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Abstract If a group is modelled as a single Bayesian agent, what should its beliefs
be? I propose an axiomatic model that connects group beliefs to beliefs of the group
members. The group members may have different information, different prior beliefs
and even different domains (algebras) within which they hold beliefs, accounting for
differences in awareness and conceptualisation. As is shown, group beliefs can incor-
porate all information spread across individuals without individuals having to explic-
itly communicate their information (that may be too complex or personal to describe,
or not describable in principle in the language). The group beliefs derived here take a
simple multiplicative form if people’s information is independent (and a more com-
plex form if information overlaps arbitrarily). This form contrasts with familiar linear
or geometric opinion pooling and the (Pareto) requirement of respecting unanimous
beliefs.

1 Introduction

Suppose a group is interested in whether a given hypothesis H is true. If every individ-
ual assigns a probability of 70% to H , what probability should the group as a whole
assign to H? Is it exactly 70%, or perhaps more since different persons have indepen-
dently confirmed H? The answer, I will show, crucially depends on the informational
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596 F. Dietrich

states of the individuals. If they have identical information, the collective has good
reasons to adopt people’s unanimous 70% belief, following the popular (probabilis-
tic) Pareto principle (e.g. Mongin 1995, 1998). Under informational asymmetry, by
contrast, a possibly much higher or lower collective probability may be appropriate,
and the Pareto principle becomes problematic, or so I argue.

The above question is an instance of the classic opinion pooling/aggregation prob-
lem, with applications for instance in expert panels. In general, the beliefs of different
individuals need of course not coincide, and also more than one hypothesis may
be under consideration. The general goal is to merge many individuals’ probability
assignments to certain (exclusive and exhaustive) hypotheses into a single collective
probability assignment to these hypotheses. The literature has proposed different nor-
mative conditions on the aggregation rule, and has derived the class of rules satisfying
these conditions. The two most prominent types of rules are linear and geometric rules.
Denoting by π1, . . . , πn and π the individual and collective probability assignments
(each assignment being a function that maps hypotheses to probabilities), a linear rule
defines π as being a weighted arithmetic average

∑n
i=1 wiπi , and a geometric rule

defines π as being proportional to a weighted geometric average
∏n

i=1 π
wi
i , where

w1, . . . , wn ∈ [0, 1] are fixed weights with sum 1. By contrast, our Bayesian axioms
will lead to what I call multiplicative rules, which define π as g

∏n
i=1 πi , the product

of all (unweighted) individual function πi with some fixed function g. Linear rules
have been characterised (under additional technical assumptions) by the independence
or setwise function property (McConway 1981; Wagner 1982, 1985; Dietrich and List
2007; see also Lehrer and Wagner 1981), the marginalisation property (McConway
(1981)), and (in a single-profile context) by the probabilistic analogue of the Pareto
principle (Mongin 1995, 1998); and geometric rules famously satisfy external Baye-
sianity as defined in Sect. 6 (e.g. McConway 1978; Genest 1984; Genest et al. 1986).
Still an excellent reference for fundamental results on opinion pooling is Genest and
Zidek’s (1986) literature review.

I claim that the classic approach is problematic if, as in this paper, the goal of
opinion pooling is taken to be information aggregation, i.e. if collective beliefs should
incorporate all the information spread asymmetrically over the individuals. The classic
approach is more suitable if the goal is not information aggregation: the goal might
be not epistemic at all (e.g. fair representation), or it might be epistemic yet with the
disagreements between individuals caused not by differences in information but by
differences in interpretation of the same shared body of information.

One might at first suspect that classic pooling functions can account for informa-
tional asymmetries by putting more weight on the beliefs of well-informed individuals.
More concretely, it is often suggested that in a linear and geometric rule (as defined
above) the weights wi of well-informed individuals should be higher. However, as
Genest and Zidek (1986) put it, ‘expert weights do allow for some discrimination [...],
but in vague, somewhat ill defined ways’ (p. 120), and ‘no definite indications can be
given concerning the choice or interpretation of the weights’ (p. 118).

To concretely illustrate the difficulty that classic pooling functions have in aggre-
gating information, consider again the introductory example. Suppose each individual
i’s subjective probability πi (H) = 0.7 is in fact the result of Bayesian condition-
ing on some private information. What should the collective belief π(H) be? If the
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individuals started from the same prior probability of H , all depends on how this
prior compares to 0.7: if the prior is below 0.7, say 0.5, then π(H) should intuitively
exceed 0.7 because π(H) should incorporate the pooled information of many individ-
uals, where a single individual’s information already suffices to push the probability
of H up from a prior of 0.5 to a posterior of 0.7. By a similar argument, if H has a
common prior above 0.7 then intuitively π(H) < 0.7, and if H has a common prior
of exactly 0.7 then intuitively π(H) = 0.7. If people hold different prior beliefs of
H , some below 0.7 and some above 0.7, then some individuals must have observed
information in favour of H and the others information against H ; so, intuitively, π(H)

should be higher than 0.7 if ‘most’ individuals had priors of H below 0.7 (hence, had
information supporting H ).

These considerations highlight that knowing just the individuals’ current (i.e. pos-
terior) opinions π1, . . . , πn does not suffice to determine a collective opinion π that
efficiently aggregates private information. But π1, . . . , πn are all that classic opinion
pooling takes into account in calculating π . This suggests that one should depart from
the classic framework. As the above example lets one suspect, the collective opinion
π should be sensitive not just to people’s posterior opinions π1, . . . , πn but also their
prior opinions.

This paper (which is based on my unpublished paper Dietrich 20041) presents an
axiomatic framework that explicitly models the information states of the individuals.
The axioms lead (in the common prior case) to a unique formula for the collective
probability function; no weights or other parameters are needed to incorporate all
individual information into the collective beliefs. For the reason explained above, the
collective beliefs depend not just on people’s actual (i.e. posterior) beliefs but also
their prior beliefs. This increased individual input is necessary and sufficient to effi-
ciently aggregate information, which might come as a surprise. In short, knowing the
(complex) content of people’s private information is not needed: knowing people’s
prior-posterior pairs suffices.

As an alternative to our approach, the supra-Bayesian approach might also be able to
aggregate information efficiently; however, despite conceptual elegance, the approach
suffers from some problems, amongst which practical infeasibility.2

In modelling both individuals and the collective as Bayesian rationals, our findings
are also relevant to the theory of Bayesian aggregation, which aims to merge individ-
ual beliefs/values/preferences satisfying Bayesian rationality conditions (in the sense
of Savage 1954 or Jeffrey 1983) into equally rational collective ones; for the ex ante
approach, e.g. Seidenfeld et al. (1989), Broome (1990), Schervish et al. (1991) and
Mongin (1995, 1998); for the ex post approach, e.g. Hylland and Zeckhauser (1979),
Levi (1990), Hild (1998) and Risse (2001); for an excellent overview, see Risse (2003).

1 See also Marcus Pivato’s (2008) related work mentioned in the acknowledgements.
2 In the supra-Bayesian approach (introduced by Morris’ 1974 seminal work and extended in a large litera-
ture), collective beliefs are obtained as posterior probabilities (held by the real or virtual ‘supra-Bayesian’)
conditional on the observed individual beliefs (treated as random events or evidence). This presupposes
knowing (i) prior probabilities, and (ii) the likelihoods with which the individuals make probability assign-
ments. It is not clear where these prior probabilities and likelihoods can come from; reaching a compromise
or consensus on them might involve a more complex opinion pooling problem than the original one.
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Section 2 presents the axiomatic model and derives the resulting aggregation rule.
Section 3 gives a numerical example. Section 4 identifies our pooling formula as
a form of multiplicative opinion pooling. Sections 5 and 6 address the case of no
common prior. Section 7 analyses the independent-information assumption made so
far. Section 8 generalises the aggregation rule to arbitrary information overlaps.

2 An axiomatic model

Consider a group of persons i = 1, . . . , n (n ≥ 2) who need collective beliefs on cer-
tain hypotheses, represented as subsets H of a non-empty set � of possible worlds, i.e.
worlds that are possible under the shared information. Throughout I call information
(knowledge, an observation etc.) ‘shared’ if it is held by all group members. Let H be
the set of hypotheses H ⊆ � of interest, where H forms a finite or countably infinite
partition of � and ∅ /∈ H. So, the hypotheses are mutually exclusive and exhaustive.
A simple but frequent case is a binary problem H = {H,�\H}, where H might be the
hypothesis that the defendant in a court trial is guilty. In a non-binary case, H might
contain different hypotheses on the defendant’s extent of guilt.

In practice, the hypotheses on which opinions are formed need not be represented
as subsets of a set of worlds �. This representation and indeed the set � are needed
only in the present formal framework, so that we can formulate axioms, and introduce
further background objects (events and probability measures) which are needed in the
axioms but do not appear when applying the resulting pooling formulas.

I call an opinion (onH) any function f : H → (0, 1] with
∑

H∈H f (H) = 1
(whereas probability measures are, as usual, defined on σ -algebras of events3); let �

be the set of all these functions f .
Let each individual i hold an opinion πi ∈ �, and let the collective also hold an

opinion π ∈ �. So far, this is entirely classical. Classical opinion pooling would
proceed by placing conditions on how π depends on π1, . . . , πn , resulting in a unique
relationship (e.g. π = 1

n π1 + · · · + 1
n πn) or a class of possible relationships (e.g. all

linear relationships).

2.1 Simple case: common prior beliefs and a common belief domain

Before stating the axiomatic approach in full generality (that is, before allowing indi-
viduals to hold different prior beliefs defined within different domains of events), I
sketch the approach in the simple base-line case. Suppose for the moment that any
individual i’s opinion πi : H → (0, 1] is given by

πi (H) = P(H |Ei ) for all H ∈ H,

3 Any opinion uniquely extends to a probability measure defined on the σ -algebra σ(H) generated by
H, and so we lose nothing by pooling opinions defined on H rather than probability measures defined on
σ(H). By definition, opinions never assign zero probability to any hypothesis; this is mainly for technical
convenience.
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where for now P is a common prior probability measure (defined on an appropriate
σ -algebra over �, for instance the power set P(�)), and where Ei ⊆ � is individual
i’s private information with P(Ei ) > 0. Suppose further that people hold independent
information: E1, . . . , En are independent conditional on any hypothesis H ∈ H.4

We would like to calculate a group opinion π . This group opinion should include all
information spread over the individuals, i.e.

π(H) = P(H |E1 ∩ . . . ∩ En) for all H ∈ H (1)

(where one easily checks that (1) is well-defined, i.e. that P(E1 ∩ . . .∩ En) > 0). One
approach would be to ask all individuals i to ‘tell’ their private experience Ei , so that
the group could simply gather all experiences and calculate the conditional probabil-
ities (1). But this procedure may be unrealistic, as personal experience may be very
complex and hard-to-communicate in normal language and limited time. (Another
problem, which we currently assume away by using a common belief domain, is that
person i’s experience Ei may be an event of which the other persons have no prior
beliefs, or even no awareness or conceptualisation; asymmetries in awareness or con-
ceptualisation might indeed explain why different people make different experiences.)

Assuming that private evidence cannot (or is not) communicated, can the beliefs in
(1) be calculated at all? The following derivation gives a positive answer. Consider a
hypothesis H ∈ H and the belief π(H) as defined by (1). Applying Bayes’ rule and
then our independence assumption,

π(H) = P(H)P(E1 ∩ . . . ∩ En|H)
∑

H ′∈H P(H ′)P(E1 ∩ ... ∩ En|H ′)

= P(H)P(E1|H) · · · P(En|H)
∑

H ′∈H P(H ′)P(E1|H ′) · · · P(En|H ′)
.

In the numerator and the denominator, each factor of type P(Ei |H) can be rewritten
according to

P(Ei |H) = P(H |Ei )P(Ei )

P(H)
= πi (H)P(Ei )

P(H)
.

4 Why do I assume that information is independent conditional on any hypothesis rather than uncondi-
tionally? Unconditional independence would be implausible. Suppose for instance that the information of
individuals 1 and 2 both strongly correlate with the same hypothesis H in H. (In a jury trial, the jurors 1
and 2 might each observe patterns in the defendant’s behaviour which strongly point towards the hypothesis
of guilt.) Then E1 and E2 are usually not independent but positively correlated (P(E2|E1) > P(E2)),
because learning E1 raises the probability of H , which in turn raises that of E2. More generally, since
the evidences E1, . . . , En tell something about the hypotheses, learning some of the Ei s leads to revised
probabilities of the hypotheses, which leads to revised probabilities of the other Ei s. In short, the Ei s are
non-independent because they are mutually relevant via their relevance to hypotheses in H. This argument
for non-independence is blocked once we condition on a hypothesis: conditional on a given hypothe-
sis being true, evidences are not relevant to (i.e., do not bring new information about) hypotheses. If all
existing probabilistic dependence between evidences goes ‘via’ the hypotheses, then conditioning on a
hypothesis eliminates all sources of dependence, and the evidences become conditionally independent. Our
(conditional) independence assumption is analysed again below.
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Substituting this expression, we obtain

π(H) = P(H)
π1(H)P(E1)

P(H)
· · · πn(H)P(En)

P(H)
∑

H ′∈H P(H ′)π1(H ′)P(E1)
P(H ′) · · · πn(H ′)P(En)

P(H ′)

= π1(H) · · · πn(H)/P(H)n−1
∑

H ′∈H π1(H ′) · · · πn(H ′)/P(H ′)n−1 .

Interestingly, any private information Ei has dropped out altogether, so that the collec-
tive opinion π can be calculated solely on the basis of the revealed individual opinions
π1, . . . , πn (and the fixed prior). Put differently, each individual information Ei has
been incorporated without disclosing it. In short, denoting by p the prior opinion P|H
(i.e., the restriction of P to the hypotheses of interest), we have shown that

π ∝ π1 · · · πn/pn−1.

Here and throughout, I call functions f, g : H → R proportional, written f ∝ g, if
there exists a constant k 	= 0 such that f (H) = kg(H) for all H ∈ H.

2.2 General cse: possibly distinct prior beliefs and belief domains

After this preliminary analysis, let us start afresh, this time in full generality, and stat-
ing all assumptions as explicit axioms. Recall that we consider individual opinions
π1, . . . , πn ∈ � and a collective opinion π ∈ �. The further elements introduced
in the preliminary Sect. 2.1 (namely, P, E1, . . . , En) are now re-introduced in their
general and official form. For each person i there is (without having to be revealed):

• an event Ei ⊆ �, i’s personal information;
• a (‘prior’) probability measure Pi representing i’s beliefs based on the shared

information (hence prior to observing Ei ).Pi need not assign a probability to all
events in P(�); rather, Pi is defined on some σ -algebra Ai ⊆ P(�), containing
the events on which i holds beliefs (whereas on other events i may lack beliefs,
or even lack awareness or conceptualisation). But Ai should contain at least Ei

and all hypotheses in H, where Pi (Ei ) > 0 and Pi (H) > 0 for all H ∈ H. The
restriction of i’s prior belief Pi to H is called i’s prior opinion. It is denoted by
pi (∈ �) and given by pi (H) = Pi (H) for all H ∈ H.

These model resources allow us to state a standard rationality condition:

Individual Bayesian Rationality (IBR) πi (H) = Pi (H |Ei ) for each person i and
hypothesis H ∈ H.5

5 The conditional probability Pi (H |Ei ) is well-defined because Ei , H ∈ Ai and Pi (Ei ) > 0. Our assump-
tions also take care that all other conditional probabilities used in this paper are well-defined.
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A person i’s belief domain Ai may fail to contain another person j’s observation E j ,
and this for (at least) two reasons. First, the fact that j but not i observed E j may
be due precisely to j having subjectively conceptualised E j but i not having done
so; juror j in a trial may be the only juror to observe the suspicious smile on the
defendant’s face because the other jurors i do not even know what a suspicious smile
would be like. Second, j’s information E j may be so detailed and complex that prior
to j observing it, it belonged not even to j’s own belief domain, let alone to i’s; that
is, it was only while observing E j that person j extended his prior beliefs to a larger
domain A j containing E j .

The collective agent could be either a real agent (e.g., a social planner) who has to
update his beliefs after learning the beliefs of the group members; this turns the model
into a belief revision model. But the paper mainly interprets the collective agent as a vir-
tual agent with its own beliefs. The social choice paradigm requires it to be as rational
as any real individual.6 ‘Rationality’ refers to different things in different contexts (e.g.
to transitivity of preferences in Arrovian preference aggregation, to von-Neumann-
Morgenstern rationality in Harsanyi’s Theorem on group preferences over lotteries,
to logical consistency in judgment aggregation, and so on). In the present context, it
naturally refers to Bayesian rationality. To formulate this, I suppose that there is

• a (‘prior’) probability measure P , representing collective beliefs based on peo-
ple’s shared information (hence not on their private information E1, . . . , En).P
is defined on some σ -algebra A ⊆ P(�), the domain of the collective beliefs,
which contains at least all private evidences E1, . . . , En and all H ∈ H, where
P(E1 ∩ . . . ∩ En) > 0 and P(H) > 0 for all H ∈ H. The restriction of the
collective prior belief P to H is called the collective prior opinion; it is denoted
by p (∈ �) and given by p(H) = P(H) for all H ∈ H.

A, P and p are the collective counterparts of Ai , Pi and pi . The collective counterpart
of IBR is:

Collective Bayesian Rationality (CBR) π(H) = P(H |E1 ∩ . . . ∩ En) for each
hypothesis H ∈ H.

Condition (CBR) requires the collective opinion π to incorporate all information
spread over people: the shared information (contained in the prior P) and all personal
information (contained in E1, . . . , En).

While we have ensured, via (CBR), that the collective opinion uses all evidence
scattered across individuals, we have done nothing so far to constrain the collective
prior probability measure P (which underlies π ). Indeed, P may so far be totally dis-
connected from the individual prior probability measures P1, . . . , Pn (which underlie
π1, . . . , πn). The next condition does something to connect P to P1, . . . , Pn . More
precisely, the condition ties the likelihood that the collective assigns to the various
individual evidences E1, . . . , En to the individuals’ own likelihood assessments:

6 The collective agent should be rational notably because it forms the basis for collective actions and
decisions.
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Accept People’s Likelihood Assessments (APLA) For all persons i and hypotheses
H ∈ H, P(Ei |H) = Pi (Ei |H).

This principle requires the collective to take over i’s own interpretation of i’s infor-
mation Ei as given by i’s likelihood assignments Pi (Ei |H), H ∈ H. To motivate
this condition, let me first explain the context in a little more detail. In statistics, the
information that data contain on given hypotheses (as opposed to prior beliefs on these
hypotheses) is usually taken to be summarised in the data’s likelihood function, which
maps any hypothesis to the data’s probability given this hypothesis. For instance, the
information on humidity contained in a temperature measurement of 20◦C is given
by the mapping that assigns to each potential humidity level the probability that tem-
perature is 20◦C given this humidity level. In our case, the information contained in
individual i’s evidence Ei is summarised in Ei ’s likelihood function, mapping any
hypothesis H to Ei ’s probability given H . But how large exactly is Ei ’s probability
given H? For instance, how probable is it that the defendant in a trial has a partic-
ular facial expression (Ei ) given the hypothesis that he is guilty (H )? The answer
may be far from trivial, as one might come up with various different interpretations
of the same observation. Condition (APLA) requires that the answer that the collec-
tive gives matches the answer that the individual who observed the evidence gives;
that is, P(Ei |H) = Pi (Ei |H). What is the motivation behind identifying P(Ei |H)

with Pi (Ei |H)? Why not also take other persons’ interpretations of Ei into account
by defining P(Ei |H) as some compromise of P1(Ei |H), . . . , Pn(Ei |H)? First, for
reasons explained above, the persons j 	= i may not even hold beliefs on the unob-
served event Ei (i.e., Ei 	∈ A j ), in which case Pj (Ei |H) is simply undefined. Second,
assuming that the persons j 	= i do hold such beliefs (i.e., Ei ∈ A j ), a ‘likelihood
compromise’ could only be formed after each person j reveals Pj (Ei |H); which in
turn supposes that first i communicates his informational basis Ei in all detail to
the rest of the group. This is not only at odds with the present approach, but may
also be infeasible: given the possible complexity of Ei and the limitations of lan-
guage, time, i’s ability to describe Ei , j’s ( j 	= i) ability to understand Ei and so
on, j could probably learn at most some approximation Ẽi of Ei , and so j could at
most provide j’s likelihood of Ẽi , which only approximates j’s likelihood of the true
Ei (Pj (Ẽi |H) ≈ Pj (Ei |H)).

The next assumption is not a normative condition but rather an assumption on the
environment: individuals receive independent information. This assumption will be
analysed (and relaxed) in later sections; see footnote 4 above for first considerations.
For now, I only mention that it is strong but very common. It is analogous to (i)
independence assumptions on private information/types in Bayesian games, (ii) the
independence condition in the literature on the Condorcet Jury Theorem (see Dietrich
2008 for a critique of the condition), (iii) the Parental Markov Condition in the theory
of Bayesian networks (interpreting the true hypothesis in H as the parent of each infor-
mation Ei in a Bayesian network; see Pearl 2000) and (iv) Fitelson’sFitelson (2001)
condition of confirmational independence.
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Independent Information (Ind) For each hypothesis H ∈ H, the personal obser-
vations E1, . . . , En are independent conditional on H .7

I am ready to state the theorem. Recall that pi , πi is the pair of person i’s prior and
posterior opinion, and p, π is the pair of the collective prior and posterior opinion.

Theorem 1 Suppose individuals satisfy (IBR), information satisfies (Ind), and the
collective satisfies (CBR) and (APLA). Then the collective opinion π is proportional
to the collective prior opinion times all individual posterior-to-prior ratios:

π ∝ p
π1

p1
· · · πn

pn
.

Proof Suppose (IBR), (CBR), (APLA) and (Ind) hold. For all H in H,

π(H) = P(H |E1 ∩ · · · ∩ En) by (CBR)

= P(E1 ∩ · · · ∩ En|H)p(H)

P(E1 ∩ · · · ∩ En)
by Bayes’ rule

= k P(E1 ∩ · · · ∩ En|H)p(H) for a constant k 	= 0

= k P(E1|H) · · · P(En|H)p(H) by (Ind)

= k P1(E1|H) · · · Pn(En|H)p(H) by (APLA)

= k
P1(H |E1)P1(E1)

p1(H)
· · · Pn(H |En)Pn(En)

pn(H)
p(H) by Bayes’ rule

= k′ P1(H |E1)

p1(H)
· · · Pn(H |En)

pn(H)
p(H) for a constant k′ 	= 0

= k′ π1(H)

p1(H)
· · · πn(H)

pn(H)
p(H) by (IBR).

�

Three important remarks are due.

1. As promised, the collective opinion π is calculated without people having to com-
municate their arbitrarily complex informational bases Ei or their likelihoods
P(Ei |H), H ∈ H. In practice, all persons i submit their prior-posterior pairs
pi , πi (or just their ratios πi/pi ), and then the collective opinion π is calculated.
So, compared to standard opinion pooling, we additionally require submission of
prior opinions p1, . . . , pn , a complication that enables the incorporation of the
individual information E1, . . . , En into the collective opinion.

2. Theorem 1’s formula does not fully solve the aggregation problem since we do
not yet know how to determine the collective prior opinion p. Strategies to choose
p are presented in Sects. 5 and 6. In practice, there is an alternative to having to
choose p: one might use an approximation of Theorem 1’s formula, defining the
collective opinion as

7 As usual, by ‘independence’ of events I mean full independence, not just pairwise independence.
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πapprox ∝ π1

p1
· · · πn

pn
, (2)

the product of all posterior-to-prior ratios. When and why can πapprox count
as a good approximation of Theorem 1’s formula? Let me give some heuristic
arguments.8 Often, the function π1

p1
· · · πn

pn
varies considerably, i.e. assigns very

different values to the hypotheses H in H. Intuitively, this is because pooled
information is often strong evidence for or against certain hypotheses. More for-
mally, if sufficiently many of the individual ratios πi

pi
vary at least moderately, the

product π1
p1

· · · πn
pn

varies strongly (provided that the individual variations do not

systematically cancel each other out).9 Whenever the variation of π1
p1

· · · πn
pn

is
strong enough to ‘outweigh’ that of p (assuming p should not vary very much),
the function π1

p1
· · · πn

pn
varies roughly like p π1

p1
· · · πn

pn
; and hence, the opinions

πapprox and π (obtained by normalising the two functions so as to each sum to
one) are roughly similar.

3. Assume a unanimous posterior agreement π1 = · · · = πn (as in the introduction’s
example). Then only in special cases does π equal π1 = · · · = πn , which shows
that the unanimity/Pareto principle often required in standard opinion pooling
is problematic under informational asymmetries. One such special case is that
π1 = · · · = πn = p1 = · · · = pn = p, so that none of the personal observations
E1, . . . , En confirms or disconfirms any hypothesis, i.e. in essence, there is no
informational asymmetry.

An important special case of Theorem 1 is that where people have managed to
agree on how to interpret their shared information, i.e. where they hold a common
prior opinion:

Common Prior (CP) p1 = · · · = pn = p (i.e., the prior probability measures
P1, . . . , Pn, P agree on all hypotheses in H, though perhaps not elsewhere).

Corollary 1 Under the assumptions of Theorem 1 and (CP), the collective opinion π

is given by

π ∝ π1 · · · πn/pn−1
1 .

Let me make three remarks on this corollary.

1. The corollary’s formula differs in an important respect from Theorem 1’s for-
mula: the parameter p has been eliminated, and so the collective opinion π is
fully determined by the individual prior and posterior opinions. By contrast, if
(CP) fails, i.e. if the group did not manage to agree on how to interpret the shared

8 I owe these thoughts to the helpful referee.
9 If for instance, most individual ratios peak at the same hypothesis (say, if most jurors believe the defendant
is guilty) then the product of ratios is likely to strongly peak at this hypothesis.
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information, Theorem 1’s formula does not fully solve the aggregation problem,
as we need a way to determine the collective prior p (see Sects. 5 and 6).

2. Condition (CP) can in fact be seen as the conjunction of two conditions. The first
(descriptive) condition is that p1 = · · · = pn , i.e. all persons i submit the same
prior opinion. The second (normative) condition is that the unanimity (or Pareto)
principle holds for the prior opinions, i.e. if all submit the same prior opinion,
this becomes the collective prior opinion. Applying a unanimity condition to
prior opinions is far less problematic than doing so for the posterior opinions
π1, . . . , πn, π , because prior opinions contain no informational asymmetry.

3. According to a prominent view, held notably by Harsanyi, any inter-personal
differences in beliefs between rational agents stem from different information
(in a suitably general sense of this word), never from different prior beliefs.10 If
this view is correct, and if each opinion pi indeed incorporates no information
except the shared one which does not depend on i , then the pi s must be identi-
cal. So, Harsanyi’s view places us in the comfortable position of being able to
assume (CP). Harsanyi’s view is based on modelling all experiences—including
early ones in life and perhaps prenatal ones—as information shaping beliefs via
Bayesian conditioning. If we think of i’s private information Ei as containing
all such experiences, then the events Ei (and the underlying space �) inevitably
become highly complex. While this by itself poses no problem (since E1, . . . , En

need not be revealed), at least one difficulty arises. Even if Harsanyi were funda-
mentally right, people will in practice often not agree on a common prior opinion,
if only because they do not ‘remember’ the common prior opinion that they used
to hold at the prenatal stage. I personally do not share Harsanyi’s view. I believe
in the possibility of genuinely non-information-driven disagreements, and hence
in the possibility that p1, . . . , pn differ in spite of incorporating the same (shared)
information.11

4. Instead of interpreting Ei as reflecting all of i’s personal information, one might
re-interpret Ei as reflecting only that part of i’s personal information which i has
incorporated rationally into his opinion (in the sense of Bayesian conditioning).
Then IBR becomes true by definition. All not rationally incorporated personal

10 I am grateful to the referee for raising this issue.
11 Harsanyi’s claim is true nearly by definition if the notion of ‘information’ is purely technical and if the
claim is taken to be one about mathematically representing different probability measures as being obtained
by conditioning from a common probability measure (defined on a suitably extended algebra of events).
Under a so-extended notion of ‘information’, the whole process of personal deliberation needed to form
one’s beliefs and to interpret one’s information constitutes another large piece of (‘meta-’)information. The
current paper’s notion of ‘information’ is not of this abstract kind. It is a substantive notion, under which it is
possible that two opinions incorporate no (or the same) information and yet differ. If, however, Harsanyi’s
claim is taken to be not just about mathematical representability but about the psychological reality of
rational agents, then the claim is problematic. Many experiences in life (such as hearing a sound for the first
time) have a content that was not previously conceptualised by the agent, hence cannot belong to the algebra
within which the agent previously held beliefs. So the agent’s new beliefs after the experience cannot stem
from updating the old beliefs by Bayesian conditioning on this event. The topic of non-informational belief
formation goes beyond this paper (but will be developed in the paper ‘A reason-based theory of rational
belief’ with Christian List).
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Table 1 Collective probability
π H = π(H) in dependence of
the common prior pH = p(H)

and the individual posteriors
π H

i = πi (H), for a group of
size n = 2

π H
1 , π H

2 pH

0.1 0.25 0.5 0.75 0.9

0.1, 0.1 0.1 0.036 0.012 0.004 0.001

0.25, 0.1 0.25 0.1 0.036 0.012 0.004

0.25, 0.25 0.5 0.25 0.1 0.036 0.012

0.5, 0.1 0.5 0.25 0.1 0.036 0.012

0.5, 0.25 0.75 0.5 0.25 0.1 0.036

0.5, 0.5 0.9 0.75 0.5 0.25 0.1

0.75, 0.1 0.75 0.5 0.25 0.1 0.036

0.75, 0.25 0.9 0.75 0.5 0.25 0.1

0.75, 0.5 0.964 0.9 0.75 0.5 0.25

0.75, 0.75 0.988 0.964 0.9 0.75 0.5

0.9, 0.1 0.9 0.75 0.5 0.25 0.1

0.9, 0.25 0.964 0.9 0.75 0.5 0.25

0.9, 0.5 0.988 0.964 0.9 0.75 0.5

0.9, 0.75 0.996 0.988 0.964 0.9 0.75

0.9, 0.9 0.999 0.996 0.988 0.964 0.9

information is then simply thrown away, i.e. not included in individual or collec-
tive beliefs.12

3 A numerical example for a simple case

Consider the simple case of a binary problem H = {H,�\H} (H and �\H might
mean that the defendant in a court trial is guilty, respectively, innocent, and persons
might be jurors). Suppose Common Prior (CP), i.e. p1 = · · · = pn = p. By Theorem
1 (that is, by its corollary), the collective posterior of H is given by

π H = π H
1 · · · π H

n /(pH )n−1

π H
1 · · · π H

n /(pH )n−1 + (1 − π H
1 ) · · · (1 − π H

n )/(1 − pH )n−1

= 1

1 + (1/π H
1 − 1) · · · (1/π H

n − 1)/(1/pH − 1)n−1
, (3)

where pH := p(H), π H := π(H) and π H
i := πi (H).

12 Instead of throwing this information away, one might ask people to incorporate it (in some non-Bayesian
ways, unfortunately) in the submitted prior opinions. This removes the informational symmetry underlying
the submitted prior opinions, which in turn affects the interpretation and plausibility of the analysis of later
sections.
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For the case of only n = 2 individuals, in which the formula (3) for the collective
posterior reduces to

π H = π H
1 π H

2 /pH

π H
1 π H

2 /pH + (1 − π H
1 )(1 − π H

2 )/(1 − pH )

= 1

1 + (1/π H
1 − 1)(1/π H

2 − 1)/(1/pH − 1)
,

Table 1 contains the values of the collective belief π H for all possible combinations of
values of pH , π H

1 , π H
2 in the grid {0.1, 0.25, 0.5, 0.75, 0.9}.13 Note how drastically

the group belief π H depends on the prior pH . By shifting pH below (above) the indi-
vidual posteriors π H

i , the group belief π H quickly approaches 1 (0). The interpretation
is that if the posteriors π H

i are all to the same side of the prior, then the evidences Ei

all point into the same direction, so that their conjunction points even more into that
direction. But if the prior pH is somewhere in the middle of the posteriors π H

i , the
group belief π H may be moderate. The interpretation is that if some of the posteriors
π H

i are above the prior and others are below the prior, then the evidences Ei point into
different directions, and their conjunction need not strongly point into any direction.
The above formula for the group belief π H shows that it strictly increases as a function
of each individual belief π H

i , but strictly decreases as a function of the prior belief
pH . But how can one make sense of the group posterior π H depending negatively
on the prior pH ? How could more prior support for H possibly reduce H ’s posterior
probability? The answer is that by increasing the prior pH while keeping the individ-
ual posteriors π H

i fixed one implicitly reduces the support that each of the evidences
Ei gives to H ; as a result, the collective posterior of H falls, intuitively because the
reduced evidential support for H overcompensates the increased prior support.

4 Multiplicative opinion pooling

If we treat the prior opinions p1, . . . , pn, p as fixed parameters, the pooling formula
of Theorem 1 depends just on π1, . . . , πn , hence defines a classic pooling function
F : �n → �. Specifically, this pooling function is given by π = g · π1 . . . πn where
g is a fixed function on H given by g ∝ p/(p1 · · · pn) (and in particular as g ∝ p1−n

under Common Prior (CP)). So, our axioms lead to what one might call a multiplica-
tive opinion pool. Formally, a (classic) opinion pool F : �n → � is multiplicative if
it is given by

F(π1, . . . , πn) = g · π1 · · · πn for all π1, . . . , πn ∈ �,

13 The entries are rounded results if three decimal digits are reported, and exact results else.
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for some fixed function g : H → (0,∞). The simplest multiplicative rule is that in
which g is a constant function, so that

F(π1, . . . , πn) ∝ π1 . . . πn for all π1, · · · , πn ∈ �.

Note how multiplicative opinion pools differ from the more common linear and geo-
metric opinion pools; these arise from different axiomatic systems that do not make
information explicit.

In fact, our axioms not only imply that pooling is multiplicative: they characterise
multiplicative pooling if H is finite because every multiplicative rule can be obtained
from suitable priors p1, . . . , pn, p ∈ �.14

5 Choosing the collective prior p when there is no common prior

If the interpretation of the shared information is controversial and hence (CP) fails, the
group needs to determine the collective prior p in Theorem 1’s formula. At least three
strategies are imaginable. First, one might define p as a uniform or maximum-entropy
prior if available. Second, someone, not necessarily a group member, may be appointed
to choose p, either by drawing on his own prior beliefs, or by taking inspiration from
the submitted priors p1, . . . , pn , or by using statistical estimation techniques if avail-
able. These two solutions have obvious limitations, including some ad-hoc-ness and
a lack of democracy. A third alternative is to replace p by F(p1, . . . , pn) and thus
define the collective opinion by

π ∝ π1

p1
· · · πn

pn
F(p1, . . . , pn), (4)

where F : �n → � is a standard opinion pool. Note that F is used here not to
aggregate people’s actual (posterior) opinions π1, . . . , πn but to aggregate their prior
opinions p1, . . . , pn , namely into a ‘compromise prior’. At first sight, one may won-
der what is gained by formula (4) compared to the standard approach of defining
π = F(π1, . . . , πn) without having to care about priors p1, . . . , pn . Does formula (4)
not just shift the classic aggregation problem—pooling π1, . . . , πn into π—towards
an equally complex aggregation problem about priors —pooling p1, . . . , pn into p?
In an important respect, pooling p1, . . . , pn is simpler than pooling π1, . . . , πn : unlike
π1, . . . , πn , the prior opinions p1, . . . , pn involve no informational asymmetry since
each pi is based on the same (shared) information.15 Hence any disagreement between
p1, . . . , pn is due solely to different interpretations of that same body of information.
This may facilitate the choice of F . For instance, aggregation may be guided by the

14 For any multiplicative rule F : �n → �, say generated by the function g, if we (for instance) take
p1, . . . , pn , p to be all identical and proportional to g−1/(n−1), then g ∝ p/(p1 . . . pn), and hence the
multiplicative rule generated by g coincides with that arising in Theorem 1.
15 One might even argue that while pooling p1, . . . , pn into p is possible without using extra information
(due to the informational symmetry), pooling π1, . . . , πn into π is impossible without extra information
(such as p1, . . . , pn).
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unanimity/Pareto principle (which is problematic under informational asymmetry, as
we have seen). Further, aggregation may place equal weights on each of the priors
p1, . . . , pn (whereas pooling π1, . . . , πn may involve the difficult and vague exer-
cise of assigning more weight to better informed people). The literature’s two most
prominent types of opinion pools F : �n → � are

linear opinion pools: F(p1, . . . , pn) = w1 p1 + · · · + wn pn,

geometric opinion pools: F(p1, . . . , pn) ∝ pw1
1 . . . pwn

n ,

with weights w1, . . . , wi ∈ [0, 1] that add up to 1 (where in the geometric pool the
factor of proportionality is chosen such that

∑
H∈H F(p1, . . . , pn)(H) = 1). If F is

a linear, respectively, geometric opinion pool, our pooling formula (4) becomes

π = π1

p1
· · · πn

pn
(w1 p1 + · · · + wn pn) (5)

resp. π ∝ π1

p1
. . .

πn

pn
pw1

1 · · · pwn
n = π1

p1−w1
1

· · · πn

p1−wn
n

. (6)

How should the weights w1, . . . , wn be chosen in practice? In general, unequal weights
may be justified either by different information states or by different competence,
i.e. ability to interpret information. The former reason does not apply here, since
p1, . . . , pn are by definition based on the same (shared) information. If, in addition,
differences of competence are either inexistent, or unknown, or not to be taken into
account for reasons of procedural fairness, then equal weights w1 = · · · = wn = 1/n
are justified, so that our pooling formula becomes

π = 1

n

π1

p1
· · · πn

pn
(p1 + · · · + pn) (7)

resp. π ∝ π1

p1−1/n
1

· · · πn

p1−1/n
n

, (8)

which is parameter-free, hence uniquely solves the aggregation problem.

6 External and internal Bayesianity

I now give an argument in defence of defining F in (4) as a geometric (or more gen-
erally, externally Bayesian) opinion pool, hence in defence of our pooling formulae
(6) and (8). Note first that in (4) π is a function of the vector (p1, π1 . . . , pn, πn) ∈
(� × �)n = �2n , containing every person’s prior and posterior.

Definition 1 A generalised opinion pool (‘GOP’) or generalised probability aggre-
gation rule is a function G : �2n → �.

Unlike a standard opinion pool F : �n → �, a GOP G also takes as inputs the pi s,
i.e. people’s interpretations of the shared information. As shown above, our axioms
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imply that a GOP G should take the form (4), i.e. the form

G(p1, π1, . . . , pn, πn) ∝ π1

p1
· · · πn

pn
F(p1, . . . , pn) (9)

where F : �n → � is a standard opinion pool that merges the priors p1, . . . , pn .
From a Bayesian perspective, two natural conditions may be imposed on a GOP, to

be called external and internal Bayesianity. The former is an analogue of the equally
named classic condition for standard opinion pools F : it should not matter whether
information arrives before or after pooling, i.e. pooling should commute with Bayesian
updating. Formally, for every opinion p ∈ � and (likelihood) function l : H → (0, 1]
the (updated) opinion pl ∈ � is defined by

pl(H) := l(H)p(H)
∑

H ′∈H l(H ′)p(H ′)
, in short pl ∝ lp. (10)

Here, l is interpreted as a likelihood function P(E |.) for some observation E , so that
pl is a posterior probability. A standard opinion pool F : �n → � is called externally
Bayesian if

F(pl
1, . . . , pl

n) = F(p1, . . . , pn)l

for every profile (p1, . . . , pn) ∈ �n and (likelihood) function l : H → (0, 1] (Madan-
sky 1964). In particular, geometric opinion pools are externally Bayesian. An analo-
gous concept can be defined for GOPs:

Definition 2 A GOP G : �2n → � is called externally Bayesian if

G(pl
1, π

l
1, . . . , pl

n, π l
n) = G(p1, π1, . . . , pn, πn)l

for every profile (p1, π1, . . . , pn, πn) ∈ �2n and (likelihood) function l : H → (0, 1].
On the left hand side of this equation, not only all posteriors are updated (π l

i ) but
also all priors (pl

i ), because the incoming information is observed by everybody, hence
part of the shared information, hence contained in the priors.

While external Bayesianity requires that it be irrelevant whether pooling happens
before or after updating, a different question is whether it matters who in the group
has observed a given information. Internal Bayesianity requires that it be irrelevant
whether every or just a single person obtains a given information:

Definition 3 A GOP G : �2n → � is called internally Bayesian if, for each person
i ,

G(p1, π1, . . . , pi−1, πi−1, pi , π
l
i , pi+1, πi+1, . . . , pn, πn) = G(pl

1, π
l
1, . . . , pl

n, π l
n)

for every profile (p1, π1, . . . , pn, πn) ∈ �2n and (likelihood) function l : H → (0, 1].
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On the left hand side of this equation, i’s prior is not updated (pi , not pl
i ), because the

incoming information, being observed just by person i, is not part of the shared infor-
mation, hence not reflected in any prior. Internal Bayesianity is based on the idea that
the collective probabilities should incorporate all information available somewhere
in the group, whether it is held by a single or every person. External and internal
Bayesianity together imply that, for each person i ,

G(p1, π1, . . . , pi−1, πi−1, pi , π
l
i , pi+1, πi+1, . . . , pn, πn)=G(p1, π1, . . . , pn, πn)l

for every profile (p1, π1, . . . , pn, πn) ∈ �2n and (likelihood) function l : H → (0, 1].
It turns out that if a GOP G takes the form (9), then external and internal Bayesianity

are in fact equivalent, and equivalent to external Bayesianity of F :

Theorem 2 If a generalised opinion pool G : �2n → � has the form (9) where
F : �n → � is any opinion pool, the following conditions are equivalent:

(i) G is externally Bayesian;
(ii) G is internally Bayesian;
(iii) F is externally Bayesian.

So, if one desires G to be externally or internally Bayesian, one is bound to use an
externally Bayesian opinion pool F in our pooling formula (9), for instance a geometric
opinion pool F , which leads to pooling formula (6), hence to (8) in the equal-weight
case. There also exist more complex (non-geometric) externally Bayesian opinion
pools F , characterised in full generality by Genest et al. (1986, Theorem 2.5), but
geometric ones become the only solutions if |H| ≥ 3 and F has some additional
properties (see Genest et al. 1986, Corollary 4.5).

Proof I show that (i) is equivalent with each of (ii) and (iii). By (9),

G(pl
1, π

l
1, . . . , pl

n, π l
n) ∝ π l

1

pl
1

· · · π l
n

pl
n

F(pl
1, . . . , pl

n),

and hence by (10)

G(pl
1, π

l
1, . . . , pl

n, π l
n) ∝ lπ1

lp1
· · · lπn

lpn
F(pl

1, . . . , pl
n) = π1

p1
· · · πn

pn
F(pl

1, . . . , pl
n).

(11)

On the other hand, again by (9) and (10),

G(p1, π1, . . . , pn, πn)l ∝ l
π1

p1
· · · πn

pn
F(p1, . . . , pn) ∝ π1

p1
· · · πn

pn
F(p1, . . . , pn)l .

(12)
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observations of
person 1 only

observations of
person 2 only

shared
observations

observations of

person 1 only
observations of

person 2 only

shared
observations

observations of
person 3 only

! !

Fig. 1 Observation sets in a group of n = 2 perons (no subgroup information), and a group of n = 3
persons (with subgroup information marked by ‘!’)

Relations (11) and (12) together immediately imply that G is externally Bayesian if
and only if F is externally Bayesian. Further, again by (9) and (10),

G(p1, π1, ..., pi−1, πi−1, pi , π
l
i , pi+1, πi+1, . . . , pn, πn) ∝ l π1

p1
· · · πn

pn
F(p1, . . . , pn)

∝ π1
p1

· · · πn
pn

F(p1, . . . , pn)l .

This together with (11) implies that G is internally Bayesian if and only it F is
externally Bayesian. �


7 When is information independent, when not?

Let us go back to Theorem 1’s assumption of Independent Information (Ind). This
assumption is often a useful idealisation, even in situations where it fails. But what
exactly are these real situations where (Ind) fails? An important source for failure is
what I call subgroup information, that is, information held by more than one but less
than all persons. I will prove that, under certain conditions, (Ind) holds if and only if
there is no subgroup information.

By a person i’s observation set I mean, informally, the (possibly quite enormous)
collection of i’s relevant observations/items of information. Formally, one may define
i’s observation set as a set Oi of non-empty observations O ⊆ �.16 In the case of
a jury faced with hypotheses about the defendant’s guilt, i’s observation set might
include the observations ‘an insecure smile on the defendant’s face’, ‘the defendant’s
fingerprint near the crime scene’, ‘two contradictory statements by witness x’, etc.

Figure 1 shows observation sets, not sets of possible worlds A ⊆ �. These two con-
cepts are in fact opposed to each other: the larger the observation set, the smaller the
corresponding set of worlds (in which the observations hold); the union of observation
sets compares to the intersection of the sets of worlds. Formally, to an observation set
O corresponds the set of worlds ∩O∈O O ⊆ � (interpreted as � if O = ∅). Thus, i’s

16 An observation made by every person is represented by the sure event O = �, because � is interpreted
as containing the worlds that are possible under shared information. Formally, O ∈ O1 ∩ . . . ∩ On implies
O = �.
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information Ei equals

Ei =
⋂

O∈Oi \(O1∩...∩On)

O,

the intersection of all of i’s observations except from any shared one; by footnote 16,
this actually reduces to

Ei =
⋂

O∈Oi

O .

Here is the problem. Consider any observation contained in the observation sets
of more than one but less than all persons i—something impossible in groups of size
n = 2 but possible in larger groups, as illustrated by the ‘!’ fields in Fig. 1. This
observation is not part of the shared information, but of the personal information Ei

of many individuals i . Such subgroup information typically creates positive correla-
tions between the Ei s in question. As a stylised example, consider a jury of n = 3
jurors faced with the hypothesis of guilt of the defendant (H ). All jurors have read
the charge (shared information), and moreover juror 1 has listened to the first witness
report and observed the defendant’s nervousness (E1), juror 2 has listened to the second
witness report and observed the defendant’s smiles (E2), and juror 3 has listened to
both witness reports and had a private chat with the defendant (E3). Note the subgroup
information of jurors 1 and 3, and that of jurors 2 and 3, which typically causes E3 to
be positively correlated with E1 and with E2. By contrast, individuals 1 and 2 together
have no subgroup information. This situation is depicted in Fig. 1 on the right.

To formally clarify the relationship between subgroup information and indepen-
dence violation, some preparation is needed.

Definition 4 A subgroup is a non-empty subset M of the group N := {1, . . . , n}. A
subgroup is proper if it contains more than one but less than all persons.

To formalise the notion of subgroup information, suppose that to each subgroup M
there is a non-empty event E M ⊆ �, M’s exclusively shared information, representing
all information held by each of and only the persons in M , where by assumption:

• Ei = ⋂
{i}⊆M⊆N E M for all persons i (as i has observed those E M with i ∈ M)17;

• E N = � (as any world ω ∈ � is assumed possible under the shared information);
• each E M belongs to A, the domain of the probability measure P (which holds in

particular if A contains all subsets of �).

For instance, the ‘!’ fields in Fig. 1 (right) represent the observation sets corre-
sponding to E {1,3} and E {2,3}.E M is interpretable as the intersection

⋂

O∈(∩i∈MOi )\(∪i /∈MOi )

O

17 Why not rather assume that Ei = ⋂
{i}⊆M�N E M , as Ei should not contain information held by

everybody? In fact, both assumption are equivalent since by E N = � an additional intersection with E N

has no effect.
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of all observations O contained in each of the observation sets Oi , i∈M, but in none of
the observation sets Oi , i /∈M (where this intersection is � if (∩i∈MOi )\(∪i /∈MOi ) =
∅).

What we have to exclude is that a proper subgroup M exclusively shares informa-
tion; in other words, E M must be the no-information event �:

No Subgroup Information (NoSI) Every proper subgroup M has no exclusively
shared information, i.e. E M = � (or, more generally, P(E M ) = 118).

This condition is empty if there are just n = 2 individuals, it requires E {1,2} =
E {1,3} = E {2,3} = � if n = 3, and it requires the ‘!’ fields in Fig. 1 to be empty.
Finally, consider the following independence assumption:

(Ind∗) The events E M , ∅ 	= M ⊆ N , are (P-)independent conditional on each
H ∈ H.

(Ind∗) is a more generally acceptable condition than (Ind) in that the E M s, unlike the
Ei s, are based on non-overlapping observation sets. Indeed, a subgroup M’s exclu-
sively shared information E M , by the very meaning of ‘exclusively’, represents dif-
ferent observations than any other subgroup’s exclusively shared information.19

Theorem 3 Assume (Ind∗). Then:

(a) Independent Information (Ind) is equivalent to No Subgroup Information (NoSI);
(b) specifically, if E M 	= � for proper subgroup M, then conditional on at least one

H ∈ H the personal observations Ei , i ∈ M, are pairwise positively correlated
(i.e. P(Ei ∩ E j |H) > P(Ei |H)P(E j |H) for any two distinct i, j ∈ M).

Proof Suppose (Ind*). I prove part (a); the proof includes a proof of part (b).

(i) First, assume (NoSI). Each event E {i} coincides with Ei up to a set of proba-
bility zero, because

Ei =
⋂

{i}⊆M⊆N

E M = E {i} ⋂
⎛

⎝
⋂

{i}⊆M⊆N&|M|≥2

E M

⎞

⎠ ,

in which P
(⋂

{i}⊆M⊆N&|M|≥2 E M
)

= 1 by (NoSI). So, as the events

E {1}, . . . , E {n} are independent conditional on any H ∈ H by (Ind∗), also
the events E1, . . . , En are independent conditional on any H ∈ H.

(ii) Now assume (NoSI) is violated, and let M∗ be a proper subgroup with
P(E M∗

) < 1. I show that the events Ei , i ∈ M∗, are pairwise positively

18 ‘P(E M ) = 1’ is equivalent to ‘E M = �’ in the natural case that only the empty event in A has zero
probability. Strictly speaking, ‘E M = �’ means ‘no information’ while ‘P(E M ) = 1’ means ‘essentially
no information’. I am grateful to the referee for suggesting to require ‘P(E M ) = 1’ instead of ‘E M = �’,
thereby making it possible to state Theorem 3 without assuming that only the empty event in A has zero
probability.
19 (Ind∗) holds if the observations in O1 ∪ · · · ∪ On are mutually (conditionally) independent.
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correlated conditional on at least one H ∈ H (which proves part (b) and also
completes the proof of part (a) since E1, . . . , En are then not independent con-
ditional on that H ). Consider any distinct i, j ∈ M∗. By P(E M∗

) < 1 there
exists an H ∈ H with P(E M∗ |H) < 1. Since Ei = ⋂

{i}⊆M⊆N E M and using
(Ind∗), we have

P(Ei |H) =
∏

{i}⊆M⊆N

P(E M |H).

The analogous argument for j yields

P(E j |H) =
∏

{ j}⊆M⊆N

P(E M |H).

So,

P(Ei |H)P(E j |H) =
⎡

⎣
∏

{i}⊆M⊆N

P(E M |H)

⎤

⎦ ×
⎡

⎣
∏

{ j}⊆M⊆N

P(E M |H)

⎤

⎦ .

(13)

Further, we have

Ei ∩ E j =
⎡

⎣
⋂

{i}⊆M⊆N

E M

⎤

⎦
⋂

⎡

⎣
⋂

{ j}⊆M⊆N

E M

⎤

⎦

=
⎡

⎣
⋂

{i}⊆M⊆N

E M

⎤

⎦
⋂

⎡

⎣
⋂

{ j}⊆M⊆N\{i}
E M

⎤

⎦ .

So, by (Ind∗),

P(Ei ∩ E j |H) =
⎡

⎣
∏

{i}⊆M⊆N

P(E M |H)

⎤

⎦ ×
⎡

⎣
∏

{ j}⊆M⊆N\{i}
P(E M |H)

⎤

⎦ .

(14)

The relations (13) and (14) together entail

P(Ei ∩ E j |H) > P(Ei |H)P(E j |H),

because expression (13) equals expression (14) multiplied with the factor

∏

{i, j}⊆M⊆N

P(E M |H),
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which is smaller than 1 since it contains the term P(E M∗ |H) < 1. �


8 Opinion pooling in the presence of subgroup information

One may always try to ‘remove’ subgroup information through active information
sharing prior to aggregation: all proper subgroups with exclusively shared informa-
tion communicate this information to the rest of the group. In Fig. 1, the observations
in each ‘!’ field are communicated to the third person, and in the above jury example
the subgroups {1, 3} and {2, 3} communicate the exact content of the first resp. sec-
ond witness report to the third juror. Having thus removed any subgroup information,
(NoSI) and hence (in view of Theorem 3) Independent Information (Ind) hold, so that
opinion pooling can proceed along the lines of Sects. 2–5.

But suppose now that such information sharing is not feasible, e.g. due to the com-
plexity of subgroup information. Then (NoSI) fails, and hence (Ind) fails, so that we
need to modify our pooling formula. It is at first not obvious whether and how one can
generalise Theorem 1 to arbitrary information overlaps, i.e. whether and how collective
opinions can incorporate all information spread around the group. The generalisation
is possible, as will be seen. Roughly speaking, we have to replace Theorem 1’s axioms
of Individual Bayesian Rationality (IBR) and Independent Information (Ind) by corre-
sponding axioms based on subgroups rather than individuals. Theorem 1’s two other
axioms, (APLA) and (CP), will not anymore appear explicitly, but are build implicitly
into the model, as explained in a moment. The adapted axioms will again lead to a
unique collective opinion π , calculated in a somewhat more complicated way than in
Theorem 1.

First, let me state the new model ingredients, and compare them to the earlier ingre-
dients. As before, we have a non-empty set of possible worlds �, partitioned into a
countable set H of non-empty hypotheses H . While Theorem 1’s model contained for
every individual i a personal information Ei ⊆ �, now for every subgroup M there
is a non-empty event E M ⊆ �, M ’s exclusively shared information, representing all
information held by each of and only the persons in M . By assumption, E N = �,
reflecting that any world ω ∈ � is possible under the shared information. From these
events E M we can define each individual i’s information as

Ei =
⋂

{i}⊆M⊆N

E M ,

representing all information held at least by person i .
The earlier model contained every individual i’s (prior) belief Pi ; this is not any-

more needed here. Instead, I only assume a single probability measure P , defined on
some σ -algebra A ⊆ P(�) containing each E M and each hypothesis H ∈ H. We
interpret P as capturing common prior beliefs.20 This assumption of common prior

20 More precisely, I do not mean to assume that every individual i holds a belief on all events in A. Rather
i holds beliefs (at least) on a sub-σ -algebra of A containing all hypotheses in H and those events E M for
which i ∈ M.i’s beliefs on this sub-σ -algebra are given by P .
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beliefs is a simplification; it for instance implies that conditions such as (CP) and
(APLA) above are built into the model, and hence will not have to appear explicitly.

Recall further that in Theorem 1’s model (in its common prior version) people
provide individual opinions π1, . . . , πn (reflecting ‘individually shared’ information)
and a common prior opinion p (reflecting the group’s shared information). So, tech-
nically, the earlier model contained the opinions π1, . . . , πn, p reflecting the shared
information of the improper subgroups {1}, . . . , {n}, N , respectively. Our new model
adds to this the opinions reflecting the shared information of certain proper subgroups
M ⊆ N . More precisely, in the new model at least those (proper or improper) sub-
group which exclusively share information will need to provide an opinion. Formally,
let M be a set of subgroups, containing at least those (proper or improper) subgroups
M ⊆ N with exclusively shared information, i.e. with E M 	= �. Without loss of
generality, let N ∈ M.21 Each subgroup M in M submits an opinion πM ∈ �,
representing M’s probability assignments based on M’s shared information (shared
information need not be exclusively shared, i.e. may be known to other persons too;
see Definition 5 below). Theorem 1’s model (in the common prior version) is the
special case that M = {{1}, . . . , {n}, N } (= {M : M is an improper subgroup}) with
π{1} = π1, . . . , π{n} = πn, πN = p. In the last section’s jury example with n = 3
individuals, we may put

M = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}

because {1, 2} has no exclusively shared information.
In practice, in addition to every individual i with {i} ∈ M submitting an opin-

ion π{i}, every non-singleton subgroup M ∈ M will have to ‘sit together’, find out
about the information it shares, and come up with an opinion πM based on this shared
information.

The technique to calculate the (collective) opinion π ∈ � from the submitted
subgroup opinions πM , M ∈ M, is recursive. Let me first illustrate it by an example.

Example 1 As in the last section’s jury example, let there be n = 3 individuals and let
M={{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}. So, functions π{1}, π{2}, π{3}, π{1,3}, π{2,3}
and π{1,2,3} are submitted. The recursion works as follows, where I use a slightly
simplified version of the later notation and give only informal justifications.

• First, merge π{1,3} and π{2,3} into a function π{1,3},{2,3} that combines {1, 3}’s
shared information and {2, 3}’s shared information. One may apply Corollary 1’s
formula:

π{1,3},{2,3} ∝ π{1,3}π{2,3}/π{1,2,3}.

(To see why π{1,2,3} can play the role of the prior opinion p in Corollary 1, recall
that p there represents the information shared by all individual opinions. The

21 One may always define M as containing all subgroups, but in practice this maximal choice adds unnec-
essary steps to the recursive pooling procedure introduced below. The minimal choice is M = {M : ∅ 	=
M � N and E M 	= �} ∪ {N }.
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information shared by the opinions π{1,3} and π{2,3} is the information held by [1
and 3] and by [2 and 3]. This is equivalent to the information held by 1 and 2 and
3, i.e. the information expressed in π{1,2,3}.)

• Next, define π{1,2} as π{1,2,3}, because the subgroup {1, 2} does not exclusively
share any information and hence shares the same information as the larger group
{1, 2, 3}.

• Next, merge π{1} and π{2} into a function π{1},{2} that combines {1}’s and {2}’s
information. One may apply Corollary 1’s formula:

π{1},{2} ∝ π{1}π{2}/π{1,2}.

(Why can π{1,2} play the role of p in Corollary 1, i.e. why does π{1,2} express the
information shared by π{1} and π{2}? The information shared by π{1} and π{3} is
the information held by 1 and by 2, i.e. the information expressed in π{1,2}.)

• Finally, merge π{1},{2} and π{3} into the function π = π{1},{2},{3} that combines
{1}’s, {2}’s and {3}’s information. Again, one may apply Corollary 1’s formula:

π = π{1},{2},{3} ∝ π{1},{2}π{3}/π{1,3},{2,3}.

(Why can π{1,3},{2,3} play the role of p in Corollary 1, i.e. why does π{1,3},{2,3}
represent the information shared by π{1},{2} and π{3}? The information shared by
π{1},{2} and π{3} is the information held by [1 or 2] and by 3. This is precisely the
information held by [1 and 3] or by [2 and 3], i.e. the information expressed in
π{1,3},{2,3}.)

Now I come to the formal treatment. Recall that i’s information Ei is given by

Ei =
⋂

{i}⊆M⊆N

E M ,

i.e. i knows precisely the conjunction of what the subgroups containing i exclusively
share. This generalises as follows to:

Definition 5 A subgroup M’s shared information is defined as

EM :=
⋂

M⊆M ′⊆N

E M ′

(the conjunction of all information exclusively shared by some supergroup of M).

EM represents what is known to at least all members of M – as opposed to M’s
exclusively shared information E M , known exactly all members of M . Taking the case
of a singleton subgroup M = {i}, the event E{i} coincides with Ei . Also, note that

P(E M ) > 0 and P(EM ) > 0 for each subgroup M
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because

P(E M ), P(EM ) ≥ P

⎛

⎝
⋂

∅	=M ′⊆N

E M ′
⎞

⎠ = P(E1 ∩ . . . ∩ En) > 0.

The following condition translates Individual Bayesian Rationality (IBR) to subgroups
in M:

Subgroup Bayesian Rationality (SBR) πM (H) = P(H |EM ) for every subgroup
M ∈ M and hypothesis H ∈ H.

As in Theorem 1, we would like the collective opinion to satisfy Collective Bayesian
Rationality (CBR); that is, we require that

π(H) = P(H |E1 ∩ · · · ∩ En)for each hypothesis H ∈ H,

a condition that may be rewritten in several equivalent ways since (by Definition 5)

E1 ∩ · · · ∩ En = E{1} ∩ · · · ∩ E{n} =
⋂

∅	=M⊆N

E M =
⋂

∅	=M⊆N

EM .

As a technical tool to construct collective opinion π satisfying (CBR), I need to intro-
duce opinions of abstract individuals.

Definition 6 An abstract individual is a non-empty set A of subgroups M ; its order
is order(A) := min{|M | : M ∈ A}, the size of a smallest subgroup in A.

The opinions π{1,3},{2,3}, π{1},{2}, . . . defined in the example above are in fact the
opinions of the abstract individuals {{1, 3}, {2, 3}}, {{1}, {2}}, . . . More generally, I
interpret an abstract individual A as a hypothetical agent who knows the shared infor-
mation of any subgroup M ∈ A (and no more). For instance, A = {{1, 3}, {2, 3}}
knows {1, 3}’s shared information and {2, 3}’s shared information. A’s information
is thus given by

⋂
M∈A EM . To get a concrete idea, note that the abstract agent A =

{{1, 3}, {2, 3}} knows

• at least as much as the abstract agent {{1, 3}}, who knows all information that 1
and 3 share (but no information that 2 and 3 share exclusively);

• at least as much as the abstract agent {{1, 2, 3}}, who knows all information that
1, 2 and 3 share (but no information that 1 and 3 share exclusively or that 2 and 3
share exclusively);

• at most as much as the abstract agent {{1}, {2}, {3}}, who knows all that 1 or 2 or
3 knows (and hence all that two or three of these individuals know together).

I will calculate for each abstract individual A an opinion πA ∈ � that reflects
precisely A’s information ∩M∈A EM , i.e. that satisfies

πA(H) = P

(

H

∣
∣
∣
∣
∣

⋂

M∈A

EM

)

for each H ∈ H. (15)

123



620 F. Dietrich

Specifically, I calculate πA by backward recursion over order(A) : πA is calculated
first for order(A) = n, then for order(A) = n −1, . . . , then for order(A) = 1. This
finally yields π, since by (CBR) and (15)

π = P(.|E{1} ∩ . . . ∩ E{n}) = πA

where A is the abstract individual {{1}, {2}, . . . , {n}} of order 1. In the recursive con-
struction, the main steps are to calculate from opinions πA and πA∗ of abstract individ-
uals A and A∗ the opinion πA∪A∗ of the abstract individual A ∪ A∗ whose information
combines the information of A and A∗. To derive πA∪A∗ from πA and πA∗ , I generalise
the formula of Theorem 1 to (two) abstract individuals. To do so, the notion of shared
information is crucial. What information do A and A∗ share? They share precisely the
information held by the abstract individual

A ∨ A∗ := {M ∪ M∗ : M ∈ A and M∗ ∈ A∗}.

The reason is: the information A and A∗ share is precisely the information that A
knows and A∗ knows, i.e. that some subgroup in A shares and some subgroup in A∗
shares, i.e. that some union M ∪ M∗ with M ∈ A and M∗ ∈ A∗ shares. So, when com-
bining opinions πA and πA∗ , A ∨ A∗’s opinion πA∨A∗ plays the role of the common
prior p in Theorem 1. More precisely, the crucial result on how to combine opinions
of abstract individuals states as follows (and is proved later):

Lemma 1 Assume (Ind∗). Consider abstract individuals B and C, form the abstract
individuals B ∨ C and B ∪ C. If πB, πC , πB∨C are opinions in � given by (15), then

• there is an opinion in � proportional to πBπC/πB∨C ,22

• this opinion is the function πB∪C given by (15).

The formula in Lemma 1 guides us in assigning opinions to abstract individuals.
The assignment is recursive, with another nested recursion in ‘Case 2’:

Definition 7 Define the opinions πA ∈ � of abstract individual A by the following
backward recursion on order(A):

• Assume order(A) = n. Then A = {N }. Define πA := πN .

• Assume order(A) = k < n and assume πA′ is already defined for order(A′) > k.
Case 1: |A| = 1. Then A = {M}. If M ∈ M, define πA = πM . If M /∈ M,
consider the abstract individual A′ := {M ∪{i} : i /∈ M} containing all subgroups
with exactly one person added to M (interpretation: A and A′ have the same
information by M /∈ M) and define πA := πA′ (where πA′ is already defined by
order(A′) = k + 1).

Case 2: |A| > 1. Define πA by another recursion on |{M ∈ A : |M | = k}|, the
number of subgroups in A of size k:

22 Equivalently, the sum
∑

H∈H
πB (H)πC (H)/πB∨C (H) is finite. Indeed, a function f from H to (0, ∞)

(such as πBπC /πB∨C ) can be normalised to a function with sum 1 if and only if f has a finite sum.
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• Assume |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗, where |M | = k
and order(A∗) > k. Define πA by πA ∝ π{M}πA∗/π{M}∨A∗ (where π{M}
is already defined in case 1, and πA∗ and π{M}∨A∗ are already defined by
order(A∗) > k and order({M} ∨ A∗) > k).

• Assume |{M ∈ A : |M | = k}| = l > 1 and assume πA∗ is already defined
for all the A∗ such that |{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k).
Then A = {M} ∪ A∗ with |M | = k and |{M∗ ∈ A∗ : |M∗| = k}| = l − 1.

Define πA by πA ∝ π{M}πA∗/π{M}∨A∗ (where π{M} is already defined in case
1, πA∗ is already defined by |{M∗ ∈ A∗ : |M∗| = k}| = l − 1, and π{M}∨A∗
is already defined by order({M} ∨ A∗) > k).

On the last recursion step we reach the opinions πA of abstract individuals of order
1, hence in particular the opinion of A = {{1}, . . . , {n}}, and this is the desired opinion
that incorporates the group’s full information:

Theorem 4 If subgroups satisfy (SBR), information satisfies (Ind∗), and the collective
satisfies (CBR), then the collective opinion π is given by π{{1},...,{n}}, the (recursively
calculated) opinion of the abstract individual {{1}, ..., {n}}.

The procedure needed to obtain the collective opinion π(= π{{1},...,{n}}) may have
a high complexity.23 How practically feasible is it? One should distinguish two sep-
arate tasks: (i) first, each subgroup M in M has to form and submit an opinion πM ;
(ii) subsequently, the collective opinion π has to be derived algorithmically from the
various subgroup opinions. Let me comment on each task.

Whether task (i) is feasible in practice depends crucially on the number and size
of subgroups in M, which in turn depends on how information is distributed across
people. In the worst case, every subgroup exclusively shares information. Here, M =
P(N )\{∅} and |M| = 2n − 1, and the task becomes infeasible already for moder-
ately large n. On the other hand, the task seems more feasible in situations where only
relatively few subgroups exclusively share information. Suppose for instance that,
when pooling expert opinions relative to certain hypotheses about climate change,
only the following subgroups exclusively share information: each single expert, i.e.
each singleton subgroup {i} ⊆ N ; a group of physicists M1 ⊆ N ; a group of biolo-
gists M2 ⊆ N ; and a group of meteorologists M3 ⊆ N . Then we may define M as
{{1}, {2}, . . . , {n}, M1, M2, M3, N }, so that only |M| = n + 4 opinions have to be
formed and submitted.

Task (ii) involves an algorithm with a nested recursion; the overall number of
steps grows more than exponentially in n.24 So, for large n, task (ii) poses a feasibil-
ity problem—even if |M| is small, i.e., if task (i) seems feasible. There is however
an escape to this problem if M contains only relatively small proper subgroups. Let
m := maxM∈M\{N } |M | denote the maximal size that subgroups in M can have (apart
from the improper subgroup N ). A quick inspection of the algorithm in Definition 7
shows that its backward recursion (which assigns opinions πA to abstract agents A)

23 I am grateful to the referee for drawing my attention to this point.
24 In the algorithm, for each abstract agent A an opinion πA is calculated. There are 22n−1 − 1 abstract
agents in total. Hence, 22n−1 − 1 opinions have to be calculated.
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is trivial until it reaches abstract agents of order m: all abstract agents of order k > m
get assigned the opinion πA = πN . So a shortcut is possible: define πA as πN for all
abstract agents A with order(A) > m, and start the backward recursion with those
abstract agents A with order(A) = m.

Even if both tasks (i) and (ii) turn out to be practically feasible, the very choice
of M (before starting task (i)) may pose another high-complexity problem. Suppose
M is chosen by surveying all subgroups one by one to find out which ones exclu-
sively share information (each subgroup might be asked to ‘sit together’ and look for
potential information overlaps). Since there are 2n − 1 subgroups in total, this would
become infeasible already for moderately large n. However, no such problem arises
if M can be specified without performing an explicit subgroup-by-subgroup exami-
nation. For instance, M might be specified by a social planner who knows from the
start that certain subgroups (say, those containing experts from different fields) do not
exclusively share any information, while the other subgroups might exclusively share
information.

Turning now to the proof, I first show Lemma 1 and then Theorem 4.

Proof of Lemma 1 Assume (Ind∗). Let B, C be abstract individuals, and πB, πC ,

πB∨C , πB∪C ∈ �. Suppose πB, πC , πB∨C satisfy (15). For all abstract individuals A,

put

A := {M ⊆ N : M ′ ⊆ M for some M ′ ∈ A},

the set of supergroups of subgroups in A. By (15), πB∨C = P(.| ⋂M∈B∨C EM ),

where by Definition 5

⋂

M∈B∨C

EM =
⋂

M∈B∨C

⋂

M⊆M ′⊆N

E M ′ =
⋂

M∈B∨C

E M .

So,

πB∨C = P(.|E) with E :=
⋂

M∈B∨C

E M . (16)

Analogously, by (15), πB = P(.| ⋂M∈B EM ), where by Definition 5

⋂

M∈B

EM =
⋂

M∈B

⋂

M⊆M ′⊆N

E M ′ =
⋂

M∈B

E M = EB ∩ E

with EB := ⋂
M∈B\B∨C E M . So πB = P(.|EB ∩ E), and hence by Bayes’ rule

πB ∝ P(.|E)P(EB |. ∩ E). (17)

By an analogous argument for C, we have

πC ∝ P(.|E)P(EC |. ∩ E), (18)
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where EC := ⋂
M∈C\B∨C E M . By (16), (17) and (18) we have

πBπC/πB∨C ∝ [P(.|E)P(EB |. ∩ E)] [P(.|E)P(EC |. ∩ E)] /P(.|E)

= P(.|E)P(EB |. ∩ E)P(EC |. ∩ E). (19)

Note that each of EB, EC , E is an intersection of a set of events of type E M , where the
three sets of E M s (corresponding to EB, EC , E , respectively) are pairwise disjoint.
So, as by (Ind*) all E M s are independent conditional on any H ∈ H, so are the events
EB, EC , E . Consider an H ∈ H. As EB, EC , E are independent given H , the events
EB, EC are independent given H ∩ E . So

P(EB |. ∩ E)P(EC |. ∩ E) = P(EB ∩ EC |. ∩ E).

Substituting this into (19) and then applying Bayes’ rule, we obtain

πBπC/πB∨C ∝ P(.|E)P(EB ∩ EC |. ∩ E) ∝ P(.|EB ∩ EC ∩ E) ∈ �.

Now suppose πB∪C = P(.|EB ∩ EC ∩ E). We may rewrite EB ∩ EC ∩ E as

⋂

M∈B∪C

E M =
⋂

M∈B∪C

⋂

M⊆M ′⊆N

E M =
⋂

M∈B∪C

EM ,

and hence πB∪C equals P(.|⋂M∈B∪C EM ), i.e. satisfies (15). �

Proof of Theorem 4 Assume (SBR) and (Ind∗). By backward induction on the order
of A I show that each abstract individual A has opinion πA satisfying (15). This in
particular implies that {{1}, . . . , {n}} has opinion

π{{1},...,{n}}(H) = P(H |E1 ∩ . . . ∩ En) for each H ∈ H,

so that under (CBR) we have π = π{{1},...,{n}}, as desired.
Denote by A the set of abstract individuals A. The recursion proceeds as follows.

• If order(A) = n, then A = {N }, and by definition πA = πN . So by (SBR)
πA = P(.|EN ) = P(.| ⋂M∈A EM ), as desired.

• Now let order(A) = k < n, and assume (15) holds for all A′ ∈ A with
order(A′) > k. I have to show that πA = P(.| ⋂M∈A EM ).
Case 1: |A| = 1. Then A = {M} with |M | = k. If M ∈ M, then by
definition πA = πM , so by (SBR) πA = P(.|EM ) = P(.| ⋂M ′∈A EM ′), as
desired. Now assume M /∈ M. Then by definition πA = πA′ with A′ :=
{M ∪ {i} : i /∈ M}. Since order(A′) = k + 1, the induction hypothesis yields
πA′ = P(.| ⋂M ′∈A′ EM ′), hence πA = P(.| ⋂M ′∈A′ EM ′). So I have to show that⋂

M ′∈A′ EM ′ = EM . By Definition 5,

EM =
⋂

M⊆M ′⊆N

E M ′ = E M
⋂

⎧
⎨

⎩

⋂

M ′∈A′

⎡

⎣
⋂

M ′⊆M ′′⊆N

E M ′′
⎤

⎦

⎫
⎬

⎭
.
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In this, E M = � (by M /∈ M) and
⋂

M ′⊆M ′′⊆N E M ′′ = EM ′ (by Definition 5).
So EM = ⋂

M ′∈A′ EM ′ , as desired.
Case 2: |A| > 1. I show πA = P

(
.
∣
∣⋂

M∈A EM
)

by induction on the number
|{M ∈ A : |M | = k}| of subgroups in A of size k.

• Let |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗ with |M | = k and
order(A∗) > k. Then πA was defined as the function in � proportional to
π{M}πA∗/π{M}∨A∗ ; let me show that (i) such a function does indeed exists and
(ii) satisfies (15), as desired. Now, π{M} satisfies (15) by Case 1, and πA∗ and
π{M}∨A∗ satisfy (15) by order(A∗) > k and order({M} ∨ A∗) > k (and the
k-induction hypothesis). So, by Lemma 1, the function π{M}πA∗/π{M}∨A∗ is
proportional to a function in �, so that πA is well-defined. Also by Lemma
1, this function πA satisfies (15), as desired.

• Let |{M ∈ A : |M | = k}| = l > 1, and assume A∗ satisfies (15) whenever
|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). By definition, πA ∝
π{M}πA∗/π{M}∨A∗ , where A = {M} ∪ A∗ with |M | = k and |{M∗ ∈ A∗ :
|M∗| = k}| = l − 1. Again, we have to show that πA is well-defined (i.e. that
� indeed contains a function proportional to π{M}πA∗/π{M}∨A∗ ) and satisfies
(15). π{M} satisfies (15) by Case 1, πA∗ satisfies (15) by |{M∗ ∈ A∗ : |M∗| =
k}| = l − 1 (and the l-induction hypothesis), and π{M}∨A∗ satisfies (15) by
order({M}∨ A∗) > k (and the k-induction hypothesis). So, by Lemma 1, πA

is well-defined and satisfies (15). �


9 Conclusion

The above model interprets opinion pooling as information pooling: collective
opinions should build in the group’s entire information, be it shared or personal.
According to the pooling formulae I obtained, collective opinions should account for
informational asymmetries not by taking a standard weighted (linear or geometric)
average of the individual opinions with higher weight assigned to better informed
individuals but by incorporating people’s prior opinions in addition to their actual (i.e.
posterior) opinions. In practice, people have either to agree on a common prior opinion
p, i.e. on how to interpret the shared information, or they have to submit their possibly
diverging prior opinions p1, . . . , pn . Based on simple axioms, Theorem 1 shows how
to aggregate the (prior and posterior) opinions into a collective opinion. The formula
defines a multiplicative opinion pool: the collective opinion π is the product of the
individual opinions π1, . . . , πn and a function g (which depends on prior opinions).

More precisely, Theorem 1 suggests that, based on individual opinions π1, . . . , πn ,
the collective opinion π should be defined by

π ∝ π1 . . . πn/pn−1

if people agree on a common prior p, and by

π ∝ π1

p1
· · · πn

pn
F(p1, . . . , pn) (20)
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if people have arbitrary priors p1, . . . , pn , where F is a standard opinion pool. I have
suggested that F should be anonymous (i.e. symmetric in its arguments) because the
prior opinions it pools are based on the same (shared) information, giving no individ-
ual an informational superiority. More specifically, I have suggested to define F as
unweighted geometric pooling, because this generates appealing properties shown in
Theorem 2. This choice of F gives collective opinion the form

π ∝ π1

p1−1/n
1

. . .
πn

p1−1/n
n

.

Fortunately, not much depends on how we choose F in the pooling formula (20)
if – as is frequently the case – π1

p1
· · · πn

pn
dominates F(p1, ..., pn) (i.e., if the function

π1
p1

· · · πn
pn

varies far more than the function F(p1, ..., pn) for ‘reasonable’ choices of
F). In such cases, one might in practice refrain from choosing F and simply define
the collective opinion as

π ∝ π1

p1
· · · πn

pn
,

a particularly elegant pooling formula.
A crucial axiom underlying these pooling formulas is that personal information is

independent. By Theorem 3, independence is threatened by the possibility of subgroup
information, i.e. of information held by more than one but less than all individuals.
Theorem 4 therefore generalises the aggregation rule to arbitrary information distribu-
tions (allowing for subgroup information). The generalisation is unique, but assumes
that each subgroup with subgroup information agrees on how to interpret this infor-
mation, a kind of common prior assumption. Dropping this assumption would have
gone beyond the scope of this paper, but it might be an interesting route for future
research.

Acknowledgments I am very grateful for numerous helpful suggestions by a competent and diligent ref-
eree. This paper is based on my old unpublished paper ‘Opinion Pooling under Asymmetric Information,’
Public Economics 0407002, EconWPA, 2004. Meanwhile, interesting related results have been obtained
independently by Marcus Pivato in his working paper ‘The Discursive Dilemma and Probabilistic Judgement
Aggregation,’ MPRA Paper 8412, University Library of Munich, Germany, 2008.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Broome J (1990) Bolker-Jeffrey expected utility theory and axiomatic utilitarianism. Rev Econ Stud 57:477–
502

Dietrich F (2004) Opinion pooling under asymmetric information. working paper, Public Economics
0407002, EconWPA

Dietrich F (2008) The premises of Condorcet’s jury theorem are not simultaneously justified. Episteme
5(1):56–73

123



626 F. Dietrich

Dietrich F, List C (2007) Opinion pooling on general agendas. working paper, METEOR Research Mem-
orandum 038, Maastricht University

Fitelson B (2001) A Bayesian account of independent evidence with applications. Phil Sci 68 (Proceed-
ings):S123–S140

Genest C (1984) A characterization theorem for externally Bayesian groups. Ann Stat 12:1100–1105
Genest C, Zidek JV (1986) Combining probability distributions: a critique and an annotated bibliography.

Stat Sci 1:114–148
Genest C, McConway KJ, Schervish MJ (1986) Characterization of externally Bayesian pooling operators.

Ann Stat 14:487–501
Hild M (1998) The instability of ex post aggregation. Typescript
Hylland A, Zeckhauser R (1979) The impossibility of group decision making with separate aggregation of

beliefs and values. Econometrica 47:1321–1336
Jeffrey R (1983) The logic of decision (first published 1965). Chicago University Press, Chicago
Lehrer K, Wagner C (1981) Rational consensus in science and society. Reidel, Dordrecht
Levi I (1990) Pareto-unanimity and consensus. J Philos 87
Madansky A (1964) Externally Bayesian groups. Technical Report RM-4141-PR, RAND Corporation
McConway K (1978) The combination of experts’ opinions in probability assessments: some theoretical

considerations. Ph.D. thesis, University College London
McConway K (1981) Marginalization and linear opinion pools. J Am Stat Assoc 76:410–414
Mongin P (1995) Consistent Bayesian aggregation. J Econ Theory 66:313–351
Mongin P (1998) The paradox of the Bayesian experts and state-dependent utility theory. J Math Econ

29:331–361
Morris PA (1974) Decision analysis expert use. Manage Sci 20:1233–1241
Pearl J (2000) Causality: models, reasoning and inference. Cambridge University Press, Cambridge
Pivato M (2008) The discursive dilemma and probabilistic judgement aggregation. MPRA Paper 8412,

University Library of Munich, Germany
Risse M (2001) Instability of ex post aggregation in the Bolker/Jeffrey framework and related instability

phenomena. Erkenntnis 55:239–269
Risse M (2003) Bayesian group agents and two modes of aggregation. Synthese (forthcoming)
Savage L (1954) The foundations of statistics. Wiley, New York
Schervish M, Seidenfeld T, Kadane J (1991) Shared preferences and state-dependent utilities. Manage Sci

37:1575–1589
Seidenfeld T, Kadane J, Schervish M (1989) On the shared preferences of two Bayesian decision makers.

J Philos 86:221–244
Wagner CG (1982) Allocation, Lehrer models, and the consensus of probabilities. Theory Decis 14:207–220
Wagner C (1985) On the formal properties of weighted averaging as a method of aggregation. Synthese

62:97–108

123


	Bayesian group belief
	Abstract
	1 Introduction
	2 An axiomatic model
	2.1 Simple case: common prior beliefs and a common belief domain
	2.2 General cse: possibly distinct prior beliefs and belief domains

	3 A numerical example for a simple case
	4 Multiplicative opinion pooling
	5 Choosing the collective prior p when there is no common prior
	6 External and internal Bayesianity
	7 When is information independent, when not?
	8 Opinion pooling in the presence of subgroup information
	9 Conclusion
	Acknowledgments
	References


