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SUMMARY

Starting with a carefully formulated Dirichlet process (DP) mixture model, we derive

a generalized product partition model (GPPM) in which the partition process is predictor-

dependent. The GPPM generalizes DP clustering to relax the exchangeability assumption

through the incorporation of predictors, resulting in a generalized Pólya urn scheme. In

addition, the GPPM can be used for formulating flexible semiparametric Bayes models for

conditional distribution estimation, bypassing the need for expensive computation of large

numbers of unknowns characterizing priors for dependent collections of random probability

measures. Properties are discussed, a variety of special cases are considered, and an effi-

cient Gibbs sampling algorithm is developed for posterior computation. The methods are

illustrated using simulation examples and an epidemiologic application.

Some key words: Clustering; Conditional distribution estimation; Dirichlet process; Gener-

alized Pólya urn; Latent class model; Mixture of experts; Nonparametric Bayes; Product

partition.
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1. INTRODUCTION

With the increasing need for flexible tools for clustering, density estimation, dimensionality

reduction and discovery of latent structure in high dimensional data, mixture models are

now used routinely in a wide variety of application areas ranging from genomics to machine

learning. Much of this work has focused on finite mixture models of the form:

f(y) =
k∑

h=1

πh fh(y | θh), (1)

where k is the number of mixture components, πh is the probability weight assigned to

component h, and fh(· | θh) is a distribution in a parametric family characterized by the

finite-dimensional θh, for h = 1, . . . , k. For a review of the use of (1) in clustering and

density estimation, refer to Fraley and Raftery (2002).

In order to generalize (1) to incorporate predictors, one can model predictor dependence

in π = (π1, . . . , πk)
′ and/or fh(θh), h = 1, . . . , k, as follows:

f(y |x) =
k∑

h=1

πh(x) fh(y | θh, x). (2)

For example, hierarchical mixtures-of-experts models (Jordan and Jacobs, 1994) characterize

πh(x) using a probabilistic decision tree, while letting fh(y | θh) = N(y; x′βh, τ
−1
h ) correspond

to the conditional density for a normal linear model. The term “expert” corresponds to the

choice of fh(y | θh, x), as different experts in a field may have different parametric models

for the conditional distribution. A number of authors have considered alternative choices

of regression models for the weights and experts (e.g., Jiang and Tanner, 1999). For recent

articles, refer to Carvalho and Tanner (2005) and Ge and Jiang (2006).

In this article, our goal is to develop a flexible semiparametric Bayes framework for

predictor-dependent clustering and conditional distribution modeling. Potentially, we could

simply rely on (2), as predictor-dependent clustering will naturally arise through the allo-

cation of subjects sampled from (2) to experts. However, a concern is the sensitivity to the
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choice of the number of experts, k. A common strategy is to fit mixture models having

different numbers of components, with the AIC or BIC used to select the model with the

best fit penalized for model complexity. Unfortunately, these criteria are not appropriate for

mixture models and other hierarchical models in which the number of parameters is unclear.

For this reason, there has been recent interest in defining new model selection criteria that

are appropriate for mixture models. Some examples include the DIC (Spiegelhalter et al.,

2002) and the MRC (Naik et al., 2007).

Even if an appropriate criteria is defined, it is not clear that a finite mixture model can

provide an accurate characterization of the data. For example, suppose that there are k

mixture components represented in a current data set having n subjects and one performs

model selection based on this data set. Then the assumption is that future subjects will

belong to one of these k mixture components. It seems much more realistic to suppose that

there are infinitely many components, or latent attributes, in the general population, with

finitely many of these components represented in the current data set. Such infinite mixture

models would allow a new subject to have a new attribute that is not yet represented,

allowing discovery of new components as observations are added.

There is a rich Bayesian literature on infinite mixture models, which let k → ∞ in

expression (1). This is accomplished by letting yi ∼ f(φi), with φi ∼ G, where G =

∑∞
h=1 πhδθh

, with π = {πh}∞h=1 an infinite sequence of probability weights, δθ a probability

measure concentrated at θ, and θ = {θh}∞h=1 an infinite sequence of atoms. A wide variety of

priors have been proposed for G, with the most common choice being the Dirichlet process

(DP) prior (Ferguson, 1973; 1974). When a DP prior is used for the mixture distribution,

G, one obtains a DP mixture (DPM) model (Lo, 1984; Escobar and West, 1995).

In marginalizing out G, one induces a prior on the partition of subjects {1, . . . , n} into

clusters, with the cluster-specific parameters consisting of independent draws from G0, the

base distribution in the DP. As noted by Quintana and Iglesias (2003), this induced prior
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is a type of product partition model (PPM) (Hartigan, 1990; Barry and Hartigan, 1992).

When the focus is on clustering or generating a flexible partition model for prediction, as in

Holmes et al. (2005), it is appealing to marginalize out G in order to simplify computation

and interpretation. The DP induces a particular prior on the partition and one can develop

alternative classes of PPMs by replacing the DP prior on G with an alternative choice.

Quintana (2006) applied this strategy for species sampling models (SSMs) (Pitman, 1996;

Ishwaran and James, 2003), which are a very broad class of nonparametric priors that include

the DP as a special case.

Our focus is on further generalizing PPMs to include predictor-dependence by starting

with (2) in the k = ∞ case, and attempting to obtain a prior which results in a PPM upon

marginalization. There has been considerable recent interest in the Bayesian nonparametric

literature on developing priors for predictor-dependent collections of random probability

measures. Starting with the Sethuraman (1994) stick-breaking representation of the DP,

MacEachern (1999; 2001) proposed a class of dependent DP (DDP) priors. In the fixed

π case, DDP priors have been successfully implemented in ANOVA modeling (De Iorio et

al., 2004), spatial data analysis (Gelfand et al., 2005), time series (Caron et al., 2006) and

stochastic ordering (Dunson and Peddada, 2007) applications. Unfortunately, the fixed π

case does not allow predictor-dependent clustering, motivating articles on order-based DDPs

(Griffin and Steel, 2006), weighted mixtures of DPs (Dunson, Pillai and Park, 2007) and

kernel stick-breaking processes (Dunson and Park, 2007).

In order to avoid the need for computation of the very many parameters characterizing

these nonparametric priors, we focus instead on obtaining a generalized product partition

model (GPPM) through relying on a related specification to Müller et al (1996). Section 2

reviews the PPM and its relationship with the DP. Section 3 induces predictor-dependence

in the PPM through a carefully-specified joint DPM model. Section 4 describes a simple

and efficient Gibbs sampler for posterior computation. Section 5 contains an application,
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and Section 6 discusses the results.

2. Product Partition Models and Dirichlet Process Mixtures

Let S∗ = (S∗1, . . . ,S
∗
k) denote a partition of {1, . . . , n}, with the elements of S∗h corresponding

to the ids of those subjects in cluster h. Letting yh = {yi : i ∈ S∗h} denote the data for

subjects in cluster h, for h = 1, . . . , k, PPMs are defined as follows:

f(y|S∗) =
k∏

h=1

fh(yh), π(S∗) = c0

k∏

h=1

c(S∗h), (3)

where fh(yh) =
∫ ∏

i∈S∗
h
f(yi | θh)dG0(θh), f(· | θ) is a likelihood characterized by θ, the ele-

ments of θ = (θ1, . . . , θk)
′ are independently and identically distributed with prior G0, c(S∗h)

is a nonnegative cohesion and c0 is a normalizing constant. The posterior distribution of the

partition S∗ given y also has a PPM form, but with the posterior cohesion c(S∗h)fh(yh).

Note that a PPM can be induced through the hierarchical specification:

yi |θ,S
ind∼ f(θSi

),

Si
iid∼

k∑

h=1

πhδh, θh
iid∼ G0, (4)

where Si = h if i ∈ S∗h indexes membership of subject i in cluster h, with S = (S1, . . . , Sn)′,

π = (π1, . . . , πk)
′ are probability weights, and taking k →∞ induces a nonparametric PPM.

Equivalently, one can let yi ∼ f(φi) with φi ∼ G and G =
∑k

h=1 πhδθh
. A prior on the weights

π induces a particular form for π(S∗), and hence the cohesion c(·).
As motivated by Quintana and Iglesias (2003), a convenient choice corresponds to the

Dirichlet process prior, G ∼ DP (αG0), with α a precision parameter and G0 a non-atomic

base measure. By the Dirichlet process prediction rule (Blackwell and MacQueen, 1973), the

conditional prior of φi given φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φn)′ and marginalizing out G is

(φi |φ(i)) ∼
(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) ∑

j 6=i

δφj
(φi), (5)
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which generates new values from G0 with probability α/(α + n − 1) and otherwise sets φi

equal to one of the existing values φ(i) chosen by sampling from a discrete uniform. Hence,

the joint distribution of φ = (φ1, . . . , φn)′ is obtained as

π(φ) =
n∏

i=1

{
αG0(φi) +

∑
j<i δφj

(φi)

α + i− 1

}
. (6)

Let k = n(S∗) denote the number of partition sets, with kh = n(S∗h) the cardinality of S∗h.

Letting φh = {φi : i ∈ S∗h}, with φh,l being the parameter for the lth subject, ordered by

the ids, in cluster h, Quintana and Iglesias (2003) show that (6) is equivalent to

π(φ) =
∑

S∗∈P

1∏n
l=1(α + l − 1)

k∏

h=1

α(kh − 1)!G0(φh,1)
kh∏

j=2

δφh,1
(φh,j)

= c0

∑

S∗∈P

k∏

h=1

c(S∗h)πh(φh), (7)

where P is the set of all partitions of {1, . . . , n}, c0 =
∏n

l=1(α + l− 1)−1, c(S∗h) = α(kh − 1)!,

and πh(φh) is the prior on φh. The marginal likelihood of y is then obtained as

f(y) = c0

∑

S∗∈P

k∏

h=1

c(S∗h)
∫ ∏

i∈S∗
h

f(yi|θ)dG0(θ), (8)

which is a special case of the form implied by (3) corresponding to a PPM with cohesion

c(S∗h) = α(n(S∗h)− 1)!. This implies that simple and efficient MCMC algorithms developed

for DPMs can be used for posterior computation in PPMs. However, the class of PPMs

induced by the DPM specification above assumes that the subjects are exchangeable, and

does not allow for the incorporation of predictors.

3. Predictor Dependent Product Partition Models

3·1. Proposed formulation

Our goal is to incorporate predictor values X = (x1, . . . ,xn) into a class of PPMs, so that

the prior on the partition S∗ has the form

π(S∗|X) ∝
k∏

h=1

c(S∗h, Xh), (9)
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where Xh = {xi : i ∈ S∗h}, for h = 1, . . . , k, and the cohesion c(·) depends on the subjects

predictor values. Expression (9) has two appealing properties. First, the posterior distribu-

tion of the partition S∗ updated with the likelihood of response y = (y1, . . . , yn)′ is still in

a class of PPMs, but with updated cohesion c(S∗h,Xh)fh(yh). Secondly, there is an direct

influence of predictors X on the partition process. Previous incorporation of predictors in

PPMs instead relies on replacing f(yi | θh) with f(yi |xi, θh) in expression (3), which allows

the predictor effect to vary across clusters but does not allow the clustering process itself to

be predictor dependent.

To specify cohesion c(S∗h,Xh), we exploit the connection between PPM and DPMs. For

simplicity of notation, we focus on univariate response y, though multivariate generalizations

are straightforward. Suppose zi = (yi,x
′
i)
′ follows the hierarchical model:

f(zi |φi) = f(yi,xi|ϕi, γi) = f1(yi|xi, ϕi)f2(xi|γi),

φi ∼ G, G ∼ DP (αG0), (10)

where G0 = G0ϕ
⊗

G0γ is the product measure of G0ϕ and G0γ, components inducing a base

prior for ϕi and γi, respectively. This DPM model will induce partitioning of the subjects

{1, . . . , n} into k ≤ n clusters, with i ∈ S∗h denoting that subject i belongs to cluster h,

which implies that ϕi = ϕ∗h and γi = γ∗h, where γ∗ = (γ∗1 , . . . , γ
∗
k)
′ and ϕ∗ = (ϕ∗1, . . . , ϕ

∗
k)
′

denote the unique values of γ = (γ1, . . . , γn)′ and ϕ = (ϕ1, . . . , ϕn)′, respectively.

Under (10), we can obtain a joint distribution of φ = (ϕ,γ) using the same approach used

in deriving expression (7). If we then multiply by the conditional likelihood
∏n

i=1 f2(xi|γi)

and marginalize out γ, the joint distribution of ϕ and X is given by

π(ϕ,X) =
∑

S∗∈P
c0

k∏

h=1

α(kh − 1)!
{ ∫ ∏

i∈S∗
h

f2(xi|γ∗h)dG0γ(γ
∗
h)

}
G0ϕ(ϕh,1)

kh∏

j=2

δϕh,1
(ϕh,j), (11)

where ϕh,l is the parameter for the response y of the lth subject, ordered by the ids, in
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cluster h, and therefore the conditional distribution of ϕ given X is

π(ϕ|X) = c∗0
∑

S∗∈P

k∏

h=1

α(kh − 1)!
{ ∫ ∏

i∈S∗h

f2(xi|γ∗h)dG0γ(γ
∗
h)

}
G0ϕ(ϕh,1)

kh∏

j=2

δϕh,1
(ϕh,j)

= c∗0
∑

S∗∈P

k∏

h=1

c(S∗h,Xh)πh(ϕh), (12)

where c∗0 is a normalizing constant, so that the sum over P is unity, c(S∗h,xh) = α(kh −
1)!

∫ ∏
i∈S∗

h
f2(xi|γ)dG0γ(γ), and πh(ϕh) is a prior on partitioned set ϕh. Hence, we have

induced a generalized PPM (GPPM) of the form shown in (9) starting with a joint DPM

model for the response and predictors related to that proposed by Müller et al. (1996). A

related idea was independently developed by Fernando Quintana and collaborators in recent

work (unpublished communication), though our subsequent development differs from theirs.

3·2. Generalized Pòlya urn scheme

It is not obvious from expression (12) how the predictor and hyperparameter values impact

clustering. However, as shown in Theorem 1, we can show that the proposed GPPM induces

a simple predictor-dependent generalization of the Blackwell and MacQueen (1973) Pólya

urn scheme, which should be useful both in interpretation and posterior computation.

Theorem 1. Let superscript (i) on any matrix or vector indicate that the con-

tribution of subject i has been removed. The full conditional prior of ϕi given α,

ϕ(i), and X, or equivalently given α, ϕ∗(i), S(i), and X, has the form

(ϕi |α, ϕ∗(i),S(i),X),∼ w0(xi)G0ϕ +
k(i)∑

h=1

wh({xi,X
(i)
h })δϕ

∗(i)
h

, (13)

with the probability weights

w0(xi) = cα
∫

f2(xi|γ)dG0γ(γ), wh({xi,X
(i)
h }) = ck

(i)
h

∫
f2(xi|γ)dG∗

0γ(γ|X(i)
h ),

where c is a normalizing constant and G∗
0γ(·|X(i)

h ) is the posterior distribution

updated with the likelihood of predictor cluster h excluding the contribution

from the ith subject.
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The proof is in Appendix A. Theorem 1 implies that subject i is assigned to either a new

generated value (creating a new cluster) or one of the existing unique values, with the

probability weights being proportional to a product of the DP probability weights and the

marginal likelihoods at its predictor value varying across clusters. Therefore, subject i is

more likely to be grouped into cluster h if the predictor value of subject i, xi, is close to

those of other subjects in the hth cluster, Xh, with the measure of closeness depending on

the scale of the data through the choice of f2(·).
Conceptually, this idea is related to the Bayesian partition model (BPM) of Holmes et

al. (2005) in that subjects close together in the predictor space will tend to have similar re-

sponse distributions. However, instead of measuring closeness through assuming a particular

distance metric, our specification automatically induces a distance metric through a flexible

nonparametric model for the joint distribution of the predictors. This allows the measure of

closeness to be adaptive depending on location in the predictor space, automatically produc-

ing spatially-adaptive bandwidth selection. In the special case of a degenerate distribution

for x, f2(x|γ) = δγ(x), formulation (13) reduces to the Blackwell and MacQueen Pòlya urn

scheme of expression (5).

An apparent disadvantage of our formulation is that by inducing a prior for the condi-

tional distribution of yi given xi through a prior for the joint distribution of yi and xi, we are

implicitly assuming that the predictors are random variables. In fact, in many applications

one or more of the predictors may be fixed by design, representing spatial location, time of

observation or an experimental condition. The predictor-dependent urn scheme shown in

Theorem 1 is still useful and coherent in such cases, as this urn scheme is defined condition-

ally on the predictor values. This urn scheme clearly results in a coherent joint prior for ϕ

conditionally on X, which is invariant to permutations in the ordering of the subjects. It

is in general very difficult to define a predictor-dependent urn scheme, which satisfies these

conditions.
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The use of the conjugacy simplifies the weights in (13), resulting in a closed and simple

form for computation. Among many choices, we focus on two special cases: a normal-Wishart

prior and a Poisson-gamma prior. Suppose that a normal-Wishart distribution is assumed

for continuous p× 1 predictors x and parameter γ = (µx,Σx)
′:

x|µx, cx,Σx ∼ N(µx, c
−1
x Σx),

µx|µx, cµ,Σ0x ∼ N(µ0x, c
−1
µ Σx)

Σ−1
x |νx,Σ0x ∼ W(Σ−1

0x , νx), (14)

where c−1
x and c−1

µ are multiplicative constants, and W(Σ−1
0x , νx) is a Wishart with degrees

of freedom νx and expectation νxΣ
−1
0x . Then the marginal likelihood of xi in probability

weight w0(xi) in (13) is a noncentral multivariate t-distribution with degrees of freedom

ν = νx − p + 1, mean µ = µ0x, and scale Σ = (cx + cµ)/(νcxcµ)Σ0x:

f(x|µ, ν,Σ) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|Σ|1/2

(
1 +

1

ν
(x− µ)′Σ−1(x− µ)

)−(ν+p)/2

, (15)

while that in probability weight wh({xi,X
(i)}), for h = 1, . . . , k(i) is also a noncentral multi-

variate t-distribution, but with updated hyperparameters:

µ∗
0x =

cµµ0x + cxk
(i)
h x̄

(i)
h

cµ + cxk
(i)
h

, c∗µ = cµ + cxk
(i)
h , ν∗x = νx + k

(i)
h

Σ∗
0x =

{
Σ−1

0x + k
(i)
h

∑

j:S
(i)
j =h

(xj − x̄
(i)
h )(xj − x̄

(i)
h )′ +

k
(i)
h cxcµ

cµ + cxk
(i)
h

(x̄
(i)
h − µ0x)(x̄

(i)
h − µ0x)

′
}−1

,

where x̄
(i)
h =

∑
j:S

(i)
j =h

xj/k
(i)
h . Note that the structure in expression (14) is slightly different

from a commonly used normal-Wishart prior in that a multiplicative constant is multiplied

not only to the variance of the expectation of x but also to the variance of x. The reasoning

for this is to induce local clustering by making the distribution of x denser around its expected

value, while the expected value can be drawn over the range of x, with c−1
x restricted to be

in (0, 1] and c−1
µ = 1. Allowing cx to vary across clusters gives us additional flexibility.
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In the case of discrete predictors, we can also obtain a closed form marginal likelihood

of x. In order to simplify calculations in the discrete case, we assume a priori independence

for the different predictors. Suppose that xj for j = 1, . . . , p follow a Poisson distribution

with mean Γj, which is assigned a Gamma prior with mean aj/bj, G(aj, bj), as the base

measure G0γ. The marginal distribution of x in w0 is a product of negative binomials with

the number of successes rj = aj and success probability pj = bj/(1 + bj):

Pr(Xj = k) =
Γ(rj + k)

k!Γ(rj)
p

rj

j (1− pj)
k j = 1, . . . , p. (16)

The marginal distribution in wh, for h = 1, . . . , k(i), is also a product of negative binomials,

but with hyperparameters a∗j = aj +
∑

j:S
(i)
j =h

xj and b∗j = bj + k
(i)
h . For bounded discrete

predictors, we can instead use a multinomial likelihood with a Dirichlet prior for the category

probabilities. The case of mixed discrete and continuous predictors can also be dealt with

easily.

4. Posterior Computation

One of the appealing features of our predictor-dependent urn scheme is that we can rely

on efficient Pólya urn Gibbs sampling algorithms developed for computation in marginal-

ized DPMs (Bush and MacEachern, 1996) with minimal modifications. In addition, al-

though we focus here on posterior computation through MCMC, our predictor-dependent

urn scheme could similarly be used to develop sequential importance sampling (SIS) algo-

rithms (MacEachern et al., 1999; Quintana and Newton, 2000), modified weighted Chinese

restaurant (WCR) sampling algorithms (Ishwaran and James, 2003), as well as fast varia-

tional Bayes approximations (Kurihara et al., 2006).

Following Bush and MacEachern (1996), our algorithm updates the cluster specific pa-

rameters ϕ∗ separately from the cluster membership indicators S. From Theorem 1, the full
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conditional posterior distribution of ϕi can be derived as follows:

(ϕi |α, ϕ∗(i),S(i),X,y),∼ qi,0G0ϕ,i +
k(i)∑

h=1

qi,hδϕ
∗(i)
h

, (17)

where the posterior obtained by updating the prior G0ϕ with the likelihood of yi is

G0ϕ,i(ϕi) =
G0ϕ(ϕi)f1(yi|xi, ϕi)∫
f1(yi|xi, ϕi)dG0ϕ(ϕi)

=
G0ϕ(ϕi)f1(yi|xi, ϕi)

hi(yi|xi)
,

qi,0 = cw0(xi)hi(yi|xi), qi,h = cwh({xi,X
(i)})f1(yi|xi, ϕ

∗(i)
h ), and c is a normalizing constant.

Instead of sampling directly from expression (17) in implementing the Gibbs sampling, we

first sample Si, for i = 1, . . . , n, from its multinomial conditional posterior distribution with:

Pr(Si = h|ϕ∗(i),S(i),X,y) = qi,h, h = 1, . . . , k(i), (18)

and when Si = 0, φi is set to a new value generated from G0ϕ,i. As a result of updating S, the

number of clusters, k is automatically updated. As a next step, we update ϕ∗ conditional

on S and k from

(ϕh|ϕ∗(h),S, k,y,X) ∝
{ ∏

i:Si=h

f1(yi|xi, ϕh)
}
G0ϕ(ϕh). (19)

In a case that there are some unknown parameters ψ characterizing the base measure G0ϕ, we

include an additional step for updating ψ based on the full conditional posterior distribution

(ψ|ϕ,y,x) ∝ π(ψ)
{ k∏

h=1

G0ϕ(ϕ∗h|ψ)
}
. (20)

We have found this algorithm to be both simple to implement and efficient in cases we have

considered, as will be described in the subsequent sections.

5. Simulation Examples

5·1. Model specification

In this section, we illustrate the proposed method with simulations focusing on conditional

density regression. We consider the following infinite mixtures-of-experts model:

f(yi|xi) =
∞∑

h=1

πh(xi) f1(yi |xi, ϕ
∗
h), (21)
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where xi = (1, xi1, . . . , xip−1)
′, f1(yi|xi, ϕ

∗
h) = N(yi;x

′
iβh, σ

2
y,h), and ϕ∗h = (β′h, σ

2
y,h)

′. The

GPPM proposed in Section 3 is used to place a prior on the partition S∗ and atoms ϕ∗.

Although there are k ≤ n mixture components represented in the sample of n subjects

under the GPPM, there are conceptually infinitely many components, since the number of

components increases stochastically as subjects are added.

In the absence of prior knowledge about the scale, it is recommended that continuous pre-

dictors be standardized to simplify prior elicitation. We require G0 to correspond to a proper

distribution, since marginal likelihoods will be used in calculating conditional posterior prob-

abilities for partitioning. To simplify updating of the scale parameter, cx, we assume a dis-

crete uniform prior on (0, 1]. For discrete predictors, we fix aj = bj = 1, for j = 1, . . . , p− 1.

In addition, let σ−2
y,i |ay, by ∼ G(ay, by), βi|β,Σβ ∼ N(β,Σβ), β|β0,Σβ0 ∼ N(β0,Σβ0), and

Σ−1
β |ν0,Σ0 ∼ W(Σ−1

0 , ν0). The last two prior distributions on ψ = (β,Σβ)′ are for additional

flexibility. In the implementation, we let α = 1, µ0x = 0, Σ−1
0x = 4I(p−1)×(p−1), νx = p − 1,

β0 = 0, Σβ0 = n(X′X)−1, ν0 = p, Σ−1
0 = Ip×p, and ay = by = 0.1. Other choices of these

parameters are also considered to check sensitivity of models to our primary choice.

5·2. Implementation and Results

We consider two cases in which n = 500, p = 2, and xi1 is generated from a uniform

distribution over (0, 1). We first simulated data from a normal distribution with mean x2
i1 and

variance 0.04, N(yi; x
2
i1, 0.04). The data were analyzed using the model with f1(yi|xi, ϕ

∗
h) =

N(yi; µh, σ
2
y,h) and µh ≡ βh and prior specification of Section 5.1, with the MCMC algorithm

of Section 4 implemented for 10,000 iterations, discarding the initial 1,000 iterations as a

burn-in. Figure 1 shows selected results. The algorithm converged rapidly and mixing was

good based on trace plots of E(µi), σ−2
y , and the number of clusters (the left panel of Figure

1). As shown in the right panel of Figure 1, the predictive densities and mean function of y

(solid lines) well approximate the true values (dotted lines), which are completely embedded
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within pointwise 99% credible intervals (dashed lines). The posterior mean of the number

of clusters was 8.06 with a 95% credible interval of [5, 12] and the estimated normal means

were almost equally spaced over (0, 1).

As a more challenging second simulation case, we simulated data to approximately mimic

the data in the reproductive epidemiology study considered in Section 6. In particular, we

generated data from the following mixture of two linear models:

f(yi|xi) = (1− x4
i1)N(yi; 1, 0.04) + x4

i1N(yi; , 1− x2
i1, 0.01),

where a secondary peak appears in the left tail of the response distribution, moving closer

to zero as xi1 increases. This behavior in which the tail of the distribution, corresponding

to those subjects with the most extreme response, is particularly sensitive to changes in

an exposure variable is common in toxicology and epidemiology studies. We analyzed the

data using the GPPM approach specified in Section 5.1, and also using the DPM-based

PPM described in Section 2. This second approach results in a mixture of normal linear

regressions in which the weights are not predictor-dependent. Both analyses were run for

30,000 iterations with a 10,000 iteration burn-in, with good mixing and convergence rates in

both cases based on examination of trace plots and diagnostics.

From Figure 2, it is clear that the proposed approach provides a more flexible model

capturing a rapid changes in the distribution across local regions of the predictor space even

for the somewhat small sample size of n = 500. We also repeated the analysis of the second

simulation including a discrete predictor, which was obtained by truncating the continuous

predictor into k groups. It was observed that the proposed method worked well for a variety

choices of k (results are not shown).

6. Epidemiologic Application

We apply the proposed method to the data used in Longnecker et al. (2001) and Dunson

and Park (2007). DDT has been widely used and shown to be effective against malaria-
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transmitting mosquitoes, but several health-threatening effects of DDT have been also re-

ported. Longnecker et al. (2001) used the data from the US Collaborative Perinatal Project

to investigate the association between DDT and preterm birth, defined as delivery before

37 weeks of complete gestation. The authors showed that adjusted for other covariates,

increasing concentrations of maternal serum DDE, a persistent metabolite of DDT, led to

high rate of preterm birth by fitting a logistic regression model with categorized DDE levels.

Dunson and Park (2007) applied a kernel stick-breaking process mixture of linear regression

models to the same data with a focus on the predictive density of gestational age at delivery

(GAD), concluding strong evidence of a steadily increasing left tail with DDE dose. For

more information on the study design and data structure, refer to Longnecker et al. (2001)

We let xi1 and xi2 be the DDE dose for child i and the mother’s age after normalization,

respectively. There were 2, 313 children left in the study after removing children with GAD

> 45 weeks, which are suspected as unrealistic values in reproductive epidemiology. By

running the algorithm of the GPPM approach applied to the second simulation example

for 30,000 iterations with a 10,000 iteration burn-in, we obtained the estimated predictive

densities of GAD at selected percentiles (10, 30, 60, 90) of the empirical distribution of DDE

(Figure 3). The results also show that the left tail of the distribution increases for high

DDE dose with the credible intervals wider at high DDE values due to the relatively few

observations in this region. It is observed in Figure 4 that the conditional predictive mean

of GAD had a slightly decreasing nonlinear trend over DDE level.

Although the results of the analysis were similar to Dunson and Park (2007), the pro-

posed computational algorithm was considerably less complex and simpler to implement.

Dunson and Park (2007) relied on a retrospective MCMC algorithm (Papaspiliopoulos and

Roberts, 2007), which involved updating of random basis locations, stick-breaking weights,

atoms and kernel parameters. In contrast, by using the GPPM proposed in the present pa-

per, we bypass the need to perform computation for the very many unknowns characterizing
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the collection of predictor-dependent mixture distributions. Instead through marginaliza-

tion relying on the simple predictor-dependent urn scheme shown in Theorem 1, we obtain

a simple and efficient Gibbs sampling algorithm. We found the mixing and convergence

rates to be similar to those for the MCMC algorithm of Dunson and Park (2007), but the

computational time was substantially reduced, as fewer computations were needed at each

step of the MCMC algorithm.

7. Discussion

There has been increasing interest in the use of partitioning to generate flexible classes of

models and to identify interesting clusters of observations for further exploration. Much of

the recent literature has relied on Dirichlet process-based clustering, an approach closely

related to product partition models (PPMs). Our contribution is to develop a simple modi-

fication to PPMs to allow predictor dependent clustering, while bypassing the need for con-

sideration of complex nonparametric Bayes methods for collections of predictor-dependent

random probability measures. The resulting class of generalized PPMs (GPPMs) should be

widely useful as a tool for generating new classes of models and for efficient computation in

existing models, such as hierarchical mixtures-of-experts models.

Perhaps the most interesting and useful of our results is the proposed class of predictor-

dependent urn schemes, which generalize the Blackwell and MacQueen (1973) Pólya urn

scheme in a natural manner to include weights that depend on the distances between subjects

predictor values. The distance metric is induced through a flexible nonparametric joint

model for the predictors. Although this approach may be viewed as unnatural when the

predictors are not random variables, the proposed class of predictor-dependent urn schemes

are nonetheless useful and are defined conditionally on the predictor values. In this sense,

the use of a joint distribution on the predictors in inducing the urn scheme can be viewed

simply as a tool for proving that a coherent joint prior exists in cases in which the predictors
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are not random.
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Appendix A: Proof of theorem 1

The Pólya urn scheme in expression (5) can be reexpressed with a vector of unique values

θ(i) and configuration S(i):

(φi |φ(i)) ∼
(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) k(i)∑

h=1

k
(i)
h δ

θ
(i)
h

(φi).

Then, using expression (7), the joint distribution of φ is

π(φ) = π(φi|φ(i))π(φ(i))

=
{(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) k(i)∑

h=1

k
(i)
h δ

θ
(i)
h

(φi)
}

×
{

1
∏n−1

l=1 (α + l − 1)

k(i)∏

m=1

α(k(i)
m − 1)!G0(φ

(i)
m,1)

k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ
(i)
m,j)

}
,

= αc0G0(φi)
{ k(i)∏

m=1

c(S∗(i)m )G0(φ
(i)
m,1)

k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ
(i)
m,j)

}

+c0

k(i)∑

h=1

k
(i)
h

k(i)∏

m=1

c(S∗(i)m )G0(φ
(i)
m,1){δφ(i)

m,1

(φi)}1(m=h)
k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ
(i)
m,j),

where c0 =
∏n

i=1(α + l − 1)−1, c(S
∗(i)
h ) = α(k

(i)
h − 1)!, and 1(·) is an indicator function. By

setting φ = (γ, ϕ)′ and doing the same thing to obtain expression (11), we can obtain the

joint distribution of ϕ and X:

π(ϕ,X)

= αc0G0ϕ(ϕi)
∫

f2(xi|γ)dG0γ(γ)
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×
{ k(i)∏

m=1

c(S∗(i)m )
[ ∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ(γ)
]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ
(i)
m,j)

}

+c0

k(i)∑

h=1

k
(i)
h δ

ϕ
∗(i)
h

(ϕi)

×
{ k(i)∏

m=1

c(S∗(i)m )
[ ∫

f2(xi|γ)1(m=h)
∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)
]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ
(i)
m,j)

}
.

By Bayes rule the square bracket in the second term of the last equation can be reexpressed

as follows:

∫
f2(xi|γ)1(m=h)

∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

=
∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)
∫

f2(xi|γ)1(m=h)

∏
l∈S

∗(i)
m

f2(xl|γ)
∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)
dG0γ(γ)

=
∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)
∫

f2(xi|γ)1(m=h)dG∗
0γ(γ|X(i)

m ),

where X(i)
m = {xi|i ∈ S∗(i)m } and G∗

0γ(γ|X(i)
m ) is the posterior distribution of γ updated with

the likelihood of X(i)
m . Therefore, the joint distribution of ϕ and X is simplified as

π(ϕ,X) =
{
α

∫
f2(xi|γ)dG0γ(γ)G0ϕ(ϕi) +

k(i)∑

h=1

k
(i)
h

∫
f2(xi|γ)dG∗

0γ(γ|X(i)
m )δ

γ
(i)
y,h

(ϕi)
}

×c0

k(i)∏

m=1

c(S∗(i)m )
[ ∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ(γ)
]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ
(i)
m,j),

and marginalizing the above equation over ϕi and dividing it by π(ϕ(i),X) completes the

proof.
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MÜLLER, P., ERKANLI, A. & WEST, M. (1996). Bayesian curve fitting using multivariate

normal mixtures. Biometrika 83, 67-79.

NAIK, P. A., SHI, P. & TSAI, C. L. (2007). Extending the Akaike information criterion to

mixture regression models. J. Am. Statist. Assoc. 102, 244-54.

PAPASPILIOPOULOS, O. & ROBERTS, G.O. (2007). Retrospective Markov chain Monte

Carlo methods for Dirichlet process hierarchical models. Biometrika, under revision.

PITMAN, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Sta-

tistics, Probability and Game Theory, Ed. T.S. Ferguson, L.S. Shapley and J.B. Mac-

Queen. IMS Lecture Notes-Monograph series, 30.

21



QUINTANA, F. A (2006). A predictive view of Bayesian clustering. J. Statist. Planning

and Inference, 136, 2407-29.

QUINTANA, F. A. & IGLESIAS, P. L. (2003). Bayesian clustering and product partition

models. J. R. Statist. Soc. B, 65, 557-74.

QUINTANA, F. A. & NEWTON, M. A. (2000). Computational aspects of nonparametric

Bayesian analysis with applications to the modeling of multiple binary sequences. J.

Comp. Graph. Statist. 9, 711-37.

SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. R. & VAN DER LINDE, A. (2002).

Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc.

B 64, 585-616.

SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4,

639-50.

22



−1
−0

.5
0

0.
5

1
0123

f(y| x)

y

x=
0.

25

0
20

00
40

00
60

00
80

00
10

00
0

−1012

E
(µ

i)

0
20

00
40

00
60

00
80

00
10

00
0

0102030
k

0
20

00
40

00
60

00
80

00
10

00
0

0

0.
050.

1

σ y2

−1
−0

.5
0

0.
5

1
0123

f(y| x)

y

x=
0.

75

0
0.

2
0.

4
0.

6
0.

8
1

−1012

Fig. 1. Results for the first simulation example. The left column provides trace plots

for representative parameters, while the right panel shows the conditional distributions for

two different values of x, as well as the mean function estimation along with the raw data.

Posterior means are solid lines, pointwise 99% credible intervals are dashed lines, and true

values are dotted lines.
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Fig. 2. Estimated predictive densities from the PPM (left panel) and the GPPM (right

panel) at the 10th, 50th and 90th percentiles of the empirical distribution of xi1: posterior

means (solid lines), pointwise 99% credible intervals (dashed lines), and true values (dotted

lines).
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Fig. 3. Estimated predictive densities (solid lines) for gestational age at delivery at prese-

lected values of DDE with 99% pointwise credible intervals (dashed lines).
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