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Bayesian Fusion of Multi-Band Images
Qi Wei, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE,

and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper presents a Bayesian fusion technique for
remotely sensed multi-band images is presented. The observed
images are related to the high spectral and high spatial res-
olution image to be recovered through physical degradations,
e.g., spatial and spectral blurring and/or subsampling defined
by the sensor characteristics. The fusion problem is formulated
within a Bayesian estimation framework. An appropriate prior
distribution exploiting geometrical consideration is introduced.
To compute the Bayesian estimator of the scene of interest from
its posterior distribution, a Markov chain Monte Carlo algo-
rithm is designed to generate samples asymptotically distributed
according to the target distribution. To efficiently sample from
this high-dimension distribution, a Hamiltonian Monte Carlo step
is introduced in the Gibbs sampling strategy. The efficiency of
the proposed fusion method is evaluated with respect to several
state-of-the-art fusion techniques.

Index Terms—Fusion, super-resolution, multispectral and hy-
perspectral images, deconvolution, Bayesian estimation, Hamil-
tonian Monte Carlo algorithm.

I. INTRODUCTION

THE problem of fusing a high spatial and low spectral res-

olution image with an auxiliary image of higher spectral

but lower spatial resolution, also known as multi-resolution

image fusion, has been explored for many years [2]. When

considering remotely sensed images, an archetypal fusion task

is the pansharpening, which generally consists of fusing a high

spatial resolution panchromatic (PAN) image and low spatial

resolution multispectral (MS) image. Pansharpening has been

addressed in the literature for several decades and still remains

an active topic [2]–[4]. More recently, hyperspectral (HS)

imaging, which consists of acquiring a same scene in several

hundreds of contiguous spectral bands, has opened a new range

of relevant applications, such as target detection, classification

and spectral unmixing [5]. The visualization of HS images is

also interesting to be explored [6]. Naturally, to take advantage

of the newest benefits offered by HS images, the problem of

fusing HS and PAN images has been explored [7]–[9]. Capi-

talizing on decades of experience in MS pansharpening, most

of the HS pansharpening approaches merely adapt existing

algorithms for PAN and MS fusion [10], [11]. Other methods

are specifically designed to the HS pansharpening problem

(see, e.g., [8], [12], [13]). Conversely, the fusion of MS and HS
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images has been considered in fewer research works and is still

a challenging problem because of the high dimension of the

data to be processed. Indeed, the fusion of MS and HS differs

from traditional MS or HS pansharpening by the fact that

more spatial and spectral information is contained in multi-

band images. This additional information can be exploited to

obtain a high spatial and spectral resolution image. In practice,

the spectral bands of panchromatic images always cover the

visible and infra-red spectra. However, in several practical

applications, the spectrum of MS data includes additional

high-frequency spectral bands. For instance the MS data of

WorldView-31 have spectral bands in the intervals [400 ∼
1750]nm and [2145 ∼ 2365]nm whereas the PAN data are

in the range [450 ∼ 800]nm. Another interesting example is

the HS+MS suite (called hyperspectral imager suite (HISUI))

that has been developed by the Japanese ministry of economy,

trade, and industry (METI) [14]. HISUI is the Japanese next-

generation Earth-observing sensor composed of HS and MS

imagers and will be launched by the H-IIA rocket in 2015 or

later as one of mission instruments onboard JAXA’s ALOS-3

satellite. Some research activities have already been conducted

for this practical multi-band fusion problem [15]. Noticeably, a

lot of pansharpening methods, such as component substitution

[2], relative spectral contribution [16] and high-frequency

injection [17] are inapplicable or inefficient for the HS+MS

fusion problem. To address the challenge raised by the high

dimensionality of the data to be fused, innovative methods

need to be developed, which is the main objective of this paper.

As demonstrated in [18], [19], the fusion of HS and MS

images can be conveniently formulated within a Bayesian

inference framework. Bayesian fusion allows an intuitive inter-

pretation of the fusion process via the posterior distribution.

Since the fusion problem is usually ill-posed, the Bayesian

methodology offers a convenient way to regularize the prob-

lem by defining appropriate prior distribution for the scene

of interest. Following this strategy, Hardie et al. proposed

a Bayesian estimator for fusing co-registered high spatial-

resolution MS and high spectral-resolution HS images [18]. To

improve the denoising performance, Zhang et. al implemented

the estimator of [18] in the wavelet domain [19].

In this paper, a prior knowledge accounting for artificial

constraints related to the fusion problem is incorporated within

the model via the prior distribution assigned to the scene to be

estimated. Many strategies related to HS resolution enhance-

ment have been proposed to define this prior distribution. For

instance, in [3], the highly resolved image to be estimated

is a priori modeled by an in-homogeneous Gaussian Markov

1http://www.satimagingcorp.com/satellite-sensors/WorldView3-DS-WV3-
Web.pdf
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random field (IGMRF). The parameters of this IGMRF are

empirically estimated from a panchromatic image in the first

step of the analysis. In [18] and related works [20], [21], a

multivariate Gaussian distribution is proposed as prior dis-

tribution for the unobserved scene. The resulting conditional

mean and covariance matrix can then be inferred using a

standard clustering technique [18] or using a stochastic mixing

model [20], [21], incorporating spectral mixing constraints to

improve spectral accuracy in the estimated high resolution

image. In this paper, we propose to explicitly exploit the

acquisition process of the different images. More precisely,

the sensor specifications (i.e., spectral or spatial responses) are

exploited to properly design the spatial or spectral degradations

suffered by the image to be recovered [22]. Moreover, to

define the prior distribution assigned to this image, we resort

to geometrical considerations well admitted in the HS imaging

literature devoted to the linear unmixing problem [23]. In

particular, the high spatial resolution HS image to be estimated

is assumed to live in a lower dimensional subspace, which is

a suitable hypothesis when the observed scene is composed of

a finite number of macroscopic materials.

Within a Bayesian estimation framework, two statistical es-

timators are generally considered. The minimum mean square

error (MMSE) estimator is defined as the mean of the posterior

distribution. Its computation generally requires intractable

multidimensional integrations. Conversely, the maximum a

posteriori (MAP) estimator is defined as the mode of the

posterior distribution and is usually associated with a penalized

maximum likelihood approach. Mainly due to the complexity

of the integration required by the computation of the MMSE

estimator (especially in high-dimension data space), most of

the Bayesian estimators have proposed to solve the HS and

MS fusion problem using a MAP formulation [18], [19], [24].

However, optimization algorithms designed to maximize the

posterior distribution may suffer from the presence of local

extrema, that prevents any guarantee to converge towards the

actual maximum of the posterior. In this paper, we propose

to compute the MMSE estimator of the unknown scene by

using samples generated by a Markov chain Monte Carlo

(MCMC) algorithm. The posterior distribution resulting from

the proposed forward model and the a priori modeling is

defined in a high dimensional space, which makes difficult

the use of any conventional MCMC algorithm, e.g., the Gibbs

sampler or the Metropolis-Hastings sampler [25]. To overcome

this difficulty, a particular MCMC scheme, called Hamiltonian

Monte Carlo (HMC) algorithm, is derived [26], [27]. It differs

from the standard Metropolis-Hastings algorithm by exploiting

Hamiltonian evolution dynamics to propose states with higher

acceptance ratio, reducing the correlation between successive

samples. Thus, the main contributions of this paper are two-

fold. First, the paper presents a new hierarchical Bayesian

fusion model whose parameters and hyperparameters have to

be estimated from the observed images. This model is defined

by the likelihood, the priors and the hyper-priors detailed in

the following sections. Second, a hybrid Gibbs sampler based

on a Hamiltonian MCMC method is introduced to sample the

desired posterior distribution. These samples are subsequently

used to approximate the MMSE estimator of the fused image.

The paper is organized as follows. Section II formulates the

fusion problem in a Bayesian framework, with a particular

attention to the forward model that exploits physical consider-

ations. Section III derives the hierarchical Bayesian model to

obtain the joint posterior distribution of the unknown image,

its parameters and hyperparameters. In Section IV, the hybrid

Gibbs sampler based on Hamiltonian MCMC is introduced

to sample the desired posterior distribution. Simulations are

conducted in Section V and conclusions are finally reported

in Section VI.

II. PROBLEM FORMULATION

A. Notations and observation model

Let Z1, . . . ,ZP denote a set of P multi-band images

acquired by different optical sensors for a same scene X.

These measurements can be of different natures, e.g., PAN, MS

and HS, with different spatial and/or spectral resolutions. The

observed data Zp, p = 1, . . . , P , are supposed to be degraded

versions of the high-spectral and high-spatial resolution scene

X, according to the following observation model

Zp = Fp (X) +Ep. (1)

In (1), Fp (·) is a linear or nonlinear transformation that

models the degradation operated on X. As previously assumed

in numerous works (see for instance [3], [19], [24], [28],

[29] among some recent contributions), these degradations

may include spatial blurring, spatial decimation and spectral

mixing which can all be modeled by linear transformations.

In what follows, the remotely sensed images Zp and the

unobserved scene X are assumed to be pixelated images of

sizes nx,p×ny,p×nλ,p and mx×my×mλ, respectively, where

·x and ·y refer to both spatial dimensions of the images, and ·λ
is for the spectral dimension. Moreover, in the right-hand side

of (1), Ep stands for an additive error term that both reflects

the mismodeling and the observation noise.

Classically, the observed image Zp can be lexicographi-

cally ordered to build the Np × 1 vector zp, where Np =
nx,pny,pnλ,p is the total number of measurements in the

observed image Zp. For writing convenience, but without

any loss of generality, the band interleaved by pixel (BIP)

vectorization scheme (see [30, pp. 103–104] for a more de-

tailed description of these data format conventions) is adopted

in what follows (see paragraph III-B1). Considering a linear

degradation, the observation equation (1) can be easily rewrit-

ten as follows

zp = Fpx+ ep (2)

where x ∈ R
M and ep ∈ R

Np are ordered versions of

the scene X (with M = mxmymλ) and the noise term

Ep, respectively. In this work, the noise vector ep will be

assumed to be a band-dependent Gaussian sequence, i.e.,

ep ∼ N
(
0Np

,Λp

)
where 0Np

is an Np × 1 vector made

of zeros and Λp = Inx,pny,p
⊗ Sp is an Np × Np matrix

where Inx,pny,p
∈ R

nx,pny,p×nx,pny,p is the identity matrix,

⊗ is the Kronecker product and Sp ∈ R
nλ,p×nλ,p is a

diagonal matrix containing the noise variances, i.e., Sp =

diag
[
s2p,1, · · · , s

2
p,nλ,p

]
.
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In (2), Fp is an Np×M matrix that reflects the spatial and/or

spectral degradation Fp (·) operated on x. As in [18], Fp (·)
can represent a spatial decimating operation. For instance,

when applied to a single-band image (i.e., nλ,p = mλ = 1)

with a decimation factor d in both spatial dimensions, it is

easy to show that Fp is an nx,pny,p ×mxmy block diagonal

matrix with mx = dnx,p and my = dny,p [31]. Another

example of degradation frequently encountered in the signal

and image processing literature is spatial blurring [19], where

Fp (·) usually represents a 2-dimensional convolution by a

kernel κp. Similarly, when applied to a single-band image, Fp

is an nxny ×nxny Toeplitz matrix. The problem addressed in

this paper consists of recovering the high-spectral and high-

spatial resolution scene x by fusing the various spatial and/or

spectral information provided by all the observed images

z = {z1, . . . , zP }.

B. Bayesian estimation of x

In this work, we propose to estimate the unknown scene

x within a Bayesian estimation framework. In this statistical

estimation scheme, the fused highly-resolved image x is

inferred through its posterior distribution f (x|z). Given the

observed data, this target distribution can be derived from the

likelihood function f (z|x) and the prior distribution f (x) by

using the Bayes formula f (x|z) ∝ f (z|x) f (x), where ∝
means “proportional to”. Based on the posterior distribution,

several estimators of the scene x can be investigated. For

instance, maximizing f (x|z) leads to the MAP estimator

x̂MAP = argmaxx f (x|z). This estimator has been widely

exploited for HS image enhancement (see for instance [18],

[20], [21] or more recently [3], [19]). This work proposes to

focus on the first moment of the posterior distribution f (x|z),
which is known as the posterior mean estimator or the MMSE

estimator x̂MMSE. This estimator is defined as

x̂MMSE =

∫
xf (x|z) dx =

∫
xf (z|x) f (x) dx∫
f (z|x) f (x) dx

. (3)

In order to compute (3), we propose a flexible and relevant

statistical model to solve the fusion problem. Deriving the

corresponding Bayesian estimators x̂MMSE defined in (3),

requires the definition of the likelihood function f (z|x) and

the prior distribution f (x). These quantities are detailed in

the next section. To facilitate reading, notations have been

summarized in Table I.

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood function

The statistical properties of the noise vectors ep (p =
1, . . . , P ) allow one to state that the observed vector zp is

normally distributed with mean vector Fpx and covariance

matrix Λp. Consequently, the likelihood function, that repre-

sents a data fitting term relative to the observed vector zp, can

be easily derived leading to

f (zp|x,Λp) = (2π)
−

Np
2 |Λp|

−
nx,pny,p

2

× exp

(
−
1

2
(zp − Fpx)

T
Λ

−1
p (zp − Fpx)

)

TABLE I
NOTATIONS

Notation Definition Size

X unobserved scene/target image mx ×my ×mλ

x vectorization of X mxmymλ × 1

xi ith spectral vector of x mλ × 1

u vectorized image in subspace mxmym̃λ × 1

ui ith spectral vector of u m̃λ × 1

µ̄
u

prior mean of u mxmym̃λ × 1

Σ̄u prior covariance of u mxmym̃λ ×mxmym̃λ

µ
ui

prior mean of ui m̃λ × 1

Σui prior covariance of ui m̃λ × m̃λ

P number of multi-band images 1

Zp pth remotely sensed images nx,p × ny,p × nλ,p

zp vectorization of Zp nx,pny,pnλ,p × 1

z set of P observation zp nx,pny,pnλ,pP × 1

where |Λp| is the determinant of the matrix Λp. As mentioned

in the previous section, the collected measurements z may

have been acquired by different (possibly heterogeneous)

sensors. Therefore, the observed vectors z1, . . . , zP can be

generally assumed to be independent, conditionally upon the

unobserved scene x and the noise covariances Λ1, . . . ,Λp. As

a consequence, the joint likelihood function of the observed

data is
f (z|x,Λ) =

P∏

p=1

f (zp|x,Λp) (4)

with Λ = (Λ1, . . . ,ΛP )
T

.

B. Prior distributions

The unknown parameters are the scene x to be recovered

and the noise covariance matrix Λ relative to each observation.

In this section, prior distributions are introduced for these

parameters.

1) Scene prior: Following a BIP strategy, the vectorized

image x can be decomposed as x =
[
xT
1 ,x

T
2 , · · · ,x

T
mxmy

]T
,

where xi = [xi,1, xi,2, · · · , xi,mλ
]
T

is the mλ × 1 vector cor-

responding to the ith spatial location (with i = 1, · · · ,mxmy).

Since adjacent HS bands are known to be highly correlated,

the HS vector xi usually lives in a subspace whose dimension

is much smaller than the number of bands mλ [32], i.e.,

xi = V
Tui (5)

where ui is the projection of the vector xi onto the subspace

spanned by the columns of V
T ∈ R

mλ×m̃λ . Note that

V
T is possibly known a priori from the scene or can be

learned from the HS data. In the proposed framework, we

exploit the dimensionality reduction (DR) as prior information

instead of reducing the dimensionality of HS data directly.

Another motivation for DR is that the dimension of the

subspace m̃λ is generally much smaller than the number

of bands, i.e., m̃λ ≪ mλ. As a consequence, inferring

in the subspace R
m̃λ×1 greatly decreases the computational

burden of the fusion algorithm. Note that the DR technique

defined by (5) has been used in some related HS analysis
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references, e.g., [23], [32]. More experimental justifications for

the necessity of DR can be found in [33]. Using the notation

u =
[
uT
1 ,u

T
2 , · · · ,u

T
mxmy

]T
, we have u = Vx, where V is

an M̃×M block-diagonal matrix whose blocks are equal to V

and M̃ = mxmym̃λ. Instead of assigning a prior distribution

to the vectors xi, we propose to define a prior for the projected

vectors ui (i = 1, · · · ,mxmy)

ui|µui
,Σui

∼ N
(
µ

ui
,Σui

)
. (6)

As ui is a linear transformation of xi, the Gaussian prior

assigned to ui leads to a Gaussian prior for xi, which allows

the ill-posed problem (2) to be regularized. The covariance

matrix Σui
is designed to explore the correlations between

the different spectral bands after projection in the subspace of

interest. Also, the mean µ̄
u

of the whole image u as well as

its covariance matrix Σ̄u can be constructed from µ
ui

and

Σui
as follows

µ̄
u
=
[
µT

u1
, · · · ,µT

umxmy

]T

Σ̄u = diag
[
Σu1

, · · · ,Σumxmy

]
.

The Gaussian prior assigned to u implies that the target image

u is a priori not too far from the mean vector µ̄
u

, whereas

the covariance matrix Σ̄u tells us how much confidence we

have for the prior (the choice of the hyperparameters µ̄
u

and Σ̄u will be discussed later in Section III-C). Choosing

a Gaussian prior for the vectors ui is also motivated by the

fact that this kind of prior has been used successfully in several

works related to the fusion of multiple degraded images,

including [20], [34], [35]. Note finally that the Gaussian prior

has the interest of being a conjugate distribution relative to

the statistical model (4). As it will be shown in Section IV,

coupling this Gaussian prior distribution with the Gaussian

likelihood function leads to simpler estimators constructed

from the posterior distribution f (u|z).

2) Noise variance priors: Inverse-gamma distributions are

chosen as prior distributions for the noise variances s2p,i (i =
1, . . . , nλ,p, p = 1, . . . , P )

s2p,i|ν, γ ∼ IG
(ν
2
,
γ

2

)
. (7)

The inverse-gamma distribution is a very flexible distribu-

tion whose shape can be adjusted by its two parameters. For

simplicity, we propose to fix the hyperparameter ν whereas

the hyperparameter γ will be estimated from the data. This

strategy is very classical for scale parameters (e.g., see [36]).

Note that the inverse-gamma distribution (7) is conjugate

for the statistical model (4), which will allow closed-form

expressions to be obtained for the conditional distributions

f
(
s2p,i|z

)
of the noise variances. By assuming the variances

s2 =
{
s2p,i
}
(∀p, i) are a priori independent, the joint prior

distribution of the noise variance vector s2 is

f
(
s2|ν, γ

)
=

P∏

p=1

nλ,p∏

i=1

f
(
s2p,i|ν, γ

)
. (8)

C. Hyperparameter priors

The hyperparameter vector associated with the parameter

priors defined above includes µ̄
u

, Σ̄u and γ. The quality of

the fusion algorithm investigated in this paper depends on

the values of the hyperparameters that need to be adjusted

carefully. Instead of fixing all these hyperparameters a priori,

we propose to estimate some of them from the data using a

hierarchical Bayesian algorithm [37, Chap. 8]. Specifically, we

propose to fix µ̄
u

as the interpolated HS image in the subspace

of interest following the strategy in [18]. Similarly, to reduce

the number of statistical parameters to be estimated, all the

covariance matrices are assumed to equal, i.e., Σui
= Σu

(for i = 1, · · · ,mxmy). Thus, the hyperparameter vector to

be estimated jointly with the parameters of interest is Φ =
{Σu, γ}. The prior distributions for these two hyperparameters

are defined below.

1) Hyperparameter Σu: Assigning a conjugate a priori

inverse-Wishart distribution to the covariance matrix of a

Gaussian vector has provided interesting results in the signal

and image processing literature [38]. Following these works,

we have chosen the following prior for Σu

Σu ∼ W−1(Ψ, η) (9)

whose density is

f(Σu|Ψ, η) =
|Ψ|

η
2

2
ηm̃λ

2 Γm̃λ
(η2 )

|Σu|
−

η+m̃λ+1

2 e−
1
2
tr(ΨΣ

−1
u

).

Again, the hyper-hyperparameters Ψ and η will be fixed to

provide a non-informative prior.

2) Hyperparameter γ: To reflect the absence of prior

knowledge regarding the mean noise level, a non-informative

Jeffreys prior is assigned to the hyperparameter γ

f (γ) ∝
1

γ
1R+ (γ) (10)

where 1R+ (·) is the indicator function defined on R+

1R+ (u) =

{
1, if u ∈ R+,

0, otherwise.

The use of the improper distribution (10) is classical and

can be justified by different means (e.g., see [37, Chap. 1]),

providing that the corresponding full posterior distribution is

statistically well defined, which is the case for the proposed

fusion model.

D. Inferring the highly-resolved HS image from the posterior

distribution of its projection u

Following the parametrization in the prior model (5), the

unknown parameter vector θ =
{
u, s2

}
is composed of the

projected scene u and the noise variance vector s2. The joint

posterior distribution of the unknown parameters and hyperpa-

rameters can be computed following the hierarchical structure

f (θ,Φ|z) ∝ f (z|θ) f (θ|Φ) f (Φ). By assuming prior in-

dependence between the hyperparameters Σu and γ and the

parameters u and s2 conditionally upon (Σu, γ), the following

results can be obtained f (θ|Φ) = f (u|Σu) f
(
s2|γ

)
and
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f (Φ) = f (Σu) f (γ). Note that f (z|θ), f (u|Σu) and

f
(
s2|γ

)
have been defined in (4), (6) and (8).

The posterior distribution of the projected target image u,

required to compute the Bayesian estimators (3), is obtained by

marginalizing out the hyperparameter vector Φ and the noise

variances s2 from the joint posterior distribution f (θ,Φ|z)

f (u|z) ∝

∫
f (θ,Φ|z) dΦds21,1, . . . , ds

2
P,nλ,P

. (11)

The posterior distribution (11) is too complex to obtain closed-

form expressions of the MMSE and MAP estimators ûMMSE

and ûMAP. As an alternative, this paper proposes to use an

MCMC algorithm to generate a collection of NMC samples

U =
{
ũ
(1), . . . , ũ(NMC)

}
that are asymptotically distributed

according to the posterior of interest f (u|z). These samples

will be used to compute the Bayesian estimators of u. More

precisely, the MMSE estimator of u will be approximated by

an empirical average of the generated samples

ûMMSE ≈
1

NMC −Nbi

NMC∑

t=Nbi+1

ũ
(t) (12)

where Nbi is the number of burn-in iterations. Once the MMSE

estimate ûMMSE has been computed, the highly-resolved HS

image can be computed as x̂MMSE = V
T
ûMMSE. Sam-

pling directly according to the marginal posterior distribution

f (u|z) is not straightforward. Instead, we propose to sample

according to the joint posterior f
(
u, s2,Σu|z

)
(hyperparam-

eter γ has been marginalized) by using a Metropolis-within-

Gibbs sampler, which can be easily implemented since all

the conditional distributions associated with f
(
u, s2,Σu|z

)

are relatively simple. The resulting hybrid Gibbs sampler is

detailed in the following section.

IV. HYBRID GIBBS SAMPLER

The Gibbs sampler has received a considerable attention

in the statistical community to solve Bayesian estimation

problems [25]. The interesting property of this Monte Carlo

algorithm is that it only requires to determine the conditional

distributions associated with the distribution of interest. These

conditional distributions are generally easier to simulate than

the joint target distribution. The block Gibbs sampler that we

use to sample according to f
(
u, s2,Σu|z

)
is defined by a

3-step procedure reported in Algorithm 1. The distribution

involved in this algorithm are detailed below.

A. Sampling Σu according to f
(
Σu|u, s

2, z
)

Standard computations yield the following inverse-Wishart

distribution as conditional distribution for the covariance ma-

trix Σu of the scene to be recovered

Σu|u, s
2, z ∼

W−1

(
Ψ+

mxmy∑

i=1

(ui − µ
ui
)T (ui − µ

ui
),mxmy + η

)
.

(13)

ALGORITHM 1:

Hybrid Gibbs sampler

for t = 1 to NMC do
% Sampling the image variances - see paragraph IV-A

Sample Σ̃
(t)
u

according to the conditional distribution (13)
% Sampling the high-resolved image - see paragraph IV-B

Sample ũ
(t) using an HMC algorithm detailed in Algorithm 2

% Sampling the noise variances - see paragraph IV-C

for p = 1 to P do
for i = 1 to nλ,p do

Sample s̃
2(t)
p,i from the conditional distribution (18)

end for
end for

end for

B. Sampling u according to f
(
u|Σu, s

2, z
)

Choosing the conjugate distribution (6) as prior distribution

for the projected unknown image u leads to the following

conditional posterior distribution for u

u|Σu, s
2, z ∼ N

(
µ

u|z,Σu|z

)
(14)

with

Σu|z =
[
Σ̄

−1
u

+
∑P

p=1 VF
T
p Λ

−1
p FpV

T
]−1

µ
u|z = Σu|z

[∑P
p=1 VF

T
p Λ

−1
p zp + Σ̄

−1
u

µ̄
u

]
.

Sampling directly according to this multivariate Gaussian

distribution requires the inversion of an M̃×M̃ matrix, which

is impossible in most fusion problems. An alternative would

consist of sampling each element ui (i = 1, . . . , M̃ ) of u con-

ditionally upon the others according to f
(
ui|u−i, s

2,Σu, z
)
,

where u−i is the vector u whose ith component has been

removed. However, this alternative would require to sample u

by using M̃ Gibbs moves, which is time demanding and leads

to poor mixing properties.

The efficient strategy adopted in this work relies on a

particular MCMC method, called Hamiltonian Monte Carlo

(HMC) method (sometimes referred to as hybrid Monte Carlo

method), which is considered to generate vectors u directly.

More precisely, we consider the HMC algorithm initially

proposed by Duane et al. for simulating the lattice field theory

in [26]. As detailed in [39], this technique allows mixing

property of the sampler to be improved, especially in a high-

dimensional problem. It exploits the gradient of the distri-

bution to be sampled by introducing auxiliary “momentum”

variables m ∈ R
M̃ . The joint distribution of the unknown

parameter vector u and the momentum is defined as

f
(
u,m|s2,Σu, z

)
= f

(
u|s2,Σu, z

)
f (m)

where f (m) is the normal probability density function (pdf)

with zero mean and identity covariance matrix. The Hamilto-

nian of the considered system is defined by taking the negative

logarithm of the posterior distribution f
(
u,m|s2,µ

u
,Σu, z

)
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to be sampled, i.e.,

H (u,m) = − log f
(
u,m|s2,µ

u
,Σu, z

)

= U (u) +K (m)
(15)

where U (u) is the potential energy function defined by

the negative logarithm of f
(
u|s2,Σu, z

)
and K (m) is the

corresponding kinetic energy

U (u) = − log f
(
u|s2,Σu, z

)

K (m) = 1
2m

T
m.

(16)

The parameter space where (u,m) lives is explored following

the scheme detailed in Algo 2. At iteration t of the Gibbs

sampler, a so-called leap-frogging procedure composed of

Nleapfrog iterations is achieved to propose a move from the

current state
{
ũ
(t), m̃(t)

}
to the state

{
ũ
(⋆), m̃(⋆)

}
with step

size ε. This move is operated in RM̃ × RM̃ in a direction

given by the gradient of the energy function

∇uU (u) = −
P∑

p=1

VF
T
p Λ

−1
p

(
zp − FpV

T
u
)
+Σ

−1
u

(u− µ̄
u
).

Then, the new state is accepted with probability ρt =
min {1, At} where

At =
f
(
ũ
(⋆), m̃(⋆)|s2,Σu, z

)

f
(
ũ(t), m̃(t)|s2,Σu, z

)

= exp
[
H
(
ũ
(t), m̃(t)

)
−H

(
ũ
(⋆), m̃(⋆)

)]
.

ALGORITHM 2:

Hybrid Monte Carlo algorithm

% Momentum initialization

Sample m̃
(⋆)
∼ N

(
0
M̃
, I

M̃

)

Set m̃(t)
← m̃

(⋆)

% Leapfrogging

for j = 1 to NL do

Set m̃(⋆)
← m̃

(⋆)
− ε

2
∇uU

(
ũ
(⋆)

)

Set ũ(⋆)
← ũ

(⋆) + εm̃(⋆)

Set m̃(⋆)
← m̃

(⋆)
− ε

2
∇uU

(
ũ
(⋆)

)

end for
% Accept/reject procedure, See (IV-B)

Sample w ∼ U ([0, 1])
if w < ρt then

ũ
(t+1)

← ũ
(⋆)

else
ũ
(t+1)

← ũ
(t)

end if
Set x̃(t+1) = V

T
ũ
(t+1)

Run Algorithm 3 to update stepsize

This accept/reject procedure ensures that the simulated

vectors (ũ(t), m̃(t)) are asymptotically distributed according

to the distribution of interest. The way the parameters ε and

NL have been adjusted will be detailed in Section V.

To sample according to a high-dimension Gaussian distri-

bution such as f
(
u|Σu, s

2, z
)
, one might think of using other

simulation techniques such as the method proposed in [40] to

solve super resolution problems. Similarly, Orieux et al. have

proposed a perturbation approach to sample high-dimensional

Gaussian distributions for general linear inverse problems [41].

However, these techniques rely on additional optimization

schemes included within the Monte Carlo algorithm, which

implies that the generated samples are only approximately

distributed according to the target distribution. Conversely,

the HMC strategy proposed here ensures asymptotic conver-

gence of the generated samples to the posterior distribution.

Moreover, the HMC method is very flexible and can be

easily extended to handle non-Gaussian posterior distributions

contrary to the methods investigated in [40], [41].

C. Sampling s2 according to f
(
s2|u,Σu, z

)

The conditional pdf of the noise variance s2p,i (i =
1, . . . , nλ,p, p = 1, . . . , P ) is

f
(
s2p,i|u,Σu, z

)
∝

(
1

s2p,i

)nx,pny,p
2

+1

exp

(
−

∥∥(zp − FpV
T
u)i
∥∥2

2s2p,i

)
(17)

where (zp − FpV
T
u)i contains the elements of the ith

band. Generating samples s2p,i distributed according to

f
(
s2p,i|u,Σu, z

)
is classically achieved by drawing samples

from the following inverse-gamma distribution

s2p,i|u, z ∼ IG

(
nx,pny,p

2
,

∥∥(zp − FpV
T
u)i
∥∥2

2

)
. (18)

In practice, if the noise variances are known a priori, we

simply assign the noise variances to be known values and

remove the sampling of the noise variances.

D. Complexity Analysis

The MCMC method can be computationally costly com-

pared with optimization methods. The complexity of the

proposed Gibbs sampler is mainly due to the Hamiltonian

Monte Carlo method. The complexity of the Hamiltonian

MCMC method is O((m̃λ)
3) + O((m̃λmxmy)

2), which is

highly expensive as mλ increases. Generally the number of

pixels mxmy cannot be reduced significantly. Thus, projecting

the high-dimensional mλ×1 vectors to a low-dimension space

to form m̃λ×1 vectors decreases the complexity while keeping

most important information.

V. SIMULATION RESULTS

This section studies the performance of the proposed

Bayesian fusion algorithm. The reference image, considered

here as the high spatial and high spectral image, is an hyper-

spectral image acquired over Moffett field, CA, in 1994 by

the JPL/NASA airborne visible/infrared imaging spectrometer

(AVIRIS)2. This image was initially composed of 224 bands

that have been reduced to 177 bands (mλ = nλ,1 = 177) after

removing the water vapor absorption bands.

2http://aviris.jpl.nasa.gov/
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A. Fusion of HS and MS images

We propose to reconstruct the reference HS image from two

lower resolved images. First, a high-spectral low-spatial reso-

lution image z1, denoted as HS image, has been generated by

applying a 5×5 averaging filter on each band of the reference

image. Besides, an MS image z2 is obtained by successively

averaging the adjacent bands according to realistic spectral

responses. More precisely, the reference image is filtered using

the LANDSAT-like spectral responses depicted in the top of

Fig. 1, to obtain a 7-band (nλ,2 = 7) MS image3. Note

here that the observation models F1 and F2 corresponding

to the HS and MS images are perfectly known. In addition

to the blurring and spectral mixing, the HS and MS images

have been both contaminated by zero-mean additive Gaussian

noise. The noise power s2p,i depends on the signal to noise

ratio SNRp,i (i = 1, · · · , nλ,p, p = 1, 2) defined by SNRp,i =

10 log10

(
‖(Fpx)i‖

2
F

nx,pny,ps
2
p,i

)
, where ‖.‖F is the Frobenius norm.

Our simulations have been conducted with SNR1,· = 35dB

for the first 127 bands and SNR1,· = 30dB for the remaining

50 bands of the HS image. For the MS image, SNR2,· is 30dB

for all bands. A composite color image, formed by selecting

the red, green and blue bands of the high-spatial resolution

HS image (the reference image) is shown in the right bottom

of Fig. 2. The noise-contaminated HS and MS images are

depicted in the top left and top right of Fig. 2.
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Fig. 1. LANDSAT spectral responses. (Top) without noise. (Bottom) with an
additive Gaussian noise with FSNR = 8dB.

1) Subspace learning: Learning the matrix V in (5) is a

preprocessing step, which can be solved by different strategies.

A lot of DR methods might be exploited, such as locally

linear embedding (LLE) [42], independent component analysis

(ICA) [43], hyperspectral signal subspace identification by

minimum error (HySime) [32], minimum change rate devia-

tion (MCRD) [44] and so on. In this work, we propose to use

the principal component analysis (PCA), which is a classical

DR technique used in HS imagery. It maps the original data

into a lower dimensional subspace while preserving most

information about the original data. Note that the bases of

this subspace are the columns of the transformation matrix

V
T , which are exactly the same for all pixels (or spectral

vectors). As in paragraph III-B1, the vectorized HS image z1

can be written as z1 =
[
zT
1,1, z

T
1,2, · · · , z

T
1,nx,1ny,1

]T
, where

3Complementary results obtained on another dataset with an alternative
multispectral sensor are available in [33].

Fig. 2. AVIRIS dataset: (Top left) HS Image. (Top right) MS Image. (Middle
left) MAP [18]. (Middle right) Wavelet MAP [19]. (Bottom left) Hamiltonian
MCMC. (Bottom right) Reference.

z1,i =
[
z1,i,1, z1,i,2, · · · , z1,i,nλ,1

]T
. The sample covariance

matrix of the HS image z1 is diagonalized leading to

W
T
ΥW = D (19)

where W is an mλ ×mλ orthogonal matrix (WT = W
−1)

and D is a diagonal matrix whose diagonal elements are the

ordered eigenvalues of Υ denoted as d1 ≥ d2 ≥ ... ≥ dmλ
.

The dimension of the projection subspace m̃λ is defined as the

minimum integer satisfying the condition
∑m̃λ

i=1 di/
∑mλ

i=1 di ≥
0.99. The matrix V is then constructed as the eigenvectors

associated with the m̃λ largest eigenvalues of Υ. As an

illustration, the eigenvalues of the sample covariance matrix

Υ for the Moffett field image are displayed in Fig. 3. For this

example, the m̃λ = 10 eigenvectors contain 99.93% of the

information. To conclude this part, we invite the readers to

consult the technical report [33] containing additional results

obtained for this image with and without PCA (illustrating the

importance of DR).
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Fig. 3. Eigenvalues of Υ for the HS image.

2) Hyper-hyperparameter selection: In our experiments,

fixed hyper-hyperparameters have been chosen as follows:

Ψ = Im̃λ
, η = m̃λ + 3. These choices can be motivated by

the following arguments

• The identity matrix assigned to Ψ ensures a non-

informative prior.

• Setting the inverse gamma parameters to η = m̃λ + 3
also leads to a non-informative prior [36].

• The parameter ν disappears when the joint posterior is

integrated out with respect to parameter γ.
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B. Stepsize and Leapfrog Steps

The performance of the HMC method is mainly governed

by the stepsize ε and the number of leapfrog steps NL.

As pointed out in [27], a too large stepsize will result in

a very low acceptance rate and a too small stepsize yields

high computational complexity. In order to adjust the stepsize

parameter ε, we propose to monitor the statistical acceptance

ratio ρ̂t defined as ρ̂t = Na,t

NW
where NW is the length of the

counting window (in our experiment, the counting window

at time t contains the vectors x̃
(t−NW+1), x̃(t−NW), · · · , x̃(t)

with NW = 50) and Na,t is the number of accepted samples

in this window at time t. As explained in [45], the adaptive

tuning should adapt less and less as the algorithm proceeds

to guarantee that the generated samples form a stationary

Markov chain. In the proposed implementation, the parameter

ε is adjusted as in Algorithm 3. The thresholds have been

fixed to (αd, αu) = (0.3, 0.9) and the scale parameters are

(βd, βu) = (1.1, 0.9) (these parameters were adjusted by

cross-validation). Note that the initial value of ε should not be

too large to ‘blow up’ the leapfrog trajectory [27]. Generally,

the stepsize converges after some iterations of Algorithm 3.

ALGORITHM 3:

Adjusting Stepsize

Update ρ̂t with Na,t : ρ̂t =
Na,t

NW

% Burn-in (t ≤ NMC):

if ρ̂t > αu then
Set ε = βuε

else if ρ̂t < αd then
Set ε = βdε

end if
% After Burn in (t > NMC):

if ρ̂t > αu then
Set ε = [1− (1− βu)exp(−0.01× (t−Nbi))]ε,

else if ρ̂t < αd then
Set ε = [1− (1− βd)exp(−0.01× (t−Nbi))]ε,

end if
(t = Nbi + 1, · · · , NMC)

Regarding the number of leapfrogs, setting the trajectory

length NL by trial and error is necessary [27]. To avoid the

potential resonance, NL is randomly chosen from a uniform

distribution from Nmin to Nmax. After some preliminary runs

and tests, Nmin = 50 and Nmax = 55 have been selected.

C. Evaluation of the Fusion Quality

To evaluate the quality of the proposed fusion strategy,

different image quality measures can be investigated. Referring

to [19], we propose to use RSNR, SAM, UIQI, ERGAS and

DD as defined below. These measures have been widely used

in the HS image processing community and are appropriate

for evaluating the quality of the fusion in terms of spectral

and spatial resolutions [18], [46], [47].

a) RSNR: The reconstruction SNR (RSNR) is related

to the difference between the actual and fused images

RSNR(x, x̂) = 10 log10

(
‖x‖2

‖x−x̂‖2
2

)
. The larger RSNR, the

better the fusion quality and vice versa.

b) SAM: The spectral angle mapper (SAM) measures the

spectral distortion between the actual and estimated images.

The SAM of two spectral vectors xn and x̂n is defined as

SAM(xn, x̂n) = arccos
(

〈xn,x̂n〉
‖xn‖2‖x̂n‖2

)
. The average SAM is

finally obtained by averaging the SAMs of all image pixels.

Note that SAM value is expressed in radians and thus belongs

to [−π
2 ,

π
2 ]. The smaller the absolute value of SAM, the less

important the spectral distortion.

c) UIQI: The universal image quality index (UIQI) was

proposed in [48] for evaluating the similarity between two

single band images. It is related to the correlation, luminance

distortion and contrast distortion of the estimated image to

the reference image. The UIQI between a = [a1, a2, · · · , aN ]
and â = [â1, â2, · · · , âN ] is defined as UIQI(a, â) =

4σ2
aâµaµâ

(σ2
a+σ2

â
)(µ2

a+µ2
â
)
, where

(
µa, µâ, σ

2
a, σ

2
â

)
are the sample means

and variances of a and â, and σ2
aâ is the sample covariance of

(a, â). The range of UIQI is [−1, 1] and UIQI= 1 when a = â.

For multi-band image, the UIQI is obtained band-by-band and

averaged over all bands.

d) ERGAS: The relative dimensionless global error in

synthesis (ERGAS) calculates the amount of spectral distortion

in the image [49]. This measure of fusion quality is defined

as ERGAS = 100× 1
d2

√
1

mλ

∑mλ

i=1

(
RMSE(i)

µi

)
, where 1/d2 is

the ratio between the pixel sizes of the MS and HS images,

µi is the mean of the ith band of the HS image, and mλ is

the number of HS bands. The smaller ERGAS, the smaller the

spectral distortion.

e) DD: The degree of distortion (DD) between two

images X and X̂ is defined as DD(X, X̂) = 1
M
‖vec(X) −

vec(X̂)‖1. The smaller DD, the better the fusion.

D. Comparison with other Bayesian models

The Bayesian model proposed here differs from previous

Bayesian models [18], [19] in three-fold. First, in addition to

the target image x, the hierarchical Bayesian model allows the

distributions of the noise variances s2 and the hyperparameter

Σu to be inferred. The hierarchical inference structure makes

this Bayesian model more general and flexible. Second, the

covariance matrix Σu is assumed to be block diagonal, which

allows us to exploit the correlations between spectral bands.

Third, the proposed method takes advantage of the relation

between the MS image and the target image by introducing

a forward model F2. This paragraph compares the proposed

Bayesian fusion method with the two state-of-the-art fusion

algorithms of [18] [19] for HS+MS fusion. The MMSE

estimator of the image using the proposed Bayesian method is

obtained from (12). In this simulation, NMC = 500 and Nbi =
500. The fusion results obtained with different algorithms

are depicted in Fig. 2. Graphically, the proposed algorithm

performs competitively with the state-of-the-art methods. This

result is confirmed quantitatively in Table II which shows the

RSNR, UIQI, SAM, ERGAS and DD for the three methods.

Note that the HMC method provides slightly better results in

terms of image restoration than the other methods. However,

the proposed method allows the image covariance matrix and

the noise variances to be estimated. The samples generated by
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the MCMC method can also be used to compute confidence

intervals for the estimators (e.g., see error bars in Fig. 4).

TABLE II
PERFORMANCE OF HS+MS FUSION METHODS IN TERMS OF: RSNR (DB),

UIQI, SAM (DEG), ERGAS AND DD(×10
−2) (AVIRIS DATASET).

Methods RSNR UIQI SAM ERGAS DD Time(s)

MAP 23.33 0.9913 5.05 4.21 4.87 1.6

Wavelet 25.53 0.9956 3.98 3.95 3.89 31

Proposed 26.74 0.9966 3.40 3.77 3.33 530

E. Estimation of the noise variances

The proposed Bayesian method allows noise variances s2p,i
(i = 1, · · · , nλ,p, p = 1, · · · , P ) to be estimated from the

samples generated by the Gibbs sampler. The MMSE estima-

tors of s21,(·) and s22,(·) are illustrated in Fig. 4. Graphically,

the estimations can track the variations of the noise powers

within tolerable discrepancy.

20 40 60 80 100 120 140 160
10

−4

10
−3

10
−2

HS bands

N
oi

se
 V

ar
ia

nc
es

 

 

Estimation
Actual

1 2 3 4 5 6 7
10

−4

10
−3

10
−2

MS bands

N
oi

se
 V

ar
ia

nc
es

 

 

Estimation
Actual

Fig. 4. Noise variances and their MMSE estimates. (Top) HS image. (Bottom)
MS image.

F. Robustness with respect to the knowledge of F2

The sampling algorithm summarized in Algorithm 2 re-

quires the knowledge of the spectral response F2. However,

this knowledge can be partially known in some practical ap-

plications. As the spectral response is the same for each vector

xi (i = 1, · · · ,mxmy), F2 is a block diagonal matrix whose

blocks are f2 of size nλ,2 ×mλ, i.e., F2 = diag[f2, · · · , f2].
This paragraph is devoted to testing the robustness of the

proposed algorithm to the imperfect knowledge of f2. In

order to analyze this robustness, a zero-mean white Gaussian

error has been added to any non-zero component of f2 as

shown in the bottom of Fig. 1. Of course, the level of

uncertainty regarding f2 is controlled by the variance of the

error denoted as σ2
2 . The corresponding FSNR is defined as

FSNR = 10 log10

(
‖f2‖

2
F

mλnλ,2s
2
2

)
to adjust the knowledge of

f2.The larger FSNR, the more knowledge we have about

f2. The RSNRs between the reference and estimated images

are displayed in Fig. 5 as a function of FSNR. Obviously,

the performance of the proposed Bayesian fusion algorithm

decreases as the uncertainty about f2 increases. However,

as long as the FSNR is above 8dB, the performance of the
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Fig. 5. Reconstruction errors of the different fusion methods versus FSNR.

proposed method always outperforms the MAP and wavelet-

based MAP methods. Thus, the proposed method is quite

robust with respect to the imperfect knowledge of f2.

G. Application to pansharpening

The proposed algorithm can also be used for pansharpening,

which is an important and popular application in the area of re-

mote sensing. In this section, we focus on fusing panchromatic

and hyperspectral images (HS+PAN), which is the extension of

conventional pansharpening (MS+PAN). The reference image

considered in this section (the high spatial and high spectral

image) is a 128 × 64 × 93 HS image with very high spatial

resolution of 1.3 m/pixel) acquired by the Reflective Optics

System Imaging Spectrometer (ROSIS) optical sensor over the

urban area of the University of Pavia, Italy. The flight was

operated by the Deutsches Zentrum für Luft- und Raumfahrt

(DLR, the German Aerospace Agency) in the framework of

the HySens project, managed and sponsored by the European

Union. This image was initially composed of 115 bands that

have been reduced to 93 bands after removing the water vapor

absorption bands (with spectral range from 0.43 to 0.86 µm).

This image has received a lot of attention in the remote

sensing literature [50]. The HS blurring kernel is the same

as in paragraph V-A whereas the PAN image was obtained by

averaging all the high resolution HS bands. The SNR of the

PAN image is 30dB. Apart from [18], [19], we also compare

the results with the method of [51], which proposes a popular

pansharpening method. The results are displayed in Fig. 6 and

the quantitative results are reported in Table III. The proposed

Bayesian method still provides interesting results.

TABLE III
PERFORMANCE OF HS+PAN FUSION METHODS IN TERMS OF: RSNR

(DB), UIQI, SAM (DEG), ERGAS AND DD(×10
−2) (ROSIS DATASET).

Methods RSNR UIQI SAM ERGAS DD Time(s)

AIHS [51] 16.69 0.9176 7.23 4.24 9.99 7.7

MAP [18] 17.54 0.9177 6.55 3.78 8.78 1.4

Wavelet [19] 18.03 0.9302 6.08 3.57 8.33 26

Proposed 18.23 0.9341 6.05 3.49 8.20 387

VI. CONCLUSIONS

This paper proposed a hierarchical Bayesian model to

fuse multiple multi-band images with various spectral and

spatial resolutions. The image to be recovered was assumed

to be degraded according to physical transformations included

within a forward model. An appropriate prior distribution,

that exploited geometrical concepts encountered in spectral
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Fig. 6. ROSIS dataset: (Top left) Reference. (Top right) PAN Image. (Middle
left) Adaptive IHS [51]. (Middle right) MAP [18]. (Bottom left) Wavelet MAP
[19]. (Bottom right) Hamiltonian MCMC.

unmixing problems was proposed. The resulting posterior

distribution was efficiently sampled thanks to a Hamiltonian

Monte Carlo algorithm. Simulations conducted on pseudo-real

data showed that the proposed method competed with the

state-of-the-art techniques to fuse MS and HS images. These

experiments also illustrated the robustness of the proposed

method with respect to the misspecification of the forward

model. Future work includes the estimation of the parameters

involved in the forward model (e.g., the spatial and spectral

responses of the sensors) to obtain a fully unsupervised fusion

algorithm. The incorporation of spectral mixing constraints for

a possible improved spectral accuracy and the generalization

to nonlinear degradations would also deserve some attention.

Finally, a comparison with very recent fusion methods [47],

[52] would be clearly interesting.
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