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Abstract  

Vector autoregressive models have widely been applied in macroeconomics and macroeconometrics 

to estimate economic relationships and to empirically assess theoretical hypothesis. To achieve the 

latter, we propose a Bayesian inference approach to analyze the dynamic interactions among 

macroeconomics variables in a graphical vector autoregressive model. The method decomposes the 

structural model into multivariate autoregressive and contemporaneous networks that can be 

represented in the form of a directed acyclic graph. We then simulated the networks with an 

independent sampling scheme based on a single-move Markov Chain Monte Carlo (MCMC) 

approach. We evaluated the efficiency of our inference procedure with a synthetic data and an 

empirical assessment of the business cycles hypothesis. 
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1. Introduction

A vector autoregressive (VAR) model is an extension of an autoregressive
(AR) model to the multivariate case. VAR allows analyzing how realizations of
variables in past times influence current realizations. Introduced by Sims (1980),
VAR has widely been applied in macroeconomics and macroeconometrics to es-
timate economic relationships and to empirically assess theoretical hypothesis.
VAR models have been proven to be very suitable in evaluating the impact of
economic shocks on key macroeconomic variables such as production, investment,
consumption, monetary policy, interest rates, the effects of fiscal policy, and the
dynamics of financial time series etc.

Despite the advantages of the VAR, the problem of identification in the esti-
mation of the structural model renders some limitation to the use of the model
for forecasting. The standard approach to overcome this problems attempts to
estimate the VAR in reduced form. However, it is clear that the reduced form
is unable to offer economic interpretations. To deal with the economic inter-
pretations of the model, the standard techniques imposes restrictions to recover
the structural parameters from the reduced form parameters. The identification
problem has been discussed by Cooley and Leroy (1985), Bernanke (1986), King
et al. (1991) etc.

In structural analysis, certain assumptions about the causal structure of the
data under investigation are often imposed. Imposing such restrictions to the dy-
namics of the structure leads to a cost in the generalization of the results. Since
the VAR are suppose to empirically assess theoretical hypothesis, it is quite hard
to provide convincing restrictions without relying on theories which undermines
the use of such models to achieve the purpose for which it was designed for. It
is therefore clear that inferences drawn from such models overlaid with restric-
tions that are difficult to defend poses another problem. Furthermore, drawing
causal relations from correlations among variables on which we have data is an-
other limitation when using standard estimation techniques. It can also be noted
that, inference of contemporaneous interaction of variables using impulse response
functions from residuals leads to high standard error problems which affects the
accuracy in forecasting.

The method discussed in this paper draws on the use of graphical models
for structural VAR (SVAR) analysis. Graphical models presents the idea that
interaction among random variables in a system can be represented in the form
of graphs where the nodes represents the variables and the edges shows the in-
teractions. (See Pearl (1988), Lauritzen and Wermuth (1989), Whittaker (1990),
Wermuth and Lauritzen (1990) and Edward (1990)). It presents a framework
with clarity of interpretation and the ease to analyze seemingly complex interac-
tions. Graphical models approach to causal studies was first introduced by Pearl
(2000) and Spirtes et al. (2000) in artificial intelligence. However in recent times,
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there have been quite a number of applications in economics by Swanson and
Granger (1997), Hoover (2001), Raele and Tunnicliffe Wilson (2001), Bessler and
Lee (2002), Demiralp and Hoover (2003), Moneta (2008) etc., all of which have
proven the reliability of this method.

In contrast to these papers which demonstrate potential applications of graph-
ical models for VAR processes, the current paper considers a Bayesian inference
approach to address the identification problem. To empirically asses theoretical
hypothesis, it is important to apply techniques that are able to learn models from
data. Inference of a graphical model is a model determination problem that has
been discussed by Corander (2003), Corander and Villani (2006), Giudici and
Green (1999). The intuition that our observed data could have been produced by
a model but faced with the uncertainty in the dependence structure and the pa-
rameters of the underlying model. The Bayesian approach as has been discussed
by Madigan and York (1995), Giudici and Green (1999) and Dawid and Lau-
ritzen (2001) provides a convenient framework to handle the above problem and
to recover the model probabilistically from data. Corander and Villani (2006)
introduced the Bayesian approach to model graphical VAR processes. Due to
limitations on the implementation of the Markov Chain Monte Carlo (MCMC)
for graphical modeling of time series data at that time, the paper applied the
fractional Bayes approach for inference about the causal structure and the lag
length of the process. However, recent development in the application of MCMC
for graphical models by Madigan and York (1995), Friedman and Koller (2003),
Grzegorczyk and Husmeier (2008), Grzegorczyk and Husmeier (2009), Grzegor-
czyk (2010) etc., makes it feasible for sampling graphical models for multivariate
random variables.

The application of a Bayesian approach provides inferences that are condi-
tional on the observed data without reliance on asymptotic approximation and
data transformations. In the current paper, we develop the Bayesian approach
used by Giudici and Green (1999) and Grzegorczyk (2010). We addressed the
identification problem by decomposing the structural model into multivariate au-
toregressive and contemporaneous networks that can be represented in the form
of a directed acyclic graph. We then simulate the networks with an independent
sampling scheme based on a single-move Markov Chain Monte Carlo (MCMC)
approach proposed by Giudici and Green (1999), and applied by Grzegorczyk
and Husmeier (2009), Grzegorczyk (2010) and Grzegorczyk et al (2011) for time
series models. Most of the existing applications of graphical models for VAR
uses greedy search, K2 algorithm or the PC algorithm in sampling the network.
Bayesian inference via MCMC algorithms have been proved to be more efficient
and allows to sample more complicated models that cannot be dealt with using
standard approaches.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian
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approach to graphical vector autoregressive models. Section 3 introduces the
independent sampling scheme to the graph posterior computation. Section 4
illustrate the application of the inference procedure with a synthetic data. Section
5 illustrates an empirical assessment for business cycle analysis.

2. Bayesian Graphical Vector Autoregressive Models

A vector autoregressive (VAR) process of order L is of the form

Xt = B0Xt + B1Xt−1 + . . . + BLXt−L + εt t = 1, . . . , m (1)

where Xt is an n dimensional vector of time series realizations at time t, εt is an n
dimensional vector independent and serially uncorrelated structural disturbances
with mean zero and a diagonal matrix Σε, and B0, . . . , BL are n × n regression
matrices. B0 is a zero diagonal matrix. Let Xt = {X1

t , X2
t , . . . , Xn

t }, where Xi
t is

a realization of the variable Xi at time t such that Xi
t ∈ Xt.

The above model can be represented in a graphical form which presents a con-
venient framework for modeling multivariate time series observations. As defined
by Brillinger (1996), graphical models are simply statistical models embodying a
collection of marginal and conditional independences which may be summarized
by means of graphs. It can be shown that there is a one-to-one correspondence
between the regression matrices and directed acyclic graphs (DAGs), given as
follows (Murphy, 2002);

Xj
t−s → Xi

t ⇐⇒ Bs(i, j) �= 0 0 ≤ s ≤ L

Prominent among the statistical models based on directed graphs are Bayesian
networks (BNs). A Bayesian network (BN) is simply a statistical model that
combines graph theory and probability theory (based on Baye’s Rule) to model
interactions between random variables. Formally, a BN is a pair B = {G,Θ}. The
first component, G is a DAG composed of {V, E} where V is the set of vertices
(nodes) that represents the random variables and E are directed edges. The
second component, Θ is the set of parameters of the model. In the BN framework,
the node where an edge originates is called the parent node and where the edge
ends is called the child node

Dynamic Bayesian network (DBN) is an extension of the BN representation to
model stochastic processes. It provides a general formalism for modeling multi-
variate time series. The DBN assumes a Markovian process, thus the assumption
that current realizations of random variables only depends on the immediate
past realizations and not on all past observations. Generally, a DBN is a pair
(B0, B→), where B0 is a regular BN which defines the initial state distribution of
the variables; and B→ is a the transition network (Murphy, 2002). In the B→,
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the parents of a node can either be in the same time slice or in the previous time
slice. Directed edges within a slice represents instantaneous causation, where as
edges between slices represents autoregressive causations.

A DBN composed of Gaussian random variables is referred to as a Dynamic
Gaussian network (DGN). The standard representation a VAR process of order
L as expressed in (1) is equivalent to a DBN of order L where the conditional
probability distributions (CPDs) are linear-Gaussian, (Murphy, 2002). The gen-
eral concept in the application of DAG for VAR processes assumes that all slices
including the initial state distribution have the same structure, in which case
the DBN can simply be defined using only the transition network (Friedman et
al, 1998). In this paper, we refer to the slice of instantaneous causation as the
multivariate instantaneous (MIN) network and the slices of the autoregressive
causation as the multivariate autoregressive (MAR) network.

To empirically asses theoretical hypothesis as is the main objective of the
application of VAR models, it is important to apply techniques that are able to
learn models from data. Consider for example a dynamic model that follows a
Markov process of order 1. For structure learning of the MIN network, a recursive
formula on the number of possible DAGs that contains n nodes is given as follows
(Robinson, 1977);

f(n) =
n∑

i=1
(−1)i+1

(
n

i

)
2i(n−i)f(n − 1)

where
(n

i

)
are the binomial coefficients. The structure learning of the possible

DAGs that represents the MAR network is given as follows;

h(n) = 2n2

Thus the structure learning is a challenging problem since the possible DAGs
is super-exponential in the number of nodes. This is referred to as the model
determination problem and has been discussed by Corander (2003), Corander
and Villani (2006), Giudici and Green (1999). The Bayesian inference approach
has been proved to be convenient to handle such problems in the sense that it
allows both informative priors so that experts knowledge can be used to inform
the current model search. This has been discussed by Madigan and York (1995),
Giudici and Green (1999) and Dawid and Lauritzen (2001).

2.1. Bayesian inference
Let X = (X1, . . . , Xt)t=1,...,m be a complete time series dataset of length m

with n variables. A complete dataset is a database that contains no missing
data. The Bayesian inference approach to the model determination problem is
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to learn the model structure probabilistically conditional on the observed data.
This requires prior elicitation, likelihood estimations and posterior computations.

2.1.1. Priors
According to Friedman and Koller (2003), to define the model prior is to

define a discrete probability distribution over graph structures G, and for each
possible graph, to define a continuous distribution over the set of parameters Θ.
This is given by;

P (G,Θ) = P (G)P (Θ|G) (2)

Graph priors
Of the two priors, the graph prior is usually considered less important since

its posterior does not grow with the number of data points (Friedman and Koller,
2003). Therefore the commonly used graph prior which is also used in this paper
is to assume that all DAGs (directed acyclic graphs) are equally likely, thus
assuming a uniform prior over all possible DAGs. This approach is mostly used
only for simplicity and can be refined in various ways. Thus if some DAGs are not
possible, then the priors can be redefined to assign a zero or very low probabilities
to those configurations. The rest of the configurations can then be assigned equal
prior probabilities.

Parameter priors
According to Geiger and Heckerman (1999), the parameter priors must sat-

isfy two important assumptions; global parameter independence and parameter
modularity.

Assumption 1. (Global Parameter Independence) Let the parents set of Xi
t be

πi(t). For every DAG model G for X ,

P (Θ|G) =
n∏

i=1
P (θi|G) (3)

where θi = θXi
t |πi(t) is the parameter sub-vector associated with node Xi

t given
its parents set πi(t). This means that the parameters are mutually independent
apriori given the graph configuration. This assumption allows us to calculate for
the likelihood of a single case.

Assumption 2. (Parameter Modularity) For every two DAG models G1, G2 ∈ G
for X such that Xi

t has the same parents in G1 and G2,

P (θi|G1) = P (θi|G2) (4)
6



This means that if Xi
t has the same set of parents in two or more different

structures, then the associated parameters must be the same.
Inference of the underlying model involves examining a large number of pos-

sible network structures. To avoid having to assign a prior distribution over
parameters for each possible structure, the standard approach allows the param-
eter prior for all structures to be specified using a single network.

2.1.2. Likelihood
For likelihood estimation, Geiger and Heckerman (1999) identified two impor-

tant assumptions; Likelihood modularity and Random sample condition.

Assumption 3. (Likelihood Modularity) For every two DAG models G1, G2 ∈ G
for X such that Xi

t has the same parents in G1 and G2, the local distribution for
Xi

t in both models are the same;

P (Xi
t |πi(t), θi, G1) = P (Xi

t |πi(t), θi, G2) (5)

Assumption 4. (Random Sample Condition) For any Y ⊆ X, define X Y can be
a random sample from X restricted to Y . Let G be a DAG for any ordering where
the variables in Y come first. Then by assumption, global parameter independence
and likelihood modularity, (Geiger and Heckerman, 1999);

P (Y |X , G) = P (Y |X Y , G) (6)

This means that if our observation X is from some distribution, then restricting
our dataset to random samples Y ⊆ X also follows a similar distribution.

Assumption 5. (Homogeneous Markov Property) If the model is time homoge-
neous, the semantics of a DBN of Markov order 1 can be defined by unrolling a
two-slice temporal Bayes net (2TBN) until we have m time slices. The resulting
joint distribution is given by

P (X ) =
m∏

t=1

n∏
i=1

P (Xi
t |πi(t)) (7)

This means that if the model follows a first-order homogeneous Markov, the tran-
sition network can be expressed as a 2TBN. By this assumption, the parameters
of the CPDs are time invariant and the parents set of Xi

t becomes time invariant.
By the chain rule of probability and the homogeneous Markov chain expres-

sion, the joint likelihood is given by;

P (X |G,Θ) =
n∏

i=1

m∏
t=1

P (Xi
t |πi, Xt−1, G,Θ) (8)
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where X−i
1 = X1\{i} is X1 without Xi, (X1 \ Xi), X−i

t = Xt\{i} corresponds to
Xt \ Xi and Xt−1 = (X1, . . . , Xs)s=1,...,t−1.

Given a complete graph G (a graph with no missing edges), by global pa-
rameter independence (Assumption 1) and parameter modularity (Assumption
2), the general approach to this problem is to marginalize the likelihood over the
space of all parameters. The marginal likelihood can be expressed as follows;

P (X |G) =
n∏

i=1

m∏
t=1

∫
θi∈Θ

P (Xi
t |πi, Xt−1, G, θi) P (θi|G) dθi

=
n∏

i=1

m∏
t=1

P (Xi
t |πi, Xt−1, G) (9)

By the random sample condition (Assumption 4) and the homogeneous Markov
property (Assumption 5), the marginal likelihood expression can be represented
invariant of time. Given Xm−1 = (X1, . . . , Xs)s=1,...,m−1, the marginal likelihood
can be simplified as follows (Geiger and Heckerman, 1999);

P (X |G) =
n∏

i=1

P (Xi, πi|Xm−1, G)
(πi|Xm−1, G)

=
n∏

i=1

P (X (Xi,πi)
m−1 |G(Xi,πi))

P (X (πi)
m−1|G(πi))

(10)

where X (Xi,πi)
m−1 and X (πi)

m−1 are sub-matrices of the data matrix Xm−1 consisting
only of the rows that correspond to the variable in the subsets D1 = {Xi, πi}
and D2 = {πi}. G(·) is an arbitrary structure that represents a complete DAG
over the variables to which the corresponding dataset X (·) is restricted. Let
D = {D1, D2}, then the dataset X D

m−1 ⊆ Xm−1 which consists of n∗ × (m − 1)
realizations, where n∗ is the dimensional subset D ⊆ {X1, . . . , Xn}.

Bayesian Gaussian Equivalent (BGE) Score
The expression in (10) is referred to as the Bayesian likelihood metric whose

closed-form computation depends on the distributions of the random variables.
Based on the assumption that the random variables are samples from a multi-
variate normal distribution Nn(μ, W ) (where μ is a vector of unknown means,
W = Σ−1 is the precision matrix and Σ is the covariance matrix). The standard
prior is a normal-Wishart distribution. The conditional prior P (μ|W ) is a nor-
mally distributed with mean μ0 and precision κW where κ > 0; and P (W ) is a
Wishart distributed with α > n degrees of freedom and a scale matrix T0. The
posterior P (μ, W |X ) is also a normal-Wishart distribution. (Geiger and Heck-
erman, 1994). Thus, the conditional posterior P (μ|W, X ) is multivariate normal
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with the first and second moments given as follows;

E(μ|W, X ) =
κμ0 + mX

κ + m
Cov(μ|W, X ) = ((κ + m)W )−1 (11)

where X = (X1
, ..., X

n)′ is the sample means of X . The posterior P (W |X ) is a
Wishart with α + m degrees of freedom a scale matrix given as follows;

Tm = T0 + Sm +
κm

κ + m
(μ0 − Xm)(μ0 − Xm)′ (12)

where Sm =
∑m

i=1(Xt − X)(Xt − X)′ is the sample covariance matrix. A closed
form representation of Bayesian metric for random variables from a multivariate
normal distribution is given by (Geiger and Heckerman, 1994);

P (X D|G(D)) = (π)−
n∗m

2
( κ

κ + m

) n∗
2 c(n∗, α + m)

c(n∗, α)
· |T0| α

2 |Tm|− α+m
2 (13)

where |T0| and |Tm| denotes the determinants of the matrices T0 and Tm respec-
tively. T0 is defined as the prior scale matrix and Tm is the posterior scale matrix
both of which consists of n∗ rows and columns that corresponds to the variables
in the subset D. κ and α are the equivalent sample size for μ and W respectively
and c(·) is a normalization constant given by:

c(n, α) =
n∏

i=1
Γ

(α + 1 − i

2

)
(14)

This metric is termed the Bayesian Gaussian equivalent (BGe) metric.

2.1.3. Posterior
The model posterior can also be expressed as follows;

P (G,Θ|X ) = P (G|X )P (Θ|G, X ) (15)

where the first component P (G|X ) defines the marginal graph posterior and the
second component P (Θ|G, X ) defines the conditional parameter posterior.

Graph Posterior
Of the two posterior computations, the graph posterior have been described

to be a challenging problem (Murphy, 2002). This is referred to as the structure
learning problem which has been described by Chickering et.al (2004) to be NP-
hard (non-deterministic polynomial-time hard), in the sense that the cardinality
of the space of possible structures grows super-exponentially with the number of
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nodes in the network. By Bayes rule, the graph posterior is given by;

P (G|X ) ∝ P (X |G)P (G) (16)

By assuming a uniform prior over the possible DAGs, the graph priors becomes a
constant which does not play a significant role in the posterior computation. Thus
the posterior follows the distribution of the marginal likelihood. The standard
approach to the above problem is to find the DAG that maximizes the marginal
likelihood score;

G∗ = argmax
G

P (G|X ) ∝ argmax
G

P (X |G) (17)

The Markov Chain Monte Carlo (MCMC) approach is widely used as a stan-
dard inference tool for sampling the network structure. Unlike other heuristic
algorithms, like the greedy search etc, that attempts to find the highest scoring
network, the MCMC approach samples a set of DAGs such that there is no highest
scoring network that stands out as significantly unique. The optimal structure is
then computed through model averaging. As part of our contribution, we propose
an efficient MCMC sampling scheme. This is described in the next section.

Parameter Posterior
Following the assumption on the parameter priors, the parameter posteriors

can be shown to satisfy two important properties; Posterior Parameter Indepen-
dence and Posterior Parameter Modularity (Geiger and Heckerman, 1999).

Lemma 1. (Posterior Parameter Independence) Given the random sample as-
sumption (Assumption 4), global parameter independence (Assumption 1), and
the assumption of no missing data, for every DAG model G for X ,

P (Θ|X , G) =
n∏

i=1
P (θi|X , G) (18)

This means that given that the prior and the likelihood factorizes, the posterior
parameters also factorizes, thus they are mutually independent given the graph
configuration.

Lemma 2. (Posterior Parameter Modularity) Given the random sample assump-
tion (Assumption 4), global parameter independence (Assumption 1), parameter
modularity (Assumption 2) and the assumption of no missing data, if G1, G2 ∈ G
for X such that Xi

t has the same parents in G1 and G2, then

P (θi|X , G1) = P (θi|X , G2) (19)
10



3. Efficient MCMC Scheme for Structure Learning

In this section we present an efficient inference scheme for learning the struc-
ture of a VARmodel. To illustrate the inference procedure we define the following;

Bs = (As ◦ Φs) 0 ≤ s ≤ L (20)

where Bs is n × n matrix of regression coefficients of the VAR model. As is n × n
matrix referred to as the adjacent matrix in Network theory, where aij represents
the directed relationship between Xj

t−s and Xi
t . Entries in the matrix As are

either 1 if Xj
t−s → Xi

t or 0 if there is no edge between Xj
t−s and Xi

t . Φs is n × n
matrix of coefficients, where φij ∈ R measures the strength of the relationship
between Xj

t−s and Xi
t and (◦) is the Hadamard product. Let bi = (b1i, ..., bni)′ be

a column vector of Bs, where bji measures the regression coefficient of the effect
of Xj

t−s on Xi
t . The relationship between Bs and Φs is given by;

bij =
{

φij if aij = 1
0 if aij = 0

(21)

By the definition in (20), the standard representation of a VAR of order L in (1)
can be expressed as follows;

Xt = (A0 ◦ Φ0)Xt + . . . + (AL ◦ ΦL)Xt−L + εt t = 1, . . . , m (22)

In the Bayesian inference context, the marginal prior of aij is a Bernoulli, aij ∼
Ber(pij), where pij is the probability of aij = 1. The marginal posterior of aij

conditioned on X is Bernoulli-distributed with the following parameters:

aij |X =
{
1 if P (aij = 1|X ) > τ

0 otherwise
(23)

where τ is a threshold set by the user with τ ∈ (0, 1). The expression P (aij =
1|X ) is referred to as the confidence score which is interpreted as the posterior
probability of the existence of an edge from Xj to Xi.

3.1. Structure Decomposition
The general concept in modeling VAR processes assumes that all within-slice

intersection including the initial state distribution have the same structure. By
this concept, we find that the marginal likelihood function decomposes according
to the structure of the DBN into a multivariate autoregressive (MAR) and a
multivariate instantaneous (MIN) network. Let πi

t−1 and πi
t be the parents of Xi

t

in the MAR and the MIN network respectively in a DBN of order 1. Thus the
11



parents set of Xi
t in (9) decomposes as πi = {πi

t−1, πi
t}. Let G→ and G↓ be the

corresponding DAGs. The marginal likelihood in (9) is given by;

P (X |G) =
n∏

i=1

m∏
t=1

P (Xi
t |πi

t−1, πi
t, Xt−1, G)

=
n∏

i=1

m∏
t=2

P (Xi
t |πi

t−1, G→) ×
n∏

i=1

m∏
t=1

P (Xi
t |πi

t, G↓) (24)

This decomposition of the structure facilitates the inference procedure such that
we can learn the MIN network independently from the MAR network. The
posterior graph computation therefore decomposes into searching for the network
that maximizes each marginal likelihood score independently.

3.2. The MCMC Sampling Scheme
The MCMC scheme is a standard inference tool for sampling DAGs. This

approach was originally proposed by Madigan and York (1995), and later devel-
oped by Giudici and Castelo (2003). One of the standard MCMC methods is
the Metropolis-Hastings (MH) algorithm, which is based on acceptance-rejection
scheme. Thus, given an initial graph, the algorithm samples a new graph using
a proposal distribution. The newly sampled graph is then compared with the
old graph with a decision rule to either reject or accept the proposed sample.
This steps eventually produces a chain of graphs that will convergence to the
target distribution with possibly a high number of iterations, though not always
guaranteed.

The standard proposal distribution is a single-move conditional on the neigh-
borhood structure of a node. In the simplest term, the algorithm randomly selects
a node from the current graph (Gold) and proposes an action to either add or
delete a single edge to produce a new graph (Gnew). The proposed graph Gnew

is either accepted and added to the chain of graphs or rejected in which case the
previous graph Gold is maintained. The decision to accept or reject a proposed
graph depends on an acceptance probability given by:

A(Gnew|Gold) = min
{

P (X |Gnew)
P (X |Gold)

P (Gnew)
P (Gold)

Q(Gold|Gnew)
Q(Gnew|Gold)

, 1
}

(25)

By assuming a uniform graph prior implies that P (Gnew) = P (Gold). The pro-
posal moves are symmetric which implies that Q(Gold|Gnew) = Q(Gnew|Gold) and
hence, the acceptance ratio is given by:

A(Gnew|Gold) = min
{

P (X |Gnew)
P (X |Gold)

, 1
}

(26)
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Having made the proposal changes to the DAG, a draw U from a uniform dis-
tribution on (0, 1)) is compared with the outcome of the acceptance probability.
If U < A(Gnew|Gold) the new proposal is accepted and added to the chain, oth-
erwise the current DAG is retained. Thus the mechanism automatically accepts
samples showing improvements (i.e when A(Gnew|Gold) = 1) and accepts the rest
with the acceptance probability A(Gnew|Gold).

With a non-zero probability, the proposal distribution of the sampler will pro-
pose a change to any edge in the current graph Gold, which guarantees irreducibil-
ity. Thus it is possible to reach other state Gnew ∈ G with P (Gnew|Gold) > 0
in finite time regardless of the present state. Also with a non-zero probabil-
ity the chain will remain in the current state for any edge implying aperiodic-
ity. The above properties are sufficient conditions for ergodicity of the Markov
Chain, which is also a sufficient condition for stationarity of the distribution as
iterations → ∞. Thus the MH sampler will in the limit return realizations from
the posterior distribution P (G|X ).

A technical approach in the structure inference is to impose a restriction on
the neighborhood of a node. This is referred to as the fan-in. The neighborhood
is simply the possible number of other variables a node can be connected to. The
idea is that there is often a trade-off between how densely a node is connected
with the effectiveness of the search process. The fewer the neighbors (parents),
the fewer the search options at each iteration hence the search procedure can
afford evaluate each option carefully. On the other hand, if each node has many
neighbors, the search procedure takes a longer time to explore all options and to
carefully evaluate them. Therefore, a reasonably few number of neighbors are set
to allow effective evaluation of the search options, reduce computational time and
to improve convergence. In the current work, we assumed no prior knowledge on
the maximal number of neighbors of the nodes.

3.3. Sampling MAR Network
In sampling MAR network, Grzegorczyk (2010) recommended to transform

the time series into 1× n data cells with each cell composed of (n+1)× (m − 1)
time series matrix. Each cell corresponds to a transformed data by extracting
the series of the ith variable and shifting it one time ahead of the other variables.
That is the last observation of the original data is deleted to obtain a matrix
of n × (m − 1). This means the extracted series will contain realizations from
t = 2, ..., m and the others from t = 1, ..., m − 1. The extracted series is then
added as a new row to the n × (m − 1) matrix to obtain (n + 1) × (m − 1) time

13



series matrix. Thus the data in the ith cell is given as follows:

Xm−1(i) =

⎛
⎜⎜⎜⎜⎝

X1
1 X1

2 · · · X1
m−1

...
... . . . ...

Xn
1 Xn

2 · · · Xn
m−1

Xi
2 Xi

3 · · · Xi
m

⎞
⎟⎟⎟⎟⎠

where i = 1, ..., n and Xm−1(i) is the (n × (m − 1)) data matrix of the ith cell, i.e
Xm \ Xm with a forward shift of Xi. Given a complete graph G→, the marginal
likelihood for the MAR network of order 1 is given as;

P (X |G→) =
n∏

i=1

P
(
X (Xi

t ,πi
t−1)

m−1

∣∣∣G(Xi
t ,πi

t−1)
→

)
P

(
X (πi

t−1)
m−1

∣∣∣G(πi
t−1)

→
) (27)

The posterior of the scale matrix (Tm) in (12) is computed for each cell by re-
placing n and m with n∗ = n + 1 and m∗ = m − 1;

T (i)m∗ = T0 + Sm∗(i) +
κm∗

κ + m∗ (μ0 − X(i))(μ0 − X(i))′ (28)

where X(i) = (X1
, ..., X

n∗
)′ and Sm∗(i) are the sample mean and sample covari-

ance matrix respectively for the transformed time series dataset Xm−1(i).

Search Procedure
The search procedure in sampling MAR network involved Addition or Re-

moval of an edge at each iteration. Thus at each iteration, we randomly select a
row and a column and either add one (edge) if there is initially a zero or delete
an existing edge. In these scheme only operations that results in in legal net-
works (i.e acyclic networks) are considered. Thus edges only flow forward but
not backward. That is past observations can only affect current realizations and
not the reverse.

3.4. Sampling MIN Network
Sampling MIN network is exactly the same manner as learning a BN. Given

a complete graph G↓, the marginal likelihood for the MIN network is given by;

P (X |G↓) =
n∏

i=1

P
(
X (Xi

t ,πi
t)

m

∣∣∣G(Xi
t ,πi

t)
↓

)
P

(
X (πi

t)
m

∣∣∣G(πi
t)

↓
) (29)

The posterior of the scale matrix (Tm) is the same as expressed in (12).
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Search Procedure
Unlike the MAR network, the standard search procedure for a BN involves

Addition, Removal or Reversal of an edge. Reversal of an edge is a two-step
action, which involves a removal of an existing edge and an adding an edge in
the opposite direction. Since it is difficult to check for cycles in such networks,
Grzegorczyk and Husmeier (2008) recommended a new edge reversal move which
involves pre-computation of the score for all parent configurations. Though it has
been proved effective, the procedure depends on the fan-in restriction, in most
cases considered to be reasonably samll. Since the reversal move involves removal
and/or addition, we considered only Addition or Removal in our sampling of the
MIN network. Removal of an edge always produces legal networks since it does
not induce cycles.

Proposition 1. (Addition in MIN Network) Let Xi and Xj be two nodes in a
MIN network. Xj → Xi is legal if and only if the intersection between descen-
dants of Xi and the ancestors of Xj is empty.

Following the idea by Giudici and Castelo (2003), the above can be described
as a necessary and sufficient condition to produce legal MIN networks. In graph-
ical models, the descendants of a node Xi in a network are the nodes that can be
reached following a directed edge from Xi. Thus the descendants of Xi consists
of the children, grand children and great grand children etc, of node Xi. The an-
cestors of Xj consists of the parents, grand parents and great grand parents etc,
of node Xj . From the above proposition, it can be shown that if the intersection
between descendants of Xi and the ancestors of Xj is non-empty, then adding
an edge from Xj to Xi will produce cycles (non-legal networks).

The above condition is quite strong to implement in practice, especially for
large networks. A weaker but seemingly necessary condition, is to consider ver-
ifications of the acyclicity condition at levels. By levels we mean the following;
a first level (three-nodes level) verification is to check for the intersection of im-
mediate relations of each of the two nodes, thus parents Xj and children of Xi;
a second level (four-nodes level) verification involves grand parents of Xj and
children of Xi or grand children of Xi and parents of Xj , etc. We recommend to
begin with the first level, then if the final network reports cycles among a mini-
mum of 4-nodes, then the second level can be implemented etc. This condition
is necessary but not sufficient to produce legal networks and users have to run
initial simulations to monitor the level of verification required to produce DAGs.
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4. Simulations Results

We illustrate our inference procedure on a five (n = 5) dimensional system of
variables with m = 100 time series data points generated by;

B0 =

⎛
⎜⎜⎜⎜⎜⎝

0 −.8 0 0 0
0 0 0 0 0
.5 0 0 0 0
0 −.5 .6 0 .8
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ B1 =

⎛
⎜⎜⎜⎜⎜⎝

−.9 0 0 0 0
1.2 0 .8 0 0

−1.6 0 .8 0 0
0 0 1.2 .9 0
0 −1.5 0 0 .9

⎞
⎟⎟⎟⎟⎟⎠ (30)

The simulation procedure was initialized by setting the hyperparameters μ0,
κ, α, T0 and the graph priors. Following Grzegorczyk (2010), we set μ0 =
(0, ..., 0)′, κ = 1, α = n + 2 and T0 = 0.5 · In×n, where In×n is an n × n
identity matrix. A fan-in = n − 1 was set for the MIN network and n for the
MAR network. Thus we assumed no prior knowledge on the maximal number
of neighbors of the nodes in the network. The prior over the DAGs is assumed
to be uniform. We initialize the graph with an empty DAG without directed
edges. The idea is to assume that the variables are not connected apriori. A
burn-in sample of 20,000 with total iteration of 220,000 was implemented for
both network search. Our simulation was implemented on a Sony VAIO E Series
machine with Intel Core i7-3612QM 2.10 GHz processor. The algorithm used for
our simulation is a modification of the of algorithm used by Grzegorczyk et al
(2011). An average run time of 10 (12) seconds for every 10,000 iterations was
recorded for the MIN (MAR) network simulation.

4.1. Convergence Diagnostics
Several approaches have been discussed to speed up and analyze the con-

vergence of the chain toward the target distribution by improving the mixing
properties of the chain. Kass et al (1998) recommends to run multiple chains
through parallel independent chains. We implemented 3 parallel independent
chains and to ensure that we sample independent and identical distributed (i.i.d)
DAGs, we set a thinning interval of 100 to reduce the autocorrelation of the
sampled chains. This resulted in 20,000 sampled DAGs for our analysis.

To monitor convergence, we used the single-chain measure by Geweke (1992),
and the convergence diagnostics for multiple chains by Gelman and Rubin (1992).
For each chain, the posterior distribution of the edge in the network of the sam-
pled chain was divided into 2 windows, containing the first 10% and the last
50%. According to Geweke (1992), if the whole chain is stationary, the means
of the values early and late in the sequence should be similar. The output of
this measure is a p-value, such that if the p-value is greater than 5%, then we
accept the hypothesis that the sample is i.i.d, thus the MCMC converged. For
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multiple parallel chain convergence, the Gelman-Rubin diagnostics tests whether
all the chains converged to the same posterior distribution. The scale parameter
(R̂) tests between-chain variance and within-chain variance for each edge of the
network. The chains are said to converge if R̂ ≈ 1, (R̂ < 1.2).

Geweke (p-values) for Single Chain Convergence

MIN Network MAR Network
X1

t X2
t X3

t X4
t X5

t X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t - 0.475 0.453 0.482 0.484 0.499 0.492 0.495 0.479 0.484

X2
t 0.475 - 0.485 0.474 0.488 0.499 0.472 0.499 0.489 0.490

X3
t 0.458 0.472 - 0.478 0.483 0.499 0.487 0.499 0.484 0.488

X4
t 0.466 0.476 0.468 - 0.457 0.489 0.490 0.499 0.499 0.480

X5
t 0.470 0.465 0.479 0.475 - 0.487 0.499 0.473 0.489 0.499

Gelman-Rubin (R̂) for Multiple Chain Convergence

MIN Network MAR Network
X1

t X2
t X3

t X4
t X5

t X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t - 0.998 1 1 0.999 1 1 1 0.998 0.999

X2
t 0.998 - 1 1 1 1 1 1 0.998 0.999

X3
t 1 0.998 - 1 0.998 1 1 1 1 0.998

X4
t 1.002 1 1 - 1 0.999 1 1 1 1

X5
t 0.998 1 1 1 - 0.999 1 1 0.998 1

Table 1: Convergence diagnostics of the I-MCMC scheme. The top (down) panel presents the
Geweke p−values (Gelman-Rubin R̂) for the MIN and MAR network chains.

We implemented the Geweke convergence for each of the chains, and we no-
ticed that the results was similar in all cases. For the sake of space, we report the
p-values of only one of the chains. Table 1 shows convergence diagnostics of the
independent MCMC (I-MCMC) scheme for the MIN and MAR networks. From
the table, we can see that the Geweke p-values are greater than 5% for all the
edges in both networks. The Gelman-Rubin (R̂) values are also ≈ 1 and below
1.2. With these results, we are confident that the sampled chains are i.i.d and
the I-MCMC converges.

Table 2 displays the confidence scores of the presence of edges in the MIN
and MAR networks of model (30) and Figure 1 displays the network of the data
generating process (DGP). The confidence scores are obtained through model
averaging over the sampled DAGs. The edges are directed from the variables
in the column labels to the variables in the row labels. The left (right) panel
of the table shows the confidence scores in the MIN (MAR) network. From the
table, we can see that P (X1

t → X2
t |X ) = 0.591 and P (X2

t → X1
t |X ) = 0.409.

This means that the posterior probability of the effect of X1
t on X2

t is stronger
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than that of reverse effect of X2
t on X1

t . From the MIN network panel, we obtain
evidence that X1

t → (X3
t , X4

t ); X2
t → X4

t ; and X3
t → X4

t . In comparison with
the network of the DGP in Figure 1, all these observations are consistent with
the exception of the effect of X1

t on X4
t . From the MAR network panel, we obtain

strong evidence that X1
t−1 → (X1

t , X2
t , X3

t ); X2
t−1 → X5

t ; X3
t−1 → (X2

t , X3
t , X4

t );
X4

t−1 → X4
t ; and X5

t−1 → X5
t all of which are consistent with the network of the

DGP.

Posterior Probabilities of Edges

MIN Network MAR Network
X1

t X2
t X3

t X4
t X5

t X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t - 0.409 0.373 0.064 0.223 1 0.236 0.375 0.216 0.192

X2
t 0.591 - 0.195 0.116 0.248 1 0.197 1 0.203 0.196

X3
t 0.627 0.185 - 0.095 0.189 1 0.189 1 0.193 0.172

X4
t 0.809 0.884 0.880 - 0.862 0.217 0.674 1 1 0.278

X5
t 0.465 0.370 0.268 0.138 - 0.445 1 0.243 0.171 1

Table 2: Marginal posterior probabilities of the presence of edges in the MIN and MAR networks.
The edges are directed from the variables in the column labels to the variables in the row labels.

X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t X2

t X3
t X4

t X5
t

Figure 1: The graphical representation of the interactions among the variables of the data
generating process of (30).

4.2. Network Evaluation
The presence of an edge between any two nodes (variables) is defined by the

choice of a threshold (τ), where 0 < τ < 1. By comparing the confidence scores in
Table 2 with the DGP in (30), we count the number of true positive (TP ), false
positive (FP ), true negative (TN) and false negative (FN) edges. TP - Real
Positive edges correctly Predicted Positive; FP - non-existing (Real Negative)
edges Predicted as Positive; TN - non-existing (Real Negative) edges correctly
Predicted Negative; and FN - Real Positive edges Predicted as non-existing.

Recall (Sensitivity) measures the proportion of the Real Positive edges that
are correctly Predicted Positive. It is referred to as True Positive Ratio (TPR).
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Precision measures the proportion of the Predicted Positive edges that are cor-
rectly Real Positive. It is also known as True Positive Accuracy (TPA). Speci-
ficity measures the proportion of the Real Negative edges correctly Predicted
Negative. This is referred to as the True Negative Ratio (TNR). The Accuracy
(ACC) measures the proportion of the Real edges (both Real Positive and Real
Negative) that are correctly Predicted. The above terminologies are estimated
as follows;

TPR =
TP

TP + FN
TPA =

TP

TP + FP

TNR =
TN

FP + TN
ACC =

TP + TN

TP + TN + FP + FN

Network Evaluation

MIN Network MAR Network

τ 0.5 0.7 0.5 0.7
Real+ Real− Real+ Real− Real+ Real− Real+ Real−

Pred+ 4 2 3 1 9 1 9 0
Pred− 1 13 2 14 0 15 0 16

TPR 80% 60% 100% 100%
TNR 86.67% 93.33% 93.75% 100%
TPA 66.67% 75% 90% 100%
ACC 85% 85% 96% 100%

Table 3: Contingency table and performance of the I-MCMC scheme. The left (right) panel
displays the MIN (MAR) network evaluation. (Real+) Real Positive, (Real−) Real Negative,
(P red+) Predicted Positive and (P red−) Predicted Negative.

Table 3 displays the results of the network evaluation with a top panel show-
ing the contingency table and the down panel showing the performance of the
I-MCMC scheme. Real+ means Real Positive edges, Real− means Real Nega-
tive edges, Pred+ means Predicted Positive edges and Pred− means Predicted
Negative edges. With τ = 0.5, we can see from the contingency table that our
inference scheme sampled 4 TP , 2 FP , 1 FN and 13 TN for the MIN network;
9 TP , 1 FP , 0 FN and 15 TN for the MAR network. The performance shows
that the sampled MIN network recovered 80% of the real positive edges with
66.7% precision, a specificity of 86.67% with 85% accuracy. That of the MAR
network recovered 100% of the real positive with 90% precision, a specificity of
93.75% with 96% accuracy. For τ = 0.7, the MIN network experienced a reduced
recall from 80% to 60% but a higher specificity and precision from 86.67% to
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93.33% and 66.67% to 75% respectively with the same level of accuracy. That of
the MAR network recovered an accurate description of the DGP.

We conducted a comparative evaluation by comparing the performance of the
I-MCMC with a joint MCMC (J-MCMC) scheme. The J-MCMC scheme samples
both the MIN and the MAR networks in a joint simulation. The simulation pro-
cedure follows the same logic as implemented in the I-MCMC. The only difference
is that the I-MCMC scheme samples both networks independently whereas the
J-MCMC samples them jointly. The same convergence diagnostics used for the
I-MCMC was used for the J-MCMC. The results are not statistically different
from those reported for the I-MCMC. For purpose of space, we report only the
posterior probabilities of the edges in the joint network.

Posterior Probabilities of Edges

I-MCMC MIN Network I-MCMC MAR Network
X1

t X2
t X3

t X4
t X5

t X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t - 0.409 0.373 0.064 0.223 1 0.236 0.375 0.216 0.192

X2
t 0.591 - 0.195 0.116 0.248 1 0.197 1 0.203 0.196

X3
t 0.627 0.185 - 0.095 0.189 1 0.189 1 0.193 0.172

X4
t 0.809 0.884 0.880 - 0.862 0.217 0.674 1 1 0.278

X5
t 0.465 0.370 0.268 0.138 - 0.445 1 0.243 0.171 1

J-MCMC Joint Network
X1

t X2
t X3

t X4
t X5

t X1
t−1 X2

t−1 X3
t−1 X4

t−1 X5
t−1

X1
t - 0.359 0.230 0.124 0.199 1 0.200 0.279 0.153 0.179

X2
t 0.109 - 0.117 0.098 0.059 1 0.158 1 0.178 0.160

X3
t 0.109 0.132 - 0.128 0.117 1 0.154 1 0.175 0.143

X4
t 0.108 0.137 0.120 - 0.439 0.172 0.685 1 1 0.388

X5
t 0.332 0.545 0.155 0.088 - 0.393 1 0.203 0.168 1

Table 4: Marginal posterior probabilities of the presence of edges in the networks samples with
I-MCMC and J-MCMC. The edges are directed from the variables in the column labels to the
variables in the row labels. The top (down) panel shows the I-MCMC (J-MCMC) results.

Table 4 displays the confidence scores of the presence of edges in the networks
sampled with I-MCMC and J-MCMC schemes. The edges are directed from the
variables in the column labels to the variables in the row labels. The top (down)
panel shows the confidence scores in the I-MCMC (J-MCMC) networks. We
quickly notice that a greater number of the confidence scores in the I-MCMC
MIN network are significantly higher than their counterparts in the J-MCMC
joint network except for P (X2

t → X5
t |X ) = 0.545 which seems higher in the J-

MCMC network than in the I-MCMC MIN network P (X2
t → X5

t |X ) = 0.370.
However, verification with the network of the DGP in Figure 1 does not show the
existence of such edge. This results increases our confidence that the I-MCMC
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scheme performs better than the J-MCMC scheme especially in recovering the
contemporaneous relationship among the variables of the model. To ascertain
this claim we evaluate the two schemes by comparing the sampled networks with
the network of the DGP.

Comparative Network Evaluation

I-MCMC Network J-MCMC Network

τ 0.5 0.7 0.5 0.7
Real+ Real− Real+ Real− Real+ Real− Real+ Real−

Pred+ 13 3 12 1 9 2 9 0
Pred− 1 28 2 30 5 29 5 31

TPR 92.86% 85.71% 64.29% 64.29%
TNR 90.32% 96.77% 96.77% 100%
TPA 81.25% 92.31% 90% 100%
ACC 91.11% 93.33% 86.67% 88.89%

Table 5: Contingency table and comparative performance of the I-MCMC and the J-MCMC
schemes. The left (right) panel displays the I-MCMC (J-MCMC) results. (Real+) Real Positive,
(Real−) Real Negative, (P red+) Predicted Positive and (P red−) Predicted Negative.

Table 5 displays the output of the comparative network evaluation in the form
of a contingency table (top panel) and the comparative performance of the two
sample schemes. The left (right) panel shows the results the I-MCMC (J-MCMC)
scheme. For τ = 0.5, the I-MCMC recovered a total of 13 TP , 3 FP , 1 FN and
28 TN whereas the J-MCMC recovered 9 TP , 2 FP , 5 FN and 29 TN . We notice
that all the TP of the J-MCMC are edges in the MAR relations. The same is
true for τ = 0.7. This however confirms our claim that the I-MCMC outperforms
the J-MCMC especially in the predictive accuracy, sensitivity and precision of
the contemporaneous relations among the random variables the model. Overall,
the I-MCMC network attains a higher sensitivity, specificity and more accurate
than that of the J-MCMC network.

5. Application to Business Cycle Analysis

We illustrate the our inference scheme on a six (n = 6) dimensional US
macroeconomic variables. The dataset used in this section consists of 188 quar-
terly observations from 1947:2 to 1994:1, used by Moneta (2008) (an updated
version of the data used by King et al. (1991)). The time series are the log-
arithms of the per capita consumption expenditure (C), real per capita gross
private domestic fixed investment (I), per capita real balances (M), real per
capita private gross domestic product (Y ), interest rate (R) - a three-month US
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nominal Treasury bill rate, and price inflation (Π) - log of the implicit price
deflator at the time t minus log of the implicit price deflator at the time t − 1.

Following the hyperparameters as used in the simulation example, we set the
following; μ0 = (0, ..., 0)′, κ = 1, α = n + 2 and T0 = 0.5 · In×n, where In×n

is an n × n identity matrix. A fan-in = n − 1 was set for the MIN network and
n for the MAR network. Thus we assumed no prior knowledge on the maximal
number of neighbors of the nodes in the network. The prior over the DAGs
is assumed to be uniform. We initialize the graph with an empty DAG without
directed edges. The idea is to assume that the variables are not connected apriori.
A burn-in sample of 20,000 with total iteration of 220,000 was implemented for
both network search. Our simulation was implemented on a Sony VAIO E Series
machine with Intel Core i7-3612QM 2.10 GHz processor. The algorithm used for
our simulation is a modification of the of algorithm used by Grzegorczyk et al
(2011). An average run time of 14 (16) seconds for every 10,000 iterations was
recorded for the MIN (MAR) network simulation.

5.1. Convergence Diagnostics
To analyze the convergence of the chain toward the target distribution, we

implemented 3 parallel independent chains following the recommendation by Kass
et al (1998). To ensure that we sample independent and identical distributed
(i.i.d) DAGs, we set a thinning interval of 100 to reduce the autocorrelation of
the sampled chains. This resulted in 20,000 sampled DAGs for our analysis. To
monitor convergence, we used the single-chain measure by Geweke (1992), and
the convergence diagnostics for multiple chains by Gelman and Rubin (1992).
The results of the single-chain convergence is shown in the top 2 panel of Table
6. The down 2 panel of Table 6 shows the result of Gelman-Rubin convergence
diagnostics for multiple chains. From the table, we can see that the Geweke p-
values are greater than 5% for all the edges in both networks. The Gelman-Rubin
(R̂) values are also ≈ 1 and below 1.2. With these results, we are confident that
the sampled chains are i.i.d and the I-MCMC converges.

Table 7 presents the confidence scores of the presence of edges in the MIN
and MAR networks. The confidence scores are obtained through model averaging
over the sampled DAGs. The edges are directed from the variables in the column
labels to the variables in the row labels. The top (down) panel of the table shows
the confidence scores in the MIN (MAR) network of the variables. From the
table, we can see that P (It → Ct|X ) = 0.5850 and P (Ct → It|X ) = 0.4060.
Thus we have evidence that the effect of investment (It) on consumption (Ct) is
stronger than the reverse effect of Ct on It. From the MIN network panel, we
also notice evidence of; the effect of investment (It) on money (Mt) and GDP
(Yt); the effect of money (Mt) on consumption (Ct); the effect of GDP (Yt) on
consumption (Ct); and the effect of interest rates (Rt) on price inflation (Πt).
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Geweke (p-values) for Single Chain Convergence

MIN Network
Ct It Mt Yt Rt Πt

Ct – 0.4520 0.4476 0.4665 0.4615 0.4610
It 0.4513 – 0.4724 0.4519 0.4946 0.4700
Mt 0.4479 0.4696 – 0.4741 0.4840 0.4811
Yt 0.4665 0.4519 0.4590 – 0.4344 0.4831
Rt 0.4716 0.4633 0.4760 0.4279 – 0.4801
Πt 0.4932 0.4773 0.4798 0.4781 0.4801 –

MAR Network
Ct−1 It−1 Mt−1 Yt−1 Rt−1 Πt−1

Ct 0.4999 0.4945 0.4746 0.4999 0.4694 0.4790
It 0.4849 0.4999 0.4755 0.4804 0.4783 0.4759
Mt 0.4925 0.4707 0.4999 0.4846 0.4682 0.4620
Yt 0.4999 0.4666 0.4693 0.4999 0.4726 0.4738
Rt 0.4936 0.4915 0.4616 0.4857 0.4999 0.4526
Πt 0.4812 0.4825 0.4883 0.4832 0.4862 0.4999

Gelman-Rubin (R̂) for Multiple Chain Convergence

MIN Network
Ct It Mt Yt Rt Πt

Ct – 0.9998 0.9999 1 1 1
It 0.9998 – 1 0.9999 1 1
Mt 0.9999 0.9999 – 1 1 1
Yt 1 0.9999 1 – 1 1
Rt 0.9998 1 1 1 – 0.9999
Πt 1 1 0.9999 0.9999 0.9999 –

MAR Network
Ct−1 It−1 Mt−1 Yt−1 Rt−1 Πt−1

Ct 1 1 1 1 1 1
It 1 1 1 0.9999 0.9999 0.9998
Mt 0.9999 1 1 0.9998 0.9998 1
Yt 1 1 1 1 0.9998 0.9999
Rt 0.9998 0.9998 1 0.9998 1 0.9999
Πt 0.9998 0.9998 0.9998 1 1 1

Table 6: Convergence diagnostics of the Independent MCMC sampling scheme. The top (down)
2 panel presents the Geweke single-chain convergence p−values (Gelman-Rubin R̂) for the MIN
and MAR network chains.
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Posterior Probabilities of Edges

MIN Network
Ct It Mt Yt Rt Πt

Ct – 0.5850 0.5098 0.5765 0.2257 0.3390
It 0.4060 – 0.4448 0.4243 0.3847 0.2958
Mt 0.4880 0.5477 – 0.3285 0.4898 0.1308
Yt 0.4235 0.5757 0.3713 – 0.4868 0.1223
Rt 0.1565 0.4022 0.4795 0.4638 – 0.3847
Πt 0.2455 0.2782 0.1398 0.1517 0.6153 –

MAR Network
Ct−1 It−1 Mt−1 Yt−1 Rt−1 Πt−1

Ct 1 0.5395 0.8008 1 0.1648 0.3227
It 0.5413 1 0.9375 0.8468 0.1307 0.1815
Mt 0.7767 0.2137 1 0.3150 0.2288 0.1547
Yt 1 0.9492 0.3348 1 0.7422 0.1465
Rt 0.2687 0.3810 0.1802 0.2422 1 0.6332
Πt 0.1790 0.1745 0.1573 0.1602 0.9830 1

Table 7: Marginal posterior probabilities of the presence of edges in the MIN (top panel) and
MAR (down panel) networks. The edges are directed from the variables in the column labels to
the variables in the row labels.

From the MAR network panel, we notice strong evidence of the following
relations; Ct−1 → (Ct, It, Mt, Yt); It−1 → (Ct, It, Yt); Mt−1 → (Ct, It, Mt);
Yt−1 → (Ct, It, Yt); Rt−1 → (Yt, Rt, Πt); and Πt−1 → (Rt, Πt). Thus there is a
strong evidence of quarterly lagged effect of money on consumption as well as a
reverse effect of consumption on money. We also observe a similar relationship
between consumption and GDP, consumption and investment etc.

From Table 7, we notice that some of the confidence scores are quite close
to 0.5. To ensure our confidence, we conducted a 95% credibility interval of all
edges whose confidence scores exceed τ = 0.5, to statistically validate the edges.
The decision rule considers edge as statistically valid, if the 2.5% quantile of the
posterior distribution of an edge is greater than 0.5. This test was conducted
for both networks. However, we noticed that all the edges considered from the
MAR network are statistically valid. The results of the MIN network is presented
in Table 8. The validated network that defines the dynamic interaction among
the macroeconomic variable under a homogeneous Markov process of order 1 is
depicted in Figure 2.

In comparison with the results by Moneta (2008), we notice some similarity in
the sense that our network shows an instantaneous causal effect of investment on
consumption and GDP. However a significant difference is that our result shows

24



Statistical Validation

Q.(2.5%) Mean Q.(97.5%)
It → Ct 0.5617∗ 0.5850 0.7053
Mt → Ct 0.4749 0.5098 0.6599
Yt → Ct 0.5521∗ 0.5765 0.6805
It → Mt 0.4976 0.5477 0.5911
It → Yt 0.5501∗ 0.5757 0.7270

Rt → Πt 0.6062∗ 0.6153 0.6650

Table 8: Statistical Validation of the edges in the MIN network whose confidence scores are
greater than τ = 0.5. (∗) indicates significant in 95% credibility interval.

Ct−1 It−1 Mt−1 Yt−1 Rt−1 Πt−1

Ct It Mt Yt Rt Πt

Figure 2: The graphical representation of the interactions among macroeconomic variables for
quarterly observations from 1947:2 to 1994:1.

evidence of a contemporaneous effect of GDP on consumption whereas that of
Moneta (2008) captures the reverse. It is evident from our network that money
has no quarterly lagged effect as well as contemporaneous effect on GDP. However
money has a quarterly lagged effect on consumption and investment. From our
results, money can only possibly affect GDP through its quarterly lagged effect
on investment which has a contemporaneous effect on GDP.

6. Conclusion

Bayesian vector autoregressive models have widely been applied in macroe-
conomics and macroeconometrics to estimate economic relationships and to em-
pirically assess theoretical hypothesis. As our contribution to the identification
problem in structural VAR models, we presented a Bayesian graphical approach
to model and estimate the interaction among random variables. Our approach
simply decomposes the Bayesian VAR into a multivariate autoregressive and mul-
tivariate instantaneous interactions. We then proposed an efficient Markov Chain
Monte Carlo (MCMC) scheme that samples the two networks independently. We
evaluated the efficiency of our inference procedure with a synthetic data and an
empirical assessment of the real business cycles hypothesis.
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Our result shows that the independent MCMC scheme outperforms the joint
MCMC scheme especially in the predictive accuracy, sensitivity and precision
of the contemporaneous relations among random variables in a Bayesian VAR
model. The structure evaluation shows that our inference procedure is able to
recover an accurate description of the network of the underlying dynamics among
the random variables. This presents a convenient framework for modeling and
estimating contemporaneous relationships among macroeconomics variables.
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