
Bayesian Grammar Learning for Inverse Procedural Modeling

And̄elo Martinović and Luc Van Gool

Abstract

Within the fields of urban reconstruction and city model-

ing, shape grammars have emerged as a powerful tool for

both synthesizing novel designs and reconstructing build-

ings. Traditionally, a human expert was required to write

grammars for specific building styles, which limited the

scope of method applicability. We present an approach to

automatically learn two-dimensional attributed stochastic

context-free grammars (2D-ASCFGs) from a set of labeled

building facades. To this end, we use Bayesian Model Merg-

ing, a technique originally developed in the field of natu-

ral language processing, which we extend to the domain of

two-dimensional languages. Given a set of labeled positive

examples, we induce a grammar which can be sampled to

create novel instances of the same building style. In ad-

dition, we demonstrate that our learned grammar can be

used for parsing existing facade imagery. Experiments con-

ducted on the dataset of Haussmannian buildings in Paris

show that our parsing with learned grammars not only out-

performs bottom-up classifiers but is also on par with ap-

proaches that use a manually designed style grammar.

1. Introduction

Over the last few years, there has been a flurry of ap-
proaches tackling the problem of urban modeling. Digital
mapping of existing cities is reaching new heights as users
can now browse detailed 3D models of cities instead of flat
maps. In the entertainment industry, particularly for movies
and games, there is an ever rising need for detailed and real-
istic models of virtual cities. Manual modeling of individ-
ual buildings usually provides good results, but the process
is very time consuming and expensive.

Procedural modeling is an efficient way to create 3D
models in a fast and scalable way. There, the structure of
the object is encoded as a set of parametric rules. Models
are generated by iteratively applying the rules on a starting
shape. This approach was successfully applied on various
categories of objects, such as plants, landscapes and archi-
tecture [25]. In urban procedural modeling, the knowledge
of the building style and layout is most commonly encoded
as a shape grammar [17]. A particular type of shape gram-

Figure 1: “Somewhere in Paris”: a street with buildings
sampled from our induced grammar.

mars for architectural modeling, the split grammar, was in-
troduced by [27], and further refined in [11]. A specific
building can then be represented as a particular derivation,
or a parse tree of that grammar.

Some approaches have used shape grammars as higher-
order knowledge models for reconstruction of buildings. In-

verse procedural modeling (IPM) is an umbrella term for
approaches that attempt to discover the parametrized rules
and the parameter values of the procedural model. Vari-
ous methods have specialized this general IPM framework
by assuming that the rules are known in advance, while the
parameters are allowed to vary. This top-down model is
then fitted to bottom-up cues derived from the data. Vane-
gas et al. [24] used a simple grammar for buildings that
follow the Manhattan world assumption. A grammar was
fitted from laser-scan data in [23]. Mathias et al. [10] re-
constructed Greek Doric temples using template procedural
models. An approach using reversible jump Markov Chain
Monte Carlo (rjMCMC) for fitting split grammars to data
was described in [16]. Teboul et al. [21] presented an ef-
ficient parsing scheme for Haussmannian shape grammars
using Reinforcement Learning.

However, all of the methods mentioned above share a
common drawback. They assume that a manually designed
grammar is available from the outset. This is a serious con-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

straint, as it limits the reconstruction techniques to a hand-
ful of building styles for which pre-written grammars ex-
ist. Creating style-specific grammars is a tedious and time-
consuming process, which is usually performed only by a
few experts in the field. So, a natural question arises: can
we learn procedural grammars from data?

So far, the research in the field of general IPM has been
limited to a small number of approaches. Learning L-
systems from synthetic 2D vector data was tackled in [26].
Applications of general IPM in urban modelling started
with Aliaga et al. [1], who presented an interactive method
for extracting facade patterns from images. Bokeloh et

al. [2] learned deterministic shape grammar rules from tri-
angle meshes and point clouds. Attribute graph gram-
mars [5] were presented as a method of top-down/bottom-
up image parsing, though restricting the detected objects in
scenes to rectangles.

In the field of formal grammar learning, a famous con-
clusion of Gold [3] states that no superfinite family of deter-
ministic languages (including regular and context-free lan-
guages) can be identified in the limit. However, Horning [6]
showed that the picture is not so grim for statistical gram-
mar learning, and demonstrated that stochastic context-free
grammars (SCFGs) can be learned from positive examples.
Currently, one of the popular methods for learning SCFGs
from data is Bayesian Model Merging [18], which makes
the grammar induction problem tractable by introducing a
Minimum Description Length (MDL) prior on the grammar
structure. This approach was recently applied for learning
probabilistic programs [7] and design patterns [20].

2. Our Approach

Inspired by recent successes of Bayesian Model Merg-
ing outside computer vision, we propose a novel approach
of inducing procedural models, particularly split grammars,

from a set of labeled images. We focus our discussion on fa-
cade modeling, since facades are mostly two-dimensional,
and exhibit a logical hierarchy of elements.

The overview of our approach can be seen in Fig. 2. The
input to our system is a set of facade images, which are se-
mantically segmented into classes such as walls, windows,
etc. In the first step we create a stochastic grammar which
generates only the input examples with equal probabilities.
However, we want to find a grammar that can also gener-
alize to create novel designs. We formulate this problem
as a search in the space of grammars, where the quality
of a grammar is defined by its posterior probability given
the data. As described in Sec. 5, this requires an optimal
trade-off between the grammar description length (smaller
grammars are preferred) and the likelihood of the input data.
The latter is obtained by parsing the input examples with the
candidate grammar.

Previous work has shown that image parsing with a
known set of grammar rules is a difficult problem by it-
self [15, 22]. On the other hand, our grammar search pro-
cedure typically needs to evaluate a huge number of candi-
date grammars. This means that we have to parse the in-
put examples in a very short time, lest the grammar search
last indefinitely. Different authors have tackled this curse of

dimensionality during parsing in different ways: assuming
that the building exhibits a highly regular structure [12], us-
ing approximate inference such as MCMC [16], or exploit-
ing grammar factorization [22]. Recent work by Riemen-
schneider et al. [15] has shown that it is possible to perform
exact image parsing using dynamic programming if the im-
age is reduced to an irregular lattice. This approach reduces
the effective dimensionality of the problem, while not sac-
rificing much of the quality.

Following their example, we transform all of our input
images into irregular lattices, casting our grammar search
procedure into a lower dimensional space. In this space
we use our own, modified version of the Earley-Stolcke
parser [18], a technique from natural language processing
adapted to parse 2D lattices instead of 1D strings. This di-
mensionality reduction enables the grammar search proce-
dure to run within a reasonable time. Finally, in order to
perform image parsing, the induced grammar is cast into
the original space. This stochastic, parameterized grammar
can either be used as a graphics tool for sampling building
designs, or as a vision tool to alleviate image parsing of ac-
tual buildings.

Our contributions are: (1) A novel approach for induc-
ing procedural split grammars from data. To the best of our
knowledge, we are the first to present a principled approach
for learning probabilistic two-dimensional split grammars
from labeled images. (2) A generalization of the Earley-
Stolcke SCFG parser to two dimensional lattices. (3) An
adapted rjMCMC parser in the style of [19] for image-
scale parsing. (4) An experimental evaluation suggesting
that learned grammars can be as effective as human-written
grammars for the task of facade parsing.

3. 2D-ASCFGs

We define a two-dimensional attributed stochastic
context-free grammar (2D-ASCFG) as a tuple G =
(N,T , S,R, P,A) , where N is a set of non-terminal sym-
bols, T a set of terminal symbols, S the starting non-
terminal symbol or axiom, R a set of production rules,
{P (r), r ∈ R} a set of rule probabilities and {A(r), r ∈ R}
a set of rule attributes.

Every symbol is associated with the corresponding
shape, representing a rectangular region. Starting from the
axiom, production rules subdivide the starting shape either
in horizontal or vertical directions. We define the set R as a
union of horizontal and vertical productions: R = Rh∪Rv .

202202202

Figure 2: The overview of our approach.

These productions correspond to standard horizontal and
vertical split operators in split grammars. A production is
of the form X → λ, where X ∈ N is called the left-hand-
side (LHS), and λ ∈ (N ∪T)+ is called the right-hand-side
(RHS) of the production.

For every production we define P (X → λ) as the prob-
ability that the rule is selected in the top-down derivation
from the grammar. For the grammar to be well-formed,
the productions with X as LHS must satisfy the condition
∑

λ P (X → λ) = 1. We additionally associate each gram-
mar rule r with a set of attributes A(r) = {αi}. The ele-
ments of a single attribute are the relative sizes of the RHS
shapes in respect to their parent shape, in the splitting di-
rection: αi = {s1, ..., s|λ|},

∑

i si = 1. These relative sizes
sum up to one because RHS shapes always fill the entire
shape of their parent.

We denote by τ a parse tree from the grammar, rooted on
the axiom, its interior nodes corresponding to non-terminal
symbols, and its exterior nodes to terminal symbols. The
parse tree is obtained by applying a sequence of rules on the
axiom and non-terminal nodes. A derivation from the gram-
mar consists of the parse tree and the selected attributes
at each node: δ = (τ, α). The probability of a single
derivation is the product of all rule probabilities selected
at each node s of the parse tree: P (δ) =

∏

s∈δ P (rs).
The set of terminal nodes of a parse tree defines a lattice
over an area. A lattice is a rectangular tesselation of 2D
space, exactly filling the shape of the axiom. We define
the likelihood of the grammar G generating a lattice l as
L(l|G) =

∑

δ⇒l P (δ), where we sum over the probabili-
ties of all derivations that yield a particular lattice.

4. Bayesian Model Merging

To cast our grammar learning as an instance of Bayesian
Model Merging, we need to define several methods:

• Data incorporation: given a body of data, build an
initial grammar which generates only the input examples.

• Model merging: propose a candidate grammar by al-
tering the structure of the currently best grammar.

• Model evaluation: evaluate the fitness of the candidate
grammar compared to the currently best grammar.

• Search: use model merging to explore the grammar
space, searching for the optimal grammar

4.1. Data Incorporation

We start with a set of nf facade images, with each pixel
labeled as one of the nl terminal classes (window, wall, bal-
cony, etc.) As already mentioned in Sec. 1, grammar in-
duction would be infeasible in the image space due to the
curse of dimensionality. To mitigate this issue, all input im-
ages are converted into lattices following an approach sim-
ilar to [15]. Every rectangular region in the resulting two-
dimensional tesselation of the image is labeled with the ma-
jority vote from the corresponding pixel labels.

For each lattice in the input set, we create an instance-
specific split grammar, with terminal symbols correspond-
ing to image labels. Non-terminal productions are cre-
ated by alternatively splitting the image in horizontal and
vertical directions, starting with the latter. All produc-
tion probabilities are set to 1; all attributes are initialized
to the relative sizes of right-hand side elements. For ex-
ample, the first production splits the axiom into horizon-
tal regions represented by newly instantiated non-terminals
and parametrized by their height: S → Xi . . . Xn, p =
1, A = {{h(Xi), . . . , h(Xn)}}, where the rule probabil-
ity p is initialized to 1, but is allowed to change in the
model search. The procedure is stopped at the level of a
single lattice element, where we instantiate lexical produc-
tions, i.e. productions with a single terminal on the RHS:
X → label, p = 1, A = {{1}}. Lexical productions re-

203203203

main deterministic, as they only label the entire shape of
the parent with the given terminal class.

Now we have a set of deterministic grammars Gi, each
producing exactly one input lattice. The next step is to
merge them into a single grammar by setting all of their
axioms to the same symbol and aggregating all symbols
and productions: G0 = (∪Ni,∪Ti, S,∪Ri,∪Pi,∪Ai).
The probabilities of the rules starting from the axiom are
changed to 1/nf , which means that the grammar G0 gener-
ates each of the input examples with the same probability.

4.2. Merging

A new grammar is proposed by selecting two non-
terminals X1 and X2 from the current grammar and replac-
ing them with a new non-terminal Y . This operation has
two effects on the grammar. First, all the RHS occurrences
of X1 and X2 are replaced by Y :

Z1 → µ1X1λ1 merge
���

Z1 → µ1Y λ1

Z2 → µ2X2λ2 Z2 → µ2Y λ2

where µ, λ ∈ (N ∪ T)+. If Z1 = Z2, µ1 = µ2, λ1 = λ2,
then the two resulting productions are merged in one. In
that case, the attribute set of the new production is defined
as the union of the attributes of the old productions.

Second, all the productions where X1 and X2 appear on
the LHS are replaced with Y , as well:

X1 → λ1 merge
���

Y → λ1

X2 → λ2 Y → λ2

Again, if λ1 = λ2, only one production is created. If we
create a production Y → Y , we delete it from the grammar.

The merging operation basically states that in the result-
ing grammar two previously different symbols may be used
interchangeably, although with different probabilities. The
only restriction that we place on the merging operations is
that X1 and X2 have to be “label-compatible”, meaning that
the sets of terminal symbols reachable from both nodes have
to be equal. In this way we prevent nonsensical merges,
e.g. merging two non-terminals representing sky and door
regions, respectively. We also improve the speed of the in-
ference procedure by restricting the search space.

4.3. Evaluating Candidate Grammars

Our goal is to find the grammar model G that yields
the best trade-off between the fit to the input data D and
a general preference for simpler models. From a Bayesian
perspective, we want to maximize the posterior P (G|D),
which is proportional to the product of the grammar prior
P (G) and a likelihood term P (D|G). We can decompose
the grammar model into a structure part GS (representing

grammar symbols and rules) and the parameter part θg(rule
probabilities): G = (GS , θg).

The model prior P (G) then factorizes to
P (Gs)P (θg|Gs), the product of priors over structure
and parameters. To define the prior over the grammar
structure we follow a Minimum Description Length (MDL)
principle. The grammar’s description length DL(Gs) is
calculated by a simple encoding of productions, where
every occurrence of a non-terminal in a production con-
tributes with log |N | bits, |N | being the total number of
non-terminals in the grammar. Then, the structure prior
is defined as P (Gs) = e−DL(Gs). We use symmetrical
Dirichlet parameter priors, as all productions with the same
LHS form a multinomial distribution.

In [18] it was shown that in order to calculate the poste-
rior over the model structure P (Gs|D) ∝ P (Gs)P (D|Gs),
one needs to integrate over the parameter prior:

P (D|Gs) =

∫

θg

P (θg|Gs)P (D|Gs, θg)dθg (1)

Fortunately, we can approximate this integral with the
ML estimate of P (D|Gs) by using the Viterbi assumption.
This basically means that we assume that every input sam-
ple is generated by a single derivation tree of the grammar.
The likelihood of a single input example is then the product
of all rule probabilities used in the Viterbi derivation. Since
Viterbi derivations and rule probabilities θg depend on each
other, we use the Expectation-Maximization procedure to
find the optimal values for θg . In the E-step, starting from
an estimate for θg , the expected usage counts ĉ(X → λ) for
each rule are calculated. This is done by finding Viterbi
derivations for all input data and counting the number of
times every rule was used. In the M-step, the rule probabil-
ities θ̂g are re-estimated using the formula:

P̂ (X → λ) =
ĉ(X → λ)

∑

µ ĉ(X → µ)
(2)

where µ iterates over all possible LHS choices for X . The
process is iterated until convergence.

4.4. 2D Earley Parsing

In order to find the Viterbi derivations of each input lat-
tice in the E-step, we use a modified version of the Earley-
Stolcke parser [18], which we extended from parsing strings
to parsing 2D lattices. To the best of our knowledge, we
are the first to create an Earley parser for two dimensional
SCFGs. We provide its implementation details in a techni-
cal report [9].

Using Earley’s parser instead of more common CKY
parsing [28] has a number of advantages. Its worst-case
complexity is cubic in the size of the input, but it can per-
form substantially better for many well-known grammar

204204204

classes. Another appealing property is that it places no re-
strictions on the form of the grammar. This sets us apart
from previous work which either requires the grammar to
be in a Chomsky Normal Form [21], or that the rules have
to satisfy optimal substructure property [15].

4.5. Search in Model Space

In order to define a flexible search procedure, we mod-
ify the posterior calculation with a global prior weight w,
which gives us control over the balance between the likeli-
hood and the prior. Utilizing the Boltzmann’s transforma-
tion, we transform the posterior maximization into an en-
ergy minimization:

E(G|D) = −w log P (G)− log P (D|G) (3)

By setting w to a low value, we decrease the influence of the
prior, thereby making the search procedure stop earlier. For
larger values of w, we increase the tendency to generalize
beyond the data. The influence of global prior weight w on
induced grammar size is shown in Table 1.

Starting from the initial grammar, we follow a greedy
best-first approach: in each iteration, every pair of non-
terminals is considered for merging, and all of the candidate
grammars are evaluated. The candidate with the minimum
energy is accepted if it has lower energy than the current
grammar. The rule probabilities are learned in each step
using the EM procedure presented in 4.3.

The described method produced satisfactory results in
our experiments. Of course, one may imagine more intri-
cate ways of searching through the grammar space, e.g. by
using a beam search or a random walk algorithm. We leave
this for future work.

4.6. Final Model

The grammar resulting from the search procedure is still
limited to the lattice space. To cast the grammar back in the
image space, we perform two post-processing steps.

First, we collapse sequences of the same non-terminal
symbol in a production to a single symbol with correspond-
ingly modified attributes, for example:

X → λY Y µ Collapse
���

X → λY µ

A = {{s1, y1, y2, s2}} A = {{s1, y1+y2, s2}}

Second, for every production p = (X → λ1 . . . λk), we
fit a (k− 1)-variate Gaussian distribution φ(A) = N (µ̄, Σ̂)
to the set of its attributes A(p) = {α1 . . . αn}:

µ̄ =
1

n

n∑

j=1

αj (4)

Σ̂ =
1

n− 1

n∑

j=1

(αj − µ̄)(αj − µ̄)T (5)

Initial
grammar G0

Induced,
w = 0.3

Induced,
w = 1.0

|N | 126.8± 6.61 26.6± 0.89 14± 0.0
|Rh| 121.8± 6.61 65± 6.70 27.8± 2.68
|Rv| 33± 0.0 15.6± 2.60 11± 1.41

Table 1: Size comparison: initial grammar created by gram-
mar incorporation, and two inferred grammars with prior
weights of w = 0.3 and w = 1.0.

This enables us to sample productions with continuous at-
tributes, by sampling directly from the estimated size distri-
bution. Note that every production with the RHS size of k
has k− 1 degrees of freedom. If k = 1, we are dealing with
a lexical production, for which no distribution is estimated
since they have the relative size of 1 by definition.

5. Parsing in Image Space

The grammar induced in the previous section is now
amenable for image-scale parsing. However, two main
problems arise when trying to design an efficient optimiza-
tion method. First, we cannot use exact methods such as
dynamic programming as we allow our attributes to take
on continuous values. Second, due to the stochastic na-
ture of the grammar, the number of attributes can change.
In order to tackle the first issue, we use a Markov Chain
Monte Carlo approach, which reduces the optimization to
sampling. However, as the MCMC operates over a fixed-
dimensional space, we must consider its extension in the
form of Reversible jump MCMC (rjMCMC). Talton [19]
presented a rjMCMC-based method to parse parametric,
stochastic, context-free grammars, given a high-level spec-
ification of the desired model. However, their method re-
quires that only terminal symbols of the grammar contain
descriptive continuous parameters. In contrast, we present
a modified version of [19] that lifts this constraint. We also
use a different likelihood computation, utilizing a pixel-
based classifier to calculate the terminal merit.

5.1. Grammar Parsing via rjMCMC

For a given test image, our task is to find the derivation
from the grammar that has the best fit to the image. Sim-
ilarly to Sec. 4.3, we define a posterior of the derivation δ
given the image:

P (δ|I) ∝ P (I|δ)
∏

s∈δ

P (rs)
∏

s∈δ

φ(A(rs))

︸ ︷︷ ︸

P (δ)

(6)

where φ is defined in Sec. 4.6. Note that we have factorized
the prior into a rule and attribute term over all non-terminal

205205205

nodes s of the derivation tree. We can ignore the normal-
izing constant for the purposes of maximization and define
the energy through Boltzmann’s transformation:

E(δ|I) = −log P (I|δ)−
∑

s∈δ

log P (rs)−
∑

s∈δ

log φ(A(rs))

Eδ = Eimage
δ + Erule

δ + Eattribute
δ (7)

The energy that we want to minimize is composed of
three terms. The rule term is calculated by summing up
the negative log probabilities of all rules rs selected in the
derivation. The attribute term measures the discrepancy be-
tween the proposed attributes and the expected values of
attribute distributions estimated in Sec. 4.6. To calculate
the image term, we use the Random Forest pixel classi-
fier of [22], which outputs the label probability distribution
PRF for each pixel in the image.

Eimage =
∑

t∈δ

∑

xi∈t

−log PRF (lt|xi) (8)

The sum is defined over all terminals t in the derivation tree.
Integral images are used to rapidly calculate the inner sum-
mation of pixel energies over the rectangular region of each
terminal symbol. By making this choice of image support,
we can make a direct comparison to the approach of [21].

5.1.1 Search

We utilize the standard rjMCMC formulation with
Metropolis-Hastings (MH) update from [4]. The chain is
initialized with a random derivation δ = (τ, α) from the
grammar. We define α as a concatenation of all selected
attribute elements (i.e. relative RHS sizes) in a pre-order
traversal of tree τ . To ease the discussion, we will refer to
α as the parameter vector.

In every MH iteration, the chain is evolved by perform-
ing either a dimension-preserving “diffusion” move, or a
dimension-altering “jump” move [19]. In the diffusion
move, a random node is selected in the derivation tree, and
its corresponding parameters are resampled from a Gaus-
sian proposal distribution, centered on the current parame-
ters. Since the proposal function is symmetric, the accep-
tance probability for the move reduces to:

ρδ→δ
′ = min{1,

p(δ
′

|I)

p(δ|I)
} = min{1, e−(Eδ′−Eδ)} (9)

In the jump move, again a random node h is selected in the
derivation tree, and a new rule is sampled from all rules ap-
plicable to the current LHS. If the RHS size of the new pro-
duction is different from the old one, we have to re-derive
the entire tree under h. This changes not only the topology
of the derivation tree τ , but also the parameter vector from
some n-dimensional α to m-dimensional α′. In order for

the jump move to be reversible, we need to define a dimen-
sion matching function, which casts both chain states into a
common space. This can be done by supplementing the α
and α′ with additional parameter vectors u and u′, such that
n+ |u| = m+ |u′|.

We shall now define this mapping. Let k be the index
of the first parameter of node h in the concatenated vector
α, d1 the number of parameters in the subtree underneath
the node h, and d2 the number of parameters in the subtree
after resampling the rule at h. Let us also define u and u′

as vectors of d1 and d2 uniformly sampled numbers in the
interval [0, 1], respectively. We can now write the mapping
as follows:

α′
i =

⎧

⎪⎨

⎪⎩

αi , i ∈ [1, l]

ui−l , i ∈ [l + 1, l + d2]

αi−d2+d1
, i ∈ [l + d2 + 1,m]

u′
i = αi+l , i ∈ [1, d2] (10)

The reverse mapping is obtained from Eq. 10 by swap-
ping (α, u,m, d2) with (α′, u′, n, d1). This choice of di-
mension function allows us to express the acceptance prob-
ability of the jump move in a simple way1:

ρδ→δ
′ = min{1,

qτ ′(h)

qτ (h)
e−[(Eimg

δ′
+Eattr

δ′
)−(Eimg

δ
+Eattr

δ)]}

(11)

where qτ (h) is the probability of choosing a non-terminal h
in a tree τ .

The chain is guaranteed to converge to the true posterior
as the number of iterations goes to infinity. In practice, the
random walk is stopped after a certain number of iterations.
Similar to [19], we use parallel tempering to improve the
speed of convergence. Eight chains are run in parallel, with
temperature quotient between chains set to 1.3. For jump
moves, we employ the technique of delayed rejection: a
diffusion move is attempted immediately after a jump move,
and two moves are accepted or rejected in unison.

6. Results

In all grammar learning experiments, the training set was
limited to 30 images to keep the induction time within rea-
sonable bounds. In image parsing experiments, w is set to
0.3, and rjMCMC search is run for 100k iterations. The
process is repeated 5 times, and the minimum energy chain
state is selected as the result.

1The proof of Eq. 11 is given in the supplementary material.

206206206

6.1. Parsing Existing Facades

To show that our grammar learning is usable on real-
world examples, we use the well-established Ecole Centrale
Paris (ECP) facade parsing dataset [13], which contains 104
images of Haussmannian-style buildings. We use the 5-fold
cross-validation experimental setup from [8].

In Table 2 we compare the accuracies achieved by four
different semantic facade segmentation methods. Each
method was evaluated on the ground truth annotations
from [8]. We evaluate the accuracy in terms of class-wise
and total pixel averages. As a baseline, we use the MAP es-
timation of the Random Forest classifier, provided by [22].
Our approach clearly outperforms the baseline in the total
pixel accuracy and all but one class. Since the RF classifier
output is used in both our method and the RL-based ap-
proach of [21], our methods are directly comparable. The
results that we obtain show that learned grammars can be
just as effective in facade parsing as their manually written
counterparts, even outperforming them in some cases.

To put the results in context, we also show the perfor-
mance of the state of the art (SOA) method in facade pars-
ing [8]. However, as the SOA method uses segment clas-
sification and object detectors, it is not strictly comparable,
since we use pixel classification cues. A promising direc-
tion for future work would be to learn grammars from the
output of methods such as [8], eliminating the need for la-
beled ground truth images.

6.2. Generating Novel Designs

The advantage of having a grammar for a certain style of
buildings is that we can easily sample new designs from it.
In this scenario, we generate a random derivation from the
grammar by starting from the grammar axiom as the first
node of the tree. At each node, we sample a rule based on
its probability in the grammar. The relative sizes of the RHS
are sampled from the estimated Gaussian distribution φ. Fi-
nally, the terminal symbols are replaced with instances of

Class RF[22] RL[21] Ours SOA[8]

Window 29 62 66 75
Wall 58 82 80 88
Balcony 35 58 49 70
Door 79 47 50 67
Roof 51 66 71 74
Sky 73 95 91 97
Shop 20 88 81 93

Overall 48.55 74.71 74.82 84.17

Table 2: Per-class and overall pixel accuracy (in percent)
on the ECP dataset: RF - Random Forest. RL - Manually
designed grammar. SOA - State of the art.

Figure 3: Example images from the ECP dataset parsed
with our induced grammar. Note that the output is not re-
stricted to a grid as in [21].

architectural elements from a 3D shape and texture library.
We rendered a whole street of buildings sampled from our
induced grammar in CityEngine [14]. The results are shown
in Fig. 4, where we also demonstrate the effect of the prior
weight parameter w on the generalization capabilities of
the grammar. In Fig. 4b, we had intentionally set the prior
weight too high, hence all compatible non-terminal symbols
were merged, leading to an excessively general grammar.
With the proper choice of w, we can find a good trade-off
between the data fit and generalization, as shown in Fig. 4a.

7. Conclusion and Future Work

In this work we introduced a principled way of learning
procedural split grammars from labeled data. The validity
of our approach is demonstrated using an example of ur-
ban modeling. Our induced procedural grammar not only
generates new buildings of the same style, but also achieves
exceptional results in facade parsing, outperforming similar
approaches which require a manually designed set of gram-
mar rules.

In future work, other strategies for the design of grammar
merging operators will be explored, undoubtedly requiring
elaborate search strategies. Furthermore, more complex
shape grammars could be inferred by extending the Earley
parser, which is currently limited to grid-like designs. We
will also investigate the feasibility of designing an iterative
approach for image parsing. In each step of this approach,
a more refined grammar is inferred through initial labeling,
augmenting in turn the labeling in subsequent iterations.

Acknowledgement. This work was supported by ERC
Advanced Grant VarCity and Research Programme of the
Fund for Scientific Research - Flanders (Belgium) (FWO -
G.0004.08).

207207207

(a) w=0.3 (b) w=1.0

Figure 4: Generating a scene with different grammars. (a)
Samples from the Bayes-optimal grammar. (b) The gram-
mar is over-generalizing due to high prior weight.

References

[1] D. G. Aliaga, P. A. Rosen, and D. R. Bekins. Style
grammars for interactive visualization of architecture.
TVCG, 13(4), 2007. 2

[2] M. Bokeloh, M. Wand, and H.-P. Seidel. A connec-
tion between partial symmetry and inverse procedural
modeling. SIGGRAPH, 29(4), 2010. 2

[3] E. M. Gold. Language identification in the limit. In-

formation and Control, 10(5), 1967. 2

[4] P. J. Green. Reversible jump markov chain monte
carlo computation and bayesian model determination.
Biometrika, 82(4), 1995. 6

[5] F. Han and S.-C. Zhu. Bottom-up/top-down image
parsing with attribute grammar. IEEE TPAMI, 31(1),
2009. 2

[6] J. J. Horning. A study of grammatical inference. PhD
thesis, Stanford, CA, USA, 1969. AAI7010465. 2

[7] I. Hwang, A. Stuhlmüller, and N. D. Goodman. Induc-
ing probabilistic programs by bayesian program merg-
ing. CoRR, arXiv:1110.5667, 2011. 2

[8] A. Martinović, M. Mathias, J. Weissenberg, and
L. Van Gool. A three-layered approach to facade pars-
ing. In ECCV, 2012. 7

[9] A. Martinović and L. Van Gool. Earley parsing for 2D
stochastic context free grammars. Technical Report
KUL/ESAT/PSI/1301, KU Leuven, 2013. 4

[10] M. Mathias, A. Martinović, J. Weissenberg, and
L. Van Gool. Procedural 3D building reconstruction
using shape grammars and detectors. In 3DIMPVT,
2011. 1

[11] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van
Gool. Procedural modeling of buildings. SIGGRAPH,
25(3), 2006. 1

[12] P. Muller, G. Zeng, P. Wonka, and L. Van Gool.
Image-based procedural modeling of facades. SIG-

GRAPH, 26(3), 2007. 2

[13] Olivier Teboul. Ecole Centrale Paris Facades
Database. http://www.mas.ecp.fr/vision/
Personnel/teboul/data.php, 2010. 7

[14] Procedural. CityEngine. http://www.

procedural.com/, 2010. 7

[15] H. Riemenschneider, U. Krispel, W. Thaller,
M. Donoser, S. Havemann, D. W. Fellner, and
H. Bischof. Irregular lattices for complex shape
grammar facade parsing. In CVPR, 2012. 2, 3, 5

[16] N. Ripperda and C. Brenner. Reconstruction of façade
structures using a formal grammar and rjmcmc. In
DAGM, 2006. 1, 2

[17] G. Stiny. Pictorial and formal aspects of shape and
shape grammars, 1975. Birkhauser Verlag, Basel. 1

[18] A. Stolcke. Bayesian Learning of Probabilistic Lan-

guage Models. PhD thesis, University of California at
Berkeley, 1994. 2, 4

[19] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch,
and V. Koltun. Metropolis procedural modeling. SIG-

GRAPH, 30(2), 2011. 2, 5, 6

[20] J. O. Talton, L. Yang, R. Kumar, M. Lim, N. D. Good-
man, and R. Měch. Learning design patterns with
bayesian grammar induction. In UIST, 2012. 2

[21] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis,
and N. Paragios. Shape grammar parsing via rein-
forcement learning. In CVPR, 2011. 1, 5, 6, 7

[22] O. Teboul, L. Simon, P. Koutsourakis, and N. Para-
gios. Segmentation of building facades using proce-
dural shape priors. In CVPR, 2010. 2, 6, 7

[23] A. Toshev, P. Mordohai, and B. Taskar. Detecting and
parsing architecture at city scale from range data. In
CVPR, 2010. 1

[24] C. Vanegas, D. Aliaga, and B. Beneš. Building recon-
struction using manhattan-world grammars. In CVPR,
2010. 1

[25] C. A. Vanegas, D. G. Aliaga, P. Wonka, P. Müller,
P. Waddell, and B. Watson. Modelling the appearance
and behaviour of urban spaces. Comput. Graph. Fo-

rum, 29(1), 2010. 1

[26] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and
P. Krištof. Inverse procedural modeling by automatic
generation of l-systems. Computer Graphics Forum,
29(2), 2010. 2

[27] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky.
Instant architecture. SIGGRAPH, 22(3), 2003. 1

[28] D. H. Younger. Recognition and parsing of context-
free languages in time n3. Information and Control,
10(2), 1967. 4

208208208

