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Abstract

Recently, techniques for applying convolutional neural net-
works to graph-structured data have emerged. Graph con-
volutional neural networks (GCNNs) have been used to ad-
dress node and graph classification and matrix completion.
Although the performance has been impressive, the current
implementations have limited capability to incorporate un-
certainty in the graph structure. Almost all GCNNs process
a graph as though it is a ground-truth depiction of the re-
lationship between nodes, but often the graphs employed in
applications are themselves derived from noisy data or mod-
elling assumptions. Spurious edges may be included; other
edges may be missing between nodes that have very strong
relationships. In this paper we adopt a Bayesian approach,
viewing the observed graph as a realization from a paramet-
ric family of random graphs. We then target inference of the
joint posterior of the random graph parameters and the node
(or graph) labels. We present the Bayesian GCNN framework
and develop an iterative learning procedure for the case of
assortative mixed-membership stochastic block models. We
present the results of experiments that demonstrate that the
Bayesian formulation can provide better performance when
there are very few labels available during the training pro-
cess.

1 Introduction

Novel approaches for applying convolutional neural net-
works to graph-structured data have emerged in recent
years. Commencing with the work in (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015), there have been numer-
ous developments and improvements. Although these graph
convolutional neural networks (GCNNs) are promising, the
current implementations have limited capability to handle
uncertainty in the graph structure, and treat the graph topol-
ogy as ground-truth information. This in turn leads to an in-
ability to adequately characterize the uncertainty in the pre-
dictions made by the neural network.

In contrast to this past work, we employ a Bayesian
framework and view the observed graph as a realization
from a parametric random graph family. The observed ad-
jacency matrix is then used in conjunction with features and
labels to perform joint inference. The results reported in this
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paper suggest that this formulation, although computation-
ally more demanding, can lead to an ability to learn more
from less data, a better capacity to represent uncertainty,
and better robustness and resilience to noise or adversarial
attacks.

In this paper, we present the novel Bayesian GCNN
framework and discuss how inference can be performed. To
provide a concrete example of the approach, we focus on
a specific random graph model, the assortative mixed mem-
bership block model. We address the task of semi-supervised
classification of nodes and examine the resilience of the
derived architecture to random perturbations of the graph
topology.

2 Related work

A significant body of research focuses on using neural net-
works to analyze structured data when there is an underlying
graph describing the relationship between data items. Early
work led to the development of the graph neural network
(GNN) (Frasconi, Gori, and Sperduti 1998; Scarselli, Gori,
and others 2009; Li et al. 2016b). The GNN approaches
rely on recursive processing and propagation of informa-
tion across the graph. Training can often take a long time to
converge and the required time scales undesirably with re-
spect to the number of nodes in the graph, although recently
an approach to mitigate this has been proposed by (Liao,
Brockschmidt, and others 2018).

Graph convolutional neural networks (GCNNs) have
emerged more recently, with the first proposals in (Bruna
et al. 2013; Henaff, Bruna, and LeCun 2015; Duvenaud,
Maclaurin, and others 2015). A spectral filtering approach
was introduced in (Defferrard, Bresson, and Vandergheynst
2016) and this method was simplified or improved in (Kipf
and Welling 2017; Levie, Monti, and others 2017; Chen,
Ma, and Xiao 2018). Spatial filtering or aggregation strate-
gies were adopted in (Atwood and Towsley 2016; Hamilton,
Ying, and Leskovec 2017). A general framework for train-
ing neural networks on graphs and manifolds was presented
by (Monti, Boscaini, and others 2017) and the authors ex-
plain how several of the other methods can be interpreted as
special cases.

The performance of the GCNNs can be improved by in-
corporating attention nodes (Veličković et al. 2018), lead-
ing to the graph attention network (GAT). Experiments
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have also demonstrated that gates, edge conditioning, and
skip connections can prove beneficial (Bresson and Laurent
2017; Sukhbaatar, Szlam, and Fergus 2016; Simonovsky and
Komodakis 2017). In some problem settings it is also bene-
ficial to consider an ensemble of graphs (Anirudh and Thia-
garajan 2017), multiple adjacency matrices (Such, Sah, and
others 2017) or the dual graph (Monti, Shchur, and others
2018). Compared to this past work, the primary methodolog-
ical novelty in our proposed approach involves the adoption
of a Bayesian framework and the treatment of the observed
graph as additional data to be used during inference.

There is a rich literature on Bayesian neural networks,
commencing with pioneering work (Tishby, Levin, and Solla
1989; Denker and Lecun 1991; MacKay 1992; Neal 1993)
and extending to more recent contributions (Hernández-
Lobato and Adams 2015; Gal and Ghahramani 2016; Sun,
Chen, and Carin 2017; Louizos and Welling 2017). To the
best of our knowledge, Bayesian neural networks have not
yet been developed for the analysis of data on graphs.

3 Background

Graph convolutional neural networks (GCNNs)

Although graph convolutional neural networks can be ap-
plied to a variety of inference tasks, in order to make the
description more concrete we consider the task of identify-
ing the labels of nodes in a graph. Suppose that we observe a
graph Gobs = (V, E), comprised of a set of N nodes V and a
set of edges E . For each node we measure data (or derive fea-
tures), denoted xi for node i. For some subset of the nodes
L ⊂ V , we can also measure labels YL = {yi : i ∈ L}.
In a classification context, the label yi identifies a category;
in a regression context yi can be real-valued. Our task is to
use the features x and the observed graph structure Gobs to
estimate the labels of the unlabelled nodes.

A GCNN performs this task by performing graph convo-
lution operations within a neural network architecture. Col-
lecting the feature vectors as the rows of a matrix X , the
layers of a GCNN (Defferrard, Bresson, and Vandergheynst
2016; Kipf and Welling 2017) are of the form:

H
(1) = σ(AGXW

(0)) (1)

H
(l+1) = σ(AGH

(l)
W

(l)) (2)

Here W
(l) are the weights of the neural network at layer

l, H(l) are the output features from layer l − 1, and σ is
a non-linear activation function. The matrix AG is derived
from the observed graph and determines how the output
features are mixed across the graph at each layer. The fi-

nal output for an L-layer network is Z = H
(L). Training

of the weights of the neural network is performed by back-
propagation with the goal of minimizing an error metric be-
tween the observed labels Y and the network predictions
Z. Performance improvements can be achieved by enhanc-
ing the architecture with components that have proved useful
for standard CNNs, including attention nodes (Veličković et
al. 2018), and skip connections and gates (Li et al. 2016b;
Bresson and Laurent 2017).

Although there are many different flavours of GCNNs, all
current versions process the graph as though it is a ground-
truth depiction of the relationship between nodes. This is
despite the fact that in many cases the graphs employed
in applications are themselves derived from noisy data or
modelling assumptions. Spurious edges may be included;
other edges may be missing between nodes that have very
strong relationships. Incorporating attention mechanisms as
in (Veličković et al. 2018) addresses this to some extent; at-
tention nodes can learn that some edges are not represen-
tative of a meaningful relationship and reduce the impact
that the nodes have on one another. But the attention mecha-
nisms, for computational expediency, are limited to process-
ing existing edges — they cannot create an edge where one
should probably exist. This is also a limitation of the en-
semble approach of (Anirudh and Thiagarajan 2017), where
learning is performed on multiple graphs derived by erasing
some edges in the graph.

Bayesian neural networks

We consider the case where we have training inputs X =
{x1, ..., xn} and corresponding outputs Y = {y1, ..., yn}.
Our goal is to learn a function y = f(x) via a neural net-
work with fixed configuration (number of layers, activation
function, etc., so that the weights are sufficient statistics for
f ) that provides a likely explanation for the relationship be-
tween x and y. The weights W are modelled as random vari-
ables in a Bayesian approach and we introduce a prior dis-
tribution over them. Since W is not deterministic, the output
of the neural network is also a random variable. Prediction
for a new input x can be formed by integrating with respect
to the posterior distribution of W as follows:

p(y|x,X,Y) =

∫
p(y|x,W )p(W |X,Y) dW . (3)

The term p(y|x,W ) can be viewed as a likelihood; in a clas-
sification task it is modelled using a categorical distribution
by applying a softmax function to the output of the neural
network; in a regression task a Gaussian likelihood is often
an appropriate choice. The integral in eq. (3) is in general
intractable. Various techniques for inference of p(W |X,Y)
have been proposed in the literature, including expectation
propagation (Hernández-Lobato and Adams 2015), varia-
tional inference (Gal and Ghahramani 2016; Sun, Chen, and
Carin 2017; Louizos and Welling 2017), and Markov Chain
Monte Carlo methods (Neal 1993; Korattikara et al. 2015;
Li et al. 2016a). In particular, in (Gal and Ghahramani 2016),
it was shown that with suitable variational approximation
for the posterior of W , Monte Carlo dropout is equivalent to
drawing samples of W from the approximate posterior and
eq. (3) can be approximated by a Monte Carlo integral as
follows:

p(y|x,X,Y) ≈
1

T

S∑
i=1

p(y|x,Wi) , (4)

where S weights Wi are obtained via dropout.
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4 Methodology

We consider a Bayesian approach, viewing the observed
graph as a realization from a parametric family of random
graphs. We then target inference of the joint posterior of
the random graph parameters, weights in the GCNN and
the node (or graph) labels. Since we are usually not directly
interested in inferring the graph parameters, posterior esti-
mates of the labels are obtained by marginalization. The goal
is to compute the posterior probability of labels, which can
be written as:

p(Z|YL,X,Gobs) =

∫
p(Z|W,G,X)p(W |YL,X,G)

p(G|λ)p(λ|Gobs) dW dG dλ . (5)

Here W is a random variable representing the weights of a
Bayesian GCNN over graph G, and λ denotes the parame-
ters that characterize a family of random graphs. The term
p(Z|W,G,X) can be modelled using a categorical distri-
bution by applying a softmax function to the output of the
GCNN, as discussed above.

This integral in eq. (5) is intractable. We can adopt a
number of strategies to approximate it, including variational
methods and Markov Chain Monte Carlo (MCMC). For
example, in order to approximate the posterior of weights
p(W |YL,X,G), we could use variational inference (Gal
and Ghahramani 2016; Sun, Chen, and Carin 2017; Louizos
and Welling 2017) or MCMC (Neal 1993; Korattikara et
al. 2015; Li et al. 2016a). Various parametric random graph
generation models can be used to model p(λ|Gobs), for ex-
ample a stochastic block model (Peixoto 2017), a mixed
membership stochastic block model (Airoldi et al. 2009), or
a degree corrected block model (Peng and Carvalho 2016).
For inference of p(λ|Gobs), we can use MCMC (Li, Ahn,
and Welling 2016) or variational inference (Gopalan, Ger-
rish, and others 2012).

A Monte Carlo approximation of eq. (5) is:

p(Z|YL,X,Gobs) ≈

1

V

V∑
v

1

NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,v,Gi,v,X) . (6)

In this approximation, V samples λv are drawn from
p(λ|Gobs); the precise method for generating these samples
from the posterior varies depending on the nature of the
graph model. The NG graphs Gi,v are sampled from p(G|λv)
using the adopted random graph model. S weight matri-
ces Ws,i,v are sampled from p(W |YL,X,Gi,v) from the
Bayesian GCN corresponding to the graph Gi,v .

Example: Assortative mixed membership
stochastic block model

For the Bayesian GCNNs derived in this paper, we use an
assortative mixed membership stochastic block model (a-
MMSBM) for the graph (Gopalan, Gerrish, and others 2012;
Li, Ahn, and Welling 2016) and learn its parameters λ =
{π, β} using a stochastic optimization approach. The as-
sortative MMSBM, described in the following section, is a

good choice to model a graph that has relatively strong com-
munity structure (such as the citation networks we study in
the experiments section). It generalizes the stochastic block
model by allowing nodes to belong to more than one com-
munity and to exhibit assortative behaviour, in the sense that
a node can be connected to one neighbour because of a re-
lationship through community A and to another neighbour
because of a relationship through community B.

Since Gobs is often noisy and may not fit the adopted
parametric block model well, sampling πv and βv from
p(π, β|Gobs) can lead to high variance. This can lead to the
sampled graphs Gi,v being very different from Gobs. Instead,
we replace the integration over π and β with a maximum a
posteriori estimate (MacKay 1996). We approximately com-
pute

{π̂, β̂} = argmax
β,π

p(β, π|Gobs) (7)

by incorporating suitable priors over β and π and use the
approximation:

p(Z|YL,X,Gobs) ≈
1

NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,Gi,X) . (8)

In this approximation, Ws,i are approximately sampled
from p(W |YL,X,Gi) using Monte Carlo dropout over the
Bayesian GCNN corresponding to Gi. The Gi are sampled

from p(G|π̂, β̂).

Posterior inference for the MMSBM

For the undirected observed graph Gobs = {yab ∈ {0, 1} :
1 ≤ a < b ≤ N}, yab = 0 or 1 indicates absence or
presence of a link between node a and node b. In MMSBM,
each node a has a K dimensional community membership
probability distribution πa = [πa1, ...πaK ]T , where K is
the number of categories/communities of the nodes. For
any two nodes a and b, if both of them belong to the same
community, then the probability of a link between them
is significantly higher than the case where the two nodes
belong to different communities (Airoldi et al. 2009). The
generative model is described as:

For any two nodes a and b,

• Sample zab ∼ πa and zba ∼ πb.

• If zab = zba = k, sample a link yab ∼ Bernoulli(βk).
Otherwise, yab ∼ Bernoulli(δ).

Here, 0 ≤ βk ≤ 1 is termed community strength of the
k-th community and δ is the cross community link proba-
bility, usually set to a small value. The joint posterior of the
parameters π and β is given as:

p(π, β|Gobs) ∝ p(β)p(π)p(Gobs|π, β)

=

K
∏

k=1

p(βk)

N
∏

a=1

p(πa)
∏

1≤a<b≤N

∑

zab,zba

p(yab, zab, zba|πa, πb, β) .

(9)

We use a Beta(η) distribution for the prior of βk and a
Dirichlet distribution, Dir(α), for the prior of πa, where η
and α are hyper-parameters.
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Expanded mean parameterisation

Maximizing the posterior of eq. (9) is a constrained opti-

mization problem with βk, πak ∈ (0, 1) and

K∑
k=1

πak = 1.

Employing a standard iterative algorithm with a gradient
based update rule does not guarantee that the constraints
will be satisfied. Hence we consider an expanded mean pa-
rameterisation (Patterson and Teh 2013) as follows. We in-
troduce the alternative parameters θk0, θk1 ≥ 0 and adopt
as the prior for these parameters a product of independent
Gamma(η, ρ) distributions. These parameters are related to
the original parameter βk through the relationship βk =

θk1
θk0 + θk1

. This results in a Beta(η) prior for βk. Similarly,

we introduce a new parameter φa ∈ R
K
+ and adopt as its

prior a product of independent Gamma(α, ρ) distributions.

We define πak =
φak∑K

l=1 φal

, which results in a Dirichlet

prior, Dir(α), for πa. The boundary conditions θki, φak ≥ 0
can be handled by simply taking the absolute value of the
update.

Stochastic optimization and mini-batch sampling

We use preconditioned gradient ascent to maximize the joint
posterior in eq. (9) over θ and φ. In many graphs that are
appropriately modelled by a stochastic block model, most
of the nodes belong strongly to only one of the K commu-
nities, so the MAP estimate for many πa lies near one of
the corners of the probability simplex. This suggests that
the scaling of different dimensions of φa can be very dif-
ferent. Similarly, as Gobs is typically sparse, the community
strengths βk are very low, indicating that the scales of θk0
and θk1 are very different. We use preconditioning matrices
G(θ) = diag(θ)−1 and G(φ) = diag(φ)−1 as in (Patterson
and Teh 2013), to obtain the following update rules:

θ
(t+1)
ki

=

∣

∣

∣
θ
(t)
ki

+ ǫt

(

η − 1− ρθ
(t)
ki

+ θ
(t)
ki

N
∑

a=1

N
∑

b=a+1

gab(θ
(t)
ki

)
)
∣

∣

∣
, (10)

φ
(t+1)
ak

=
∣

∣

∣
φ
(t)
ak

+ ǫt

(

α− 1− ρφ
(t)
ak

N
∑

b=1,b 6=a

gab(φ
(t)
ak

)
)
∣

∣

∣
, (11)

where ǫt = ǫ0(t + τ)−κ is a decreasing step-size,
and gab(θki) and gab(φak) are the partial derivatives of
log p(yab|πa, πb, β) w.r.t. θki and φak, respectively. Detailed
expressions for these derivatives are provided in eqs. (9) and
(14) of (Li, Ahn, and Welling 2016).

Implementation of (10) and (11) is O(N2K) per itera-
tion, where N is the number of nodes in the graph and K
the number of communities. This can be prohibitively ex-
pensive for large graphs. We instead employ a stochastic
gradient based strategy as follows. For update of θki’s in
eq. (10), we split the O(N2) sum over all edges and non-

edges,
∑N

a=1

∑N

b=a+1, into two separate terms. One of these
is a sum over all observed edges and the other is a sum over
all non-edges. We calculate the term corresponding to ob-
served edges exactly (in the sparse graphs of interest, the

number of edges is closer to O(N) than O(N2)). For the
other term we consider a mini-batch of 1 percent of ran-
domly sampled non-edges and scale the sum by a factor of
100.

At any single iteration, we update the φak values for only
n randomly sampled nodes (n < N ), keeping the rest of
them fixed. For the update of φak values of any of the ran-
domly selected n nodes, we split the sum in eq. (11) into two
terms. One involves all of the neighbours (the set of neigh-
bours of node a is denoted by N (a)) and the other involves
all the non-neighbours of node a. We calculate the first term
exactly. For the second term, we use n − |N (a)| randomly
sampled non-neighbours and scale the sum by a factor of
N − 1− |N (a)|

n− |N (a)|
to maintain unbiasedness of the stochastic

gradient. Overall the update of the φ values involve O(n2K)
operations instead of O(N2K) complexity for a full batch
update.

Since the posterior in the MMSBM is very high-
dimensional, random initialization often does not work well.
We train a GCNN (Kipf and Welling 2017) on Gobs and use
its softmax output to initialize π and then initialize β based
on the block structure imposed by π. The resulting algorithm
is given in Algorithm 1.

Algorithm 1 Bayesian-GCNN

Input: Gobs, X, YL

Output: p(Z|YL,X,Gobs)

1: Initialization: train a GCNN to initialize the inference in
MMSBM and the weights in the Bayesian GCNN.

2: Perform Nb iterations of MMSBM inference to obtain

(π̂, β̂).
3: for i = 1 : NG do

4: Sample graph Gi ∼ p(G|π̂, β̂).
5: for s = 1 : S do
6: Sample weights Ws,i via MC dropout by training a

GCNN over the graph Gi.
7: end for
8: end for
9: Approximate p(Z|YL,X,Gobs) using eq. (8).

5 Experimental Results

We explore the performance of the proposed Bayesian
GCNN on three well-known citation datasets (Sen, Namata,
and others 2008): Cora, CiteSeer, and Pubmed. In these
datasets each node represents a document and has a sparse
bag-of-words feature vector associated with it. Edges are
formed whenever one document cites another. The direc-
tion of the citation is ignored and an undirected graph with a
symmetric adjacency matrix is constructed. Each node label
represents the topic that is associated with the document.
We assume that we have access to several labels per class
and the goal is to predict the unknown document labels. The
statistics of these datasets are represented in Table 1.

The hyperparameters of GCNN are the same for all of the
experiments and are based on (Kipf and Welling 2017). The
GCNN has two layers where the number of hidden units is
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Cora CiteSeer Pubmed

Nodes 2708 3327 19717
Edges 5429 4732 44338
Features per node 1433 3703 500
Classes 7 6 3

Table 1: Summary of the datasets used in the experiments.

16, the learning rate is 0.01, the L2 regularization parameter
is 0.0005, and the dropout rate is 50% at each layer. These
hyperparameters are also used in the Bayesian GCNN. In
addition, the hyperparameters associated with MMSBM in-
ference are set as follows: η = 1, α = 1, ρ = 0.001, n =
500, ǫ0 = 1, τ = 1024 and κ = 0.5.

Semi-supervised node classification

We first evaluate the performance of the proposed Bayesian
GCNN algorithm and compare it to the state-of-the-art
methods on the semi-supervised node classification prob-
lem. In addition to the 20 labels per class training set-
ting explored in previous work (Kipf and Welling 2017;
Veličković et al. 2018), we also evaluate the performance of
these algorithms under more severely limited data scenarios
where only 10 or 5 labels per class are available.

The data is split into train and test datasets in two different
ways. The first is the fixed data split originating from (Yang,
Cohen, and Salakhutdinov 2016). In 5 and 10 training labels
per class cases, we construct the fixed split of the data by us-
ing the first 5 and 10 labels in the original partition of (Yang,
Cohen, and Salakhutdinov 2016). The second type of split is
random where the training and test sets are created at ran-
dom for each run. This provides a more robust comparison
of the model performance as the specific split of data can
have a significant impact in the limited training labels case.

We compare ChebyNet (Defferrard, Bresson, and Van-
dergheynst 2016), GCNN (Kipf and Welling 2017), and
GAT (Veličković et al. 2018) to the Bayesian GCNN pro-
posed in this paper. Tables 2, 3, 4 show the summary of re-
sults on Cora, Citeseer and Pubmed datasets respectively.
The results are from 50 runs with random weight initial-
izations. The standard errors in the fixed split scenarios are
due to the random initialization of weights whereas the ran-
dom split scenarios have higher variance due to the addi-
tional randomness induced by the split of data. We con-
ducted Wilcoxon signed rank tests to evaluate the signifi-
cance of the difference between the best-performing algo-
rithm and the second-best. The asterisks in the table indicate
the scenarios where the score differentials were statistically
significant for a p-value threshold of 0.05.

Note that the implementation of the GAT method as pro-
vided by the authors employs a validation set of 500 ex-
amples which is used to monitor validation accuracy. The
model that yields the minimum validation error is selected
as final model. We report results without this validation set
monitoring as large validation sets are not always available
and the other methods examined here do not require one.

The results of our experiments illustrate the improvement

Random split 5 labels 10 labels 20 labels

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6
GCNN 70.0±3.7 76.0±2.2 79.8±1.8
GAT 70.4±3.7 76.6±2.8 79.9±1.8
Bayesian GCN ∗74.6±2.8 ∗77.5±2.6 80.2±1.5

Fixed split

ChebyNet 67.9±3.1 72.7±2.4 80.4±0.7
GCNN 74.4±0.8 74.9±0.7 81.6±0.5
GAT 73.5±2.2 74.5±1.3 81.6±0.9
Bayesian GCN ∗75.3±0.8 ∗76.6±0.8 81.2±0.8

Table 2: Prediction accuracy (percentage of correctly pre-
dicted labels) for Cora dataset. Asterisks denote scenarios
where a Wilcoxon signed rank test indicates a statistically
significant difference between the scores of the best and
second-best algorithms.

Random split 5 labels 10 labels 20 labels

ChebyNet 58.5±4.8 65.8±2.8 67.5±1.9
GCNN 58.5±4.7 65.4±2.6 67.8±2.3
GAT 56.7±5.1 64.1±3.3 67.6±2.3
Bayesian GCN ∗63.0±4.8 ∗69.9±2.3 ∗71.1±1.8

Fixed split

ChebyNet 53.0±1.9 67.7±1.2 70.2±0.9
GCNN 55.4±1.1 65.8±1.1 70.8±0.7
GAT 55.4±2.6 66.1±1.7 70.8±1.0
Bayesian GCN ∗57.3±0.8 ∗70.8±0.6 ∗72.2±0.6

Table 3: Prediction accuracy (percentage of correctly pre-
dicted labels) for Citeseer dataset. Asterisks denote scenar-
ios where a Wilcoxon signed rank test indicates a statisti-
cally significant difference between the scores of the best
and second-best algorithms.

in classification accuracy provided by Bayesian GCNN for
Cora and Citeseer datasets in the random split scenarios.
The improvement is more pronounced when the number
of available labels is limited to 10 or 5. In addition to in-
creased accuracy, Bayesian GCNN provides lower variance
results in most tested scenarios. For the Pubmed dataset, the
Bayesian GCNN provides the best performance for the 5-
label case, but is outperformed by other techniques for the
10- and 20-label cases. The Pubmed dataset has a much
lower intra-community density than the other datasets and
a heavy-tailed degree distribution. The assortative MMSBM
is thus a relatively poor choice for the observed graph, and
this prevents the Bayesian approach from improving the pre-
diction accuracy.

In order to provide some insight into the information
available from the posterior of the MMSBM, we examined
the 50 observed edges with lowest average posterior prob-
ability for both the Cora and Citeseer graphs. In the major-
ity of cases the identified edges were inter-community (con-
necting edges with different labels) or had one node with
very low degree (lower than 2). This accounted for 39 of the
50 edges for Cora and 42 of the 50 edges for Citeseer. For
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Random split 5 labels 10 labels 20 labels

ChebyNet 62.7±6.9 68.6±5.0 74.3±3.0
GCNN 69.7±4.5 ∗73.9±3.4 ∗77.5±2.5
GAT 68.0±4.8 72.6±3.6 76.4±3.0
Bayesian GCNN 70.2±4.5 73.3±3.1 76.0±2.6

Fixed split

ChebyNet 68.1±2.5 69.4±1.6 76.0±1.2
GCNN 69.7±0.5 ∗72.8±0.5 ∗78.9±0.3
GAT 70.0±0.6 71.6±0.9 76.9±0.5
Bayesian GCNN ∗70.9±0.8 72.3±0.8 76.6±0.7

Table 4: Prediction accuracy (percentage of correctly pre-
dicted labels) for Pubmed dataset. Asterisks denote scenar-
ios where a Wilcoxon signed rank test indicates a statisti-
cally significant difference between the scores of the best
and second-best algorithms.

the unobserved edges, we analyzed the most probable edges
from the posterior. Most of these are intra-community edges
(connecting nodes with the same label). For Cora 177 of the
200 edges identified as most probable are intra-community,
and for Citeseer 197 of 200.

Classification under node attacks

Several studies have shown the vulnerability of deep neu-
ral networks to adversarial examples (Goodfellow, Shlens,
and Szegedy 2015). For graph convolutional neural net-
works, (Zügner, Akbarnejad, and Günnemann 2018) re-
cently introduced a method to create adversarial attacks that
involve limited perturbation of the input graph. The aim of
the study was to demonstrate the vulnerability of the graph-
based learning algorithms. Motivated by this study we use
a random attack mechanism to compare the robustness of
GCNN and Bayesian GCNN algorithms in the presence of
noisy edges.

Random node attack mechanism: In each experiment,
we target one node to attack. We choose a fixed number of
perturbations ∆ = dv0

+ 2, where v0 is the node we want
to attack, and dv0 is the degree of this target node. The ran-
dom attack involves removing (dv0 + 2)/2 nodes from the
target node’s set of neighbors, and sampling (dv0

+ 2)/2
cross-community edges (randomly adding neighbors that
have different labels than the target node) to the target node.
For each target node, this procedure is repeated five times
so that five perturbed graphs are generated. There are two
types of adversarial mechanisms in (Zügner, Akbarnejad,
and Günnemann 2018). In the first type, called an evasion
attack, data is modified to fool an already trained classifier,
and in the second, called a poisoning attack, the perturbation
occurs before the model training. All of our experiments are
performed in the poisoning attack fashion.

Selection of target node: Similar to the setup in (Zügner,
Akbarnejad, and Günnemann 2018), we choose 40 nodes
from the test set that are correctly classified and simulate
attacks on these nodes. The margin of classification for node

v is defined as:

marginv = scorev(ctrue)− max
c 6=ctrue

scorev(c) ,

where ctrue is the true class of node v and scorev denotes
the classification score vector reported by the classifier for
node v. A correct classification leads to a positive margin;
incorrect classifications are associated with negative mar-
gins. For each algorithm we choose the 10 nodes with the
highest margin of classification and 10 nodes with the low-
est positive margin of classification. The remaining 20 nodes
are selected at random from the set of nodes correctly clas-
sified by both algorithms. Thus, among the 40 target nodes,
the two algorithms are sharing at least 20 common nodes.

Evaluation: For each targeted node, we run the algorithm
for 5 trials. The results of this experiment are summarized in
Tables 5 and 6. These results illustrate average performance
over the target nodes and the trials. Note that the accuracy
figures in these tables are different from Table 2 and 3 as
here we are reporting the accuracy for the 40 selected target
nodes instead of the entire test set.

No attack Random attack

Accuracy

GCNN 85.55% 55.50%
Bayesian GCNN 86.50% 69.50%

Classifier margin

GCNN 0.557 0.152
Bayesian GCNN 0.616 0.387

Table 5: Comparison of accuracy and classifier margins
for the no attack and random attack scenarios on the Cora
dataset. The results are for 40 selected target nodes and 5
runs of the algorithms for each target.

No attack Random attack

Accuracy

GCNN 88.5% 43.0%
Bayesian GCNN 87.0% 66.5%

Classifier margin

GCNN 0.448 0.014
Bayesian GCNN 0.507 0.335

Table 6: Comparison of accuracy and classifier margins for
the no attack and random attack scenarios on the Citeseer
dataset. The results are for 40 selected target nodes and 5
runs of the algorithms for each target.

Overall the attacks affect both algorithms severely. GCNN
loses 30% in prediction accuracy for the Cora dataset and
44.5% for Citeseer whereas the drop in prediction accuracy
is more limited for Bayesian GCNN with 17% for Cora and
20.5% for the Citeseer dataset. The Bayesian GCNN is able
to maintain the classifier margin much better compared to
GCNN. For the Citeseer dataset the random attacks almost
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eliminate the GCNN margin whereas Bayesian GCNN suf-
fers a 34% decrease, but retains a positive margin on aver-
age.

Figure 1 provides further insight concerning the impact
of the attack on the two algorithms. The figure depicts the
distribution of average classifier margins over the targeted
nodes before and after the random attacks. Each circle in the
figure shows the margin for one target node averaged over
the 5 random perturbations of the graph. Note that some of
the nodes have a negative margin prior to the random attack
because we select the correctly classified nodes with lowest
average margin based on 10 random trials and then perform
another 5 random trials to generate the depicted graph. We
see that for GCNN the attacks cause nearly half of the target
nodes to be wrongly classified whereas there are consider-
ably fewer prediction changes for the Bayesian GCNN.

GCNN 
(before)

GCNN 
(after)

Bayesian
GCNN 

(before)

Bayesian
GCNN 
(after)

0.5

0.0

0.5

1.0

Cl
as

sif
ica

tio
n 

M
ar

gi
n

(a)

GCNN 
(before)

GCNN 
(after)

Bayesian
GCNN 

(before)

Bayesian
GCNN 
(after)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Cl
as

sif
ica

tio
n 

M
ar

gi
n

(b)

Figure 1: Boxplots of the average classification margin
for 40 nodes before and after random attacks for GCNN
and Bayesian GCNN on (a) Cora dataset and (b) Citeseer
dataset. The box indicates 25-75 percentiles; the triangle
represents the mean value; and the median is shown by a
horizontal line. Whiskers extend to the minimum and maxi-
mum of data points.

6 Conclusions and Future Work

In this paper we have presented Bayesian graph convolu-
tional neural networks, which provide an approach for in-
corporating uncertain graph information through a paramet-
ric random graph model. We provided an example of the
framework for the case of an assortative mixed membership
stochastic block model and explained how approximate in-
ference can be performed using a combination of stochastic
optimization (to obtain maximum a posteriori estimates of
the random graph parameters) and approximate variational
inference through Monte Carlo dropout (to sample weights
from the Bayesian GCNN). We explored the performance of
the Bayesian GCNN for the task of semi-supervised node
classification and observed that the methodology improved
upon state-of-the-art techniques, particularly for the case
where the number of training labels is small. We also com-
pared the robustness of Bayesian GCNNs and standard GC-
NNs under an adversarial attack involving randomly chang-
ing a subset of the edges of node. The Bayesian GCNN ap-
pears to be considerably more resilient to attack.

This paper represents a preliminary investigation into
Bayesian graph convolutional neural networks and focuses
on one type of graph model and one graph learning problem.
In future work, we will expand the approach to other graph
models and explore the suitability of the Bayesian frame-
work for other learning tasks.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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