximum ranks {maxj=1,...,k r
(i)
j }N

i=1

by r∗. The upper bound on the ranks, r∗, determines the SCB that consists of the k

elementwise ranges

min,max
{

v
(i)
j | r(i)j ≤ r∗, i = 1, . . . , N

}

, j = 1, . . . , k.

Unlike the equal-tailed SCB of Besag et al. (1995), this credible region will in general not

be invariant to strictly monotone transformations of the values {v(i)
j }. In this respect the

proposed SCB resembles the single HPD interval. However, this fact should not concern

us unduly, as we usually will not want to consider transformations of the FP function

values after having calculated the credible band.

The distance between the model fit and the data can be gauged by adding partial

residuals to each function plot. For the ith FP they are defined as

ε̂
(i)
j = f m̂i(xij ; α̂i, p̂i) + ε̂j , j = 1, . . . , n,

where the jth raw residual ε̂j is the difference between the response yj and the model

fit ŷj. The fit ŷj of the multiple FP model is the posterior mean of the linear predictor

η in (1.6) evaluated at xj. The rationale behind this definition of fit is based on the

fact that in linear regression with identity link the linear predictor models the mean

E(yj |xj) of the response yj directly. The posterior expectation of the modelled mean

β0 + bT
j β simply is the linear combination ȳ + bT

j β̂. The design vector bj depends on

the covariate values xj via (1.6). HPD intervals for the modelled mean may again be

Monte Carlo estimated by applying the sampling scheme in Section 3.1.

Via the raw residuals, the partial residuals take into account all other variables. A

satisfying fit of the ith FP is indicated if the function estimate reflects the plotted

relationship between the covariate xi and the partial residuals {ε̂(i)j } quite well.

C.2 Describing the posterior model distribution

Having explored the whole or a part of the posterior model distribution by an exhaustive

search or a posterior sampling procedure, respectively, one is not only interested in a

single model, but also in the model distribution. Besides analyzing a table of the most

probable models, the BMA approach can be insightful.

32



If a FP covariate is included in an FP model, the conditional distribution of the FP

curve is of interest. This distribution can be estimated by the algorithm described in

Section 3.1. Every sample of uncertain covariates is conditional on the inclusion of the

covariate, so the inclusion probabilities (3.4) must always be examined in parallel.

Based on a sample of size N that is well above the size of Θ̂
(loc)

pointwise estimates and

credible intervals for the averages of FP functions are available after linear transformation

of the associated coefficients via the appropriate design vectors. Note that Bayesian

model averages of the single FP coefficients {αij} are not very meaningful, as one is not

interested in the coefficient of e. g. x−1 given that it is included in the design vector.

Only the average FP function as a whole is informative. Simultaneous credible bands

for the partial predictor functions can be estimated by applying the procedure, that

was described in the former section, on the function samples. The only difference is the

sample space—while in the previous section we sampled from a single model, we now

sample from a model average.

The simplest BMA fit ŷj for the jth response value yj is the marginal posterior mean

of the modelled linear predictor at the independent values xj . It arises from the model-

specific fits through posterior model probability weighted averaging by applying the law

of iterated expectations:

ŷj = Eβ | D

(

η(xj) | D
)

= Eθ | D

{

Eβ |θ,D

(

β0 + bT
θ,jβθ |θ,D

)}

= ȳ +
∑

θ∈Θ

bT
θ,jβ̂θf(θ | D)

≈ ȳ +
∑

θ∈Θ̂

bT
θ,jβ̂θf(θ | D).

(C.4)

This allows again heuristic goodness-of-fit checks for the residuals yj − ŷj, for instance

plotting the partial residuals as desribed in the previous subsection.

D Ozone data description

The ozone data presented in Breiman and Friedman (1985) detail the relationship be-

tween atmospheric ozone concentration and meteorology in the Los Angeles basin. The

data is available by FTP from Leo Breiman’s website. Breiman and Friedman (1985)

wanted to predict the maximum one-hour average ozone concentration of the next day

from nine meteorological variables. All variables are listed in Table 3.
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The authors used their alternating conditional expectations (ACE) algorithm to es-

timate the nonparametric transformations of both the response and the independent

variables that maximize the fraction of variance explained by the multiple linear regres-

sion. There is a link to our Bayesian approach, but we aim to maximize the posterior

model probability within a model space that only contains parametric transformations

of the independent variables.

Table 3 – Description of the variables in the ozone data set, which spans all 366 days of the leap

year 1976.

Variable Description Measurement location Missing

y Maximum 1-hour average ozone

level [ppm]

Upland, CA 5

z1 Month

z2 Day of month

z3 Day of week

z4 500 millibar pressure height [m] Vandenberg AFB 12

z5 Wind speed [mph] LAX

z6 Relative humidity [%] LAX 15

z7 Temperature [°F] Sandberg, CA 2

z8 Inversion base height [feet] LAX 15

z9 Pressure gradient [mm Hg] from

LAX to Daggett, CA

1

z10 Visibility [miles] LAX

z11 Inversion base temperature [°F] LAX 14

z12 Temperature [°F] El Monte, CA 139

Since the temperature values at El Monte are missing for 139 days, which is more than

a third of the total 366 records, this variable (z12) is not included in the analysis. The

covariates z7 and z11, which are temperature readings at Sandberg and at Los Angeles

International Airport, respectively, may serve as partial surrogate variables, because of

their high linear correlations (0.91 and 0.93) with z12 in the data set. After omitting

the incomplete cases, we arrive at 330 observations, which is the sample size reported
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by Breiman and Friedman (1985). Borrowing from them, we form an additional time

variable z0 that contains the day of the year in order to capture extra seasonal variation.

The month and day variables z1, z2 and z3 are not used.

The transformation method is adopted from the mfp algorithm (Sauerbrei, Meier-Hirmer,

Benner, and Royston 2006). Each original covariate zi is shifted and rescaled as xi =

(zi + ξi)/ζi, where the shift ξi and the scale ζi are computed as follows. If the smallest

observed value minj zij is positive, no shift is made. Otherwise, the shift parameter

is equated with the smallest positive increment in successive ordered values minus the

minimum value and rounded up to the next first decimal place:

ξi =







0 if zi(1) > 0,
⌈

minzi(j) 6=zi(j+1)

{
∣

∣zi(j+1) − zi(j)
∣

∣− zi(1)
}

· 10
⌉

/10 if zi(1) ≤ 0

The decimal log mean r = log10

{

1
n

∑n
j=1(zij + ξi)

}

of the shifted values defines the

scale parameter ζi via ζi = 10sign(r) · [|r|]. Thus, small values are scaled up and big values

are scaled down by powers of 10.

The dates of the test set observations are given in Table 4.

Table 4 – Dates of the test set records in DD/MM/1976 format.

17/1 11/2 10/3 26/3 31/3 7/4 10/4 27/4 2/5 15/5

17/5 20/5 6/6 7/6 10/6 6/7 10/7 20/7 27/7 2/8

3/8 9/8 11/9 28/9 13/10 15/11 30/11 4/12 7/12 14/12
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